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Abstract

Diffusiophoresis of concentrated suspensions of spherical particles subject to a small electrolyte gradient is analyzed theoretically at arbitrary
levels of zeta potential and double-layer thickness. The Kuwabara unit cell model is adopted to describe the system under consideration. The
effect of double-layer polarization is taken into account. It is found that the diffusiophoretic mobility exhibits a local maximum as well as a
local minimum with varying zeta potential or double-layer thickness, similar to the corresponding dilute dispersion. The direction of the particle
movement may even change back and forth. The previous low-zeta-potential approach is found to significantly overestimate the diffusiophoretic
mobility as the zeta potential goes high. The deviation may be several fold sometimes. The effect of the volume fraction ratio of colloids is also

examined. The higher the ratio, the lower the mobility.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The electrokinetic behavior of colloidal particles dispersed
in a continuous medium is of great practical interest. When
an external electric field is applied to a uniform electrolyte
solution containing charged colloidal particles, the resulting mi-
gration of colloidal particles is called “electrophoresis” [1,2].
This well-known phenomenon has been treated extensively in
the past literature [3—9]. However, the corresponding “diffusio-
phoresis” has received very limited attention so far. If the con-
centration of electrolyte solute is somehow originally nonuni-
form in the solution, an induced electric force will arise, due to
this macroscopic concentration gradient of electrolyte solute.
Hence the colloidal particles will migrate nonetheless, even
though the applied electric field is absent.

Deryagin et al. [10,11] first noticed this electrokinetic phe-
nomenon and proposed the diffusiophoresis mechanism to ex-
plain it. They found that diffusiophoresis was the underlying
mechanism for industrial processes such as ionic deposition
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[10-12]. When a solid shape containing a salt was immersed
in a latex solution, the growth rate of the latex film on the
solid shape would be comparable to that from the electrodepo-
sition process, where hundreds of volts are required. In other
words, the new process was able to achieve about the same
growth rate of latex films on a substrate without the applica-
tion of any electric field [11,12]. A corresponding theoretical
analysis in electrolyte solution was carried out by Dukhin and
Deryagin [10,13] and experimentally verified by Korotkova and
co-workers [10]. They proposed that the diffusiophoretic ve-
locity of a charged particle subject to a constant concentration
gradient Vn® in an unbounded solution of a symmetrically bi-
nary electrolyte is

&L kgT Vn®>
Cuoze ng

U*

[B+ ¢ ' In(cosh 2)], 1)

where ¢ = ze¢ /4kpT, ze is the charge carried by a single ion,
kp is the Boltzmann constant, T is the temperature, ¢ is the
zeta potential of the particle surface, ¢ is the fluid permittivity,
wu is the fluid viscosity, and ng is the macroscopic electrolyte
concentration measured without the particle and concentration
gradient. Note that 8 = (D1 — D2)/(D1 + D3), where D and
D, are the diffusion coefficients for cations and anions, respec-
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tively, is a dimensionless index indicating the relative diffusion
velocities of cations and anions. 8 is an experimentally mea-
surable property of the specific electrolyte solution under con-
sideration. For example, 8 = 0 for KCI, 8 = —0.2 for NaCl,
and 8 = 0.64 for HCI. Note also that 8 = 0 implies identical
diffusion velocities of anions and cations. Based on the Gouy—
Chapman model [1,2], Anderson [14] was able to predict the
diffusiophoretic mobility of a charged spherical particle when
the double-layer thickness and the zeta potential were small.
He found that the diffusiophoretic mobility in an electrolyte
solution was determined essentially by three factors: the zeta
potential of the particle surface, the relative diffusion velocities
of ions (B), and fluid properties such as viscosity, tempera-
ture, etc. Prieve and co-workers [15—18] further loosened the
restriction of low zeta potential in their theoretical analyses
and observed strong evidence supporting their proposed diffu-
siophoretic mechanism with experimental data. Concentration
gradients of electrolytes were established and measured in their
experimental setup, making use of a porous membrane [18].
Lechnick and Joseph [19,20] further extended Deryagin’s re-
sults to ternary-component systems and constructed ternary dif-
fusion coefficients both theoretically and experimentally. With
the aid of the Maxwell-Stefan equation, they concluded that
the Stokes—Einstein theory was not suitable to predict the bi-
nary diffusion coefficient for a charged particle in electrolyte
solution. Denisov and Zharkikh [21] solved the correspond-
ing problem with arbitrary double-layer thickness. Afterwards
Prieve and Roman [22] calculated diffusiophoretic mobility
with arbitrary double-layer thickness, using the same numer-
ical method as employed by O’Brien and White [6]. In their
study, they compared the difference between cases where 8 = 0
(KCI) and B # 0 (NaCl). They also concluded that the diffu-
siophoretic motion of colloidal particles cannot be totally pre-
dicted by thermodynamic forces in electrolyte solution [23].
Dukhin [24] provided a thorough physical analysis later on.
He figured that the external concentration had also induced a
concentration and electrical dipole moment. This nonequilib-
rium ionic distribution might play an important role in diffu-
siophoresis. Baygents and Saville [25] studied numerically the
diffusiophoresis of a droplet or a small bubble suspended in
an electrolyte solution with the finite element method. Misra
et al. [26] explored the effect of the soft layer on charged col-
loids in diffusiophoresis. Following a similar treatment, Kos-
mulski and Matijevic [27] proposed another mechanism named
“solvophoresis.” They found that different solvents might have
similar results even though the solutes were the same.

From this literature review, we noticed that essentially all
the studies on diffusiophoresis, analytical or numerical, were
confined to very dilute dispersion systems. When the concen-
tration of colloidal particles is high, however, the existence of
neighboring particles can no longer be ignored. This boundary
effect will be felt by all the colloids in the solution. Hence the
appropriate determination of associated boundary conditions on
the virtual surface, representing the interface between neighbor-
ing particles, is essential for a successful theoretical approach.
As a result, theoretical studies on diffusiophoresis have been
focusing on systems with boundaries, virtual or physical, in re-

cent years. The existence of a physical boundary is in itself an
interesting classic problem. For example, Keh and co-workers
[28,29] considered the diffusiophoresis for a colloidal sphere in
a nonelectrolyte or electrolyte solutions near a planar boundary.
They showed that the retardation effect produced by a planar
boundary might decelerate the motion of the particle. In addi-
tion, Wei and Keh [30] and Keh and Wei [31] predicted the
diffusiophoretic behavior in a suspension using both the Hap-
pel model [32] and the Kuwabara [33] unit-cell model. They
showed that the Kuwabara unit-cell model was more appropri-
ate than the Happel model for the system under consideration.
In recent years, Keh and Ma [34,35] also obtained diffusioos-
motic flow near a plane boundary. However, their results were
restricted to low surface potential, with no account of the con-
vection of ions.

What we present here is a study of the diffusiophoretic be-
havior of spherical particles dispersed in an electrolyte solu-
tion, with arbitrary surface potentials and arbitrary double-layer
thickness. In fact, diffusiophoresis exists not only in electrolyte
solutions [36], but also in nonelectrolyte solutions [37]. How-
ever, the electrokinetic phenomenon of diffusiophoresis in elec-
trolyte solution is much more interesting and complicated. In
our analysis, we focus on the situation where the mobility of
the two ions is identical in the electrolyte solution (8 = 0).
Compared with the results in the earlier literature, our study of
the diffusiophoresis of concentrated colloidal dispersion takes
into account the arbitrary effects of zeta potential, double-layer
thickness, and volume fractions of the particle. To solve the re-
sulting general electrokinetic equations, which are highly non-
linear, and the powerful pseudo-spectral method [8,38—40] is
employed in this study.

2. Theory

We consider the diffusiophoretic behavior of concentrated
spherical particles of radius a in a solution that contains z1:22
electrolytes, z1 and z; being respectively the valences of cations
and anions. The Kuwabara [33] unit-cell model is adopted as
the basis for subsequent analysis. Referring to Fig. 1, a uniform
concentration gradient Vny is applied to the system in the z di-
rection. The radius of each particle is a. Each individual particle
is considered as surrounded by a concentric spherical shell of
electrolyte solution phase of radius b, and moves upward with
a constant velocity U due to the concentration gradient. As a re-
sult, it is most convenient to use spherical coordinates (7, 8, ¢)
in our system. The electroneutrality constraint in the bulk lig-
uid phase requires that nyg = njo/®, n1o and nyg be the bulk
concentrations of cations and anions, and @ = —z>/z1.

It is assumed that the physical properties of the liquid phase
take their macroscopic values. Also, the shape of the colloidal
particle remains spherical when it is migrating in the fluid,
which is generally true for low-Reynolds-number situations.
It is further assumed that the concentration of solute is only
slightly nonuniform over the length scale a; that is, a|Vng| <
no. Under these conditions, the diffusiophoretic motion is gov-
erned by the well-known electrokinetic equations, which we
shall elaborate as follows.
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Fig. 1. Schematic representation of the system under consideration.

—
—

First we assume that the electrical potential ¢ of our system
under consideration can be described by the Poisson equation,

2
P zien;
Vz(ﬁ_——g = E —]g ]7 ()

where p and ¢ are respectively the space charge density and the
permittivity of the solution, e is the elementary charge, and n;
and z; are respectively the number concentration and the va-
lence of ionic species j. Moreover, the flow field is governed
by the Navier—Stokes equation in the creeping flow region, to-
gether with an incompressibility constraint,

V.v=0, 3)
uV*v—Vp—pVeé =0, @)

where p and p are respectively the pressure and the viscosity
of the fluid. The ionic concentration 7 ; is governed by the con-
servation of ion species,

kT

D;

14
[Vz 1+%(v”j.v¢+njv2¢)] —Vn;-v=0, (5

where D is the diffusion coefficient of ion species j, A; is the
diffusion coefficient for ion j, and z e is the charge carried by
ion j.

We nondimensionalize the above quantities further to facili-
tate subsequent treatments. Let ¢F = ¢/, where ¢ means the
equilibrium electric potential in the solution, with the absence
of the applied electric field, r* = r/a, and n}" =n;/nig, where
¢ represents the zeta potential on the shear plane. The conven-
tional standard electrokinetic model is adopted in this study,
in that no surface conductivity is considered here. The sur-
face conductivity, however, is a potentially important factor for
the thorough understanding of the electrokinetic phenomena, as
pointed out by Dukhin, Delgado et al. [41,42]. Superscripts on
all the quantities indicate corresponding dimensionless forms.
If the surface potential is uniform on the colloidal surface, with

the introduction of the convection term in Eq. (5), the ion dis-
tribution in the electrolyte solution can be described in a form
similar to the Boltzmann distribution,

nj=njo exp(—k’—;we + 8¢+ g,-)), ©)
where n o is the bulk concentration of the species j, ¢ the
induced electric potential due to the difference of ion mobilities,
and g; a perturbed potential adopted to describe the double-
layer polarization. Note that to analyze separately the effects
of double-layer polarization and induced electric field, we have
decomposed ¢ into ¢, §¢, and g;; that is, ¢ = ¢ + 3¢ + g;.
Note also that Eq. (6) is just a convenient analog, the generality
of polarization effect due to the fact that inclusion of convection
term in the ionic flux equation, g;, is intact [40]. Therefore, the
equilibrium potential can be determined as

(ka)? [
(T+a)ge

where the inverse Debye length « and the scaled zeta potential
¢, are defined respectively by

Vigr=— xp(—¢e¢?) — exp(adio?)], 7

2 1/2
K = |:Zn jolez j)2/8kBTi| , (8)
j=1
¢
= ) 9
z1e/kT ©)
The boundary conditions for ¢ are:
¢r=1 atr*=1, (10)
o b
g =0 atrf=-. 1D
ar* a

Equation (10) means that the surface potential of the particle at
equilibrium remains constant and Eq. (11) implies that the unit
cell as a whole is electrically neutral; thus there is no electric
current between adjacent cells.

Substituting Eq. (6) into Eq. (2), we obtain the governing
equation of induced electric potential from Eqgs. (2) and (7) in
the dimensionless form

*2 * _ﬂ . * * &
v 8¢ - (1+Ol)¢r{eXp[ ¢r(¢e +8¢ +g1)]
— exp[ag(of +8¢* + g3)]}
(ka)? i .
T g ayg, [XP(-060) —expladedr)]. (12)
and the corresponding boundary conditions are:
83(]5* —0 atr*=1, (13)
ar*
8¢*:0 atr*:é, (14)
a

where §¢* = 8¢ /¢. The first condition represents that it is di-
electric inside the colloidal particle and the other one implies
that the net flux for cations and anions is zero across the outer
virtual cell. These are also the boundary conditions adopted by
Keh and Wei [31]. To simplify the system and focus on issues
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of major interest, we consider the situation where 8 = O for the
time being in this paper.

The conservation equation of ions, Eq. (5), is converted into
dimensionless form by substituting Egs. (2) and (6) into it,

V*Zg;sf _ ¢rv*¢: . V*g;’f
— ZPe;v* - (V% + V'8 + V*g¥)
— ¢:e(V*89* + V*g7) - Vg =0, (15)

where g;? = g;j/¢ and Pe; is the corresponding Peclet number
of ion j, taking into account convection. We assume that the
colloidal particle is impermeable to ions, and there is an ionic
concentration gradient across the outer virtual surface of the
unit cell. Therefore,

gy g
ar*  or*

1
B¢ +g7) = —E(V*né)

=0 atr*=1, (16)

. b
1 atr® = = a7
(8¢™ +83) = —(V*ng)
27 ae 0
Taking curl on Eq. (4) and introducing the stream function in
the spherical coordinates, we get rid of the continuity equation
and obtain

2 * * *
£y = H” o n*aﬁ(an;)} %

T+a |l tars " 2ar 96
og} 085 ap* | .
- ["Tae* +ny oo (an3) | == sinf, (18)

where ¥ * is the scaled stream function and E** is the operator
of E*2E*2 which is defined as

92 ind 9 1 9
E*? 4 ( ) (19)

92 " %2 30 \sin6 90
Corresponding boundary conditions are

oy*

Y* =0, G =0 art=1, (20)
r
1
U= Er*zU* sin?6, atr*=b/a, (1)
E>y*=0 atr*=b/a. (22)

Equation (20) suggests no slip on the particle surface, and
Eq. (21) states that the fluid is flowing toward the stationary col-
loid with a relative scaled velocity of U*. Equation (22) states
that the virtual surface is curlless, as proposed by the Kuwabara
unit-cell model [33].

Having done the mathematical manipulations mentioned
above, we end up with governing equations identical to those in
electrophoresis, except for the boundary conditions in Egs. (14)
and (17) at the outer virtual surface. As pointed out by Dukhin
and Deryagin, diffusiophoresis and electrophoresis have a com-
mon base. They are two cases of a more general phenomenon,
namely particle movement under the influence of an external
electrochemical potential gradient. When an external electric
field is present, while an external gradient of concentration is

absent, the movement is called electrophoresis. When there
is an external concentration gradient, while an external elec-
tric field is absent, the movement is called diffusiophoresis.
Moreover, both phenomena are described by the identical elec-
trokinetic equation [13]. Note that this concentration gradient
in diffusiophoresis can be huge near a surface reaction area at
times, as pointed out by Prieve [16] and Smith and Prieve [17],
which actually drives the colloids.

The details of the above derivations can be found elsewhere,
such as Chu and co-workers [8], among our other previous pub-
lications. We now follow the same approach as that of Prieve
and Roman [22], who assumed the applied concentration gra-
dient to be very weak. Under this condition, the problem can
be simplified to a linear system, allowing decomposition into
two virtual subproblems [6,22]. In the first problem the spheri-
cal particle moves with a velocity in the absence of the applied
concentration gradient, where as in the second problem the
spherical particle is somehow held stationary when the concen-
tration gradient is applied. If the corresponding forces acting
on the surfaces of spherical particles for the two problems are
Fy and F,, respectively, then F1 = f{(V*n{) and F> = fyU*,
where f| and f; are proportional constants [22]. Therefore, the
diffusiophoretic mobility U} can be written as

U* 1
Ez f 2
Note that both F; and F> are computed given the values of

V*n§ and U*; thus the constants f{ and f, are determined
straightforwardly, and U}, can be calculated via Eq. (23).

(23)

3. Results and discussion

A pseudo-spectral method based on the Chebyshev polyno-
mial [38,39] is adopted for the solution of the governing equa-
tions, subject to the associated boundary conditions. Details of
the pseudo-spectral method employed in analyzing electroki-
netic phenomena can be found elsewhere, such as Lee and
co-workers [8,40]. It proves to be a very powerful and suitable
method for the fields of interest.

Fig. 2 shows the calculated normalized diffusiophoretic mo-
bilities as a function of surface potential ¢ when § =0, ¢ =1,
and Pe; = Pey = 0.26 (KCl). The characteristic value of diffu-
siophoretic mobility is chosen to be

2
U0 = i(k—T) Vine. (24)
na\zie

Note that we use the same characteristic value as Keh and Wei
in 2002 [31]. Compared with the results of Wei and Keh [30]
and Keh and Wei [31] for k@ = 1 and 10 (dashed line in Fig. 2),
which is the limiting case of ours at low zeta potential and very
thin double layer, we reproduce their results exactly when ¢
is low enough, indicating the accuracy of our results. As ¢,
increases, however, deviation between our results and theirs in-
creases, indicating that the low zeta potential approach runs into
problems for |¢;| higher than 1 approximately. This observation
is consistent with our general conclusion in the previous study
of electrophoresis [8,40].
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Fig. 2. Variation of scaled diffusiophoretic mobility (U*/U 0y as a function
of ¢ at various values of ka when ¢ = 0.1, § =0, and o = 1. Dashed line,
low-surface-potential case.

We also find that the mobilities for all xka are even func-
tions of ¢, which is exactly the same observation as for Prieve
and Roman [22], Keh and Wei [31], or Wei and Keh [43]. Ac-
cording to their analysis, diffusiophoresis of the particle comes
solely from chemiphoresis since the diffusion velocities are
identical for cations and anions (8 = 0). The term “‘chemiphore-
sis” implies that the motion of a charged particle is due to
the nonuniform adsorption of counterions within the electri-
cal double layer [31,43]. It reflects the governing equations
and corresponding boundary conditions in two ways: the con-
tribution from the disturbed electric potential, §¢*, is zero in
Eq. (12), and the Peclet numbers are identical in Eq. (15) (here
we set Pe; = Pey = 0.26, that is, a KCI solution). Keh’s study
focused on low zeta potential, whereas Prieve’s focused on di-
lute colloidal suspensions. In the present paper, we extend it
to concentrated colloidal dispersions and conclude that it is
always an even function of ¢, at arbitrary ka, whether for di-
lute or concentrated dispersions. Most important of all, we find
that the diffusiophoretic mobility does not increase all the way
with increasing ¢;. It actually reaches a local maximum first,
and then decreases. In other words, when ¢, exceeds a certain
threshold value, the mobility of the colloid no longer increases
monotonously with it. This is contrary to the reports made be-
fore by Keh and Wei [31], where they studied the limiting
case of low zeta potential and thin double layer. Under these
assumptions, they claimed that mobility increased monoton-
ically with ¢, (8 = 0). We compared with their results and
found that the low-zeta-potential approach, which linearized the
Poisson—Boltzmann equation, is applicable only for |¢;| < 1.
Once above this range, the deviation becomes more and more
significant. For example, for |¢;| = 3 and xa = 10, we find that
their predictions extrapolated beyond |¢;| = 2 in their paper can
be as high as 40% overestimated, compared with the actual mo-
bility based on our general approach, which allows arbitrarily

0.5
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o
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_01 1 1 Ll lllll L 1 Ll lllll L 1 Ll IIIlI
10 10" 10° 10"
Ka

Fig. 3. Variation of scaled diffusiophoretic mobility (U*/U 0) as a function of
ka at various values of ¢y when ¢ =0.125, 8 =0,and o = 1.

high values of zeta potential. At extremely cases as |¢;| > 5, the
deviation may even be severalfold.

However, the diffusiophoretic mobility becomes somewhat
irregular between ka = 3 and 5 in Fig. 2. To explain what hap-
pens there, we use ka as abscissa in Fig. 3 for convenience.
In Fig. 3, we see similar behavior over a certain range of
ka. Briefly speaking, higher «xa results in greater mobility of
the particle because higher ka means higher ion concentration
njo, according to Eq. (8). In other words, as «a increases, the
amount of electrolytes increases accordingly in the vicinity of
the colloid surface; hence the electric force exerted upon it in-
creases simultaneously. However, Malkin, Korotkova, and their
collaborators [44,45] showed that the rate of diffusiophoresis
of polystyrene latex particles decreases and then changes di-
rection with the increase of electrolyte concentration. This was
the first time that the inversion of diffusiophoresis direction
was predicted. They also suggested that concentration polar-
ization of the double layer strongly influences the direction of
particle movement [44]. In our study, we also find the appear-
ance of both a local maximum and minimum over some range
of ka. This phenomenon, analyzed in depth by Dukhin [24],
may arise from the polarization of the double layer surround-
ing the particle, which induces a microscopic electroosmosis
slip opposing the normal diffusiophoretic motion. Although the
gradient of potential increases due to the reduction of double-
layer thickness (larger ka), which implies a stronger driving
force for particle motion, the opposing electric force becomes
stronger also. Comparing the variation of electric force Fy for
various ¢y, as shown in Fig. 4, we find that the variations of Fé‘
and mobility with xa have similar trends [8]. According to this
analysis, the ultimate behavior of the diffusiophoretic mobility
is mainly due to the dominant effect of F. Lee et al. [8] also
reported this result in their study of electrophoresis. However,
the concentration polarization of the double layer here produces
a coupled mass and charge flow near the surface of the particle.
This makes the motion of the particle much more complicated
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Fig. 4. Variation of scaled electric force Ff; on the particle surface as a function
of ¢r at various values of ka when ¢ =0.125, 8 =0, and o = 1.

at high zeta potential or medium double-layer thickness. There-
fore, even taking no consideration of the effect of discrepant dif-
fusion speeds for cations and anions, it is still possible that the
movement of the colloids may change direction more than once,
as we actually observe from our calculation results. The cause
of this phenomenon is the polarization effect, as we have elabo-
rated above. Moreover, note that the mobilities for each xa are
all symmetric functions of ¢, in Fig. 3. If the diffusion veloci-
ties are different for cations and anions, i.e., 8 # 0, an induced
electroosmotic flow will appear near the particle surface. The
resulting velocity direction of the colloid is much more compli-
cated, as it is determined by the competing chemiphoretic and
electrophoretic components under the circumstances [24].

We also plot equilibrium potential ¢ distribution at various
surface potentials ¢, in Figs. 5 and 6. We find qualitatively sim-
ilar contours between Figs. 5 and 6. The major difference is
the quantitative value of ¢F. On the other hand, a comparison
between cases of thick (ka = 0.01) and thin (ka = 7.3) double-
layer for contour plots of ¢} is also shown in Fig. 5. In Fig. 5,
it is obvious that the distribution for ¢} is a strong function of
double-layer thickness. The electric double-layer represents the
range of surface potential that can affect the ion distribution.
When the thickness of double layer becomes greater than the
radius of virtual surface, indicated by xa smaller than 1, the
double-layer overlapping becomes significant. Under the same
value of zeta potential, we find a steeper gradient of ¢ near
the particle surface in Fig. 5b, where «a is large, compared
with Fig. 5a, where «a is small. Therefore, the correspond-
ing mobility in Fig. 5 and the electrical body force in Fig. 4
of ka = 7.3 are larger than those at xa = 0.01. This result also
implies that xa has a greater influence on the distribution of
¢Z than ¢, does. The corresponding comparison for the scaled
counterion distribution n§ is shown in Fig. 7. When ka = 0.01,
a lot of counterions are attracted into the cell, by the particle
surface potential, resulting in a large area of double layer. At
small ka, we observe that the distribution of n} forms concen-
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Fig. 5. Contours of scaled equilibrium potential ¢ at two levels of xa when
¢=0.1,=0,¢r=3.0,and @ = 1: (a) ka = 0.01, (b) ka =7.3.

tric shells around the spherical particle. The larger the value
of ng, the closer the contour is to the particle surface. With
the increase of «a, the contour of nj distorts slightly toward
the side of low ion concentration. If we compare the value of
n3 at (0.7, —0.75) and (0.7, 0.75) in Fig. 7b, we find a small
deviation of ionic concentration within the double layer. It is
0.984072 at (0.7, —0.75) but 0.983046 at (0.7, 0.75). As we
have explained earlier, this is because the polarization effect
reaches its peak at medium «a, since the double-layer overlap-
ping eventually disappears. The different value of n} represents
the possibility that the profile of double layer may be a little
distorted toward the opposite direction from the particle move-
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Fig. 6. Contours of scaled equilibrium potential ¢ at two levels of ka when
¢=0.1,=0,¢:=5.0,and @ = 1: (a) ka =0.01, (b) ka =7.3.

ment. This nonuniform distribution of ions induces an electric
force retarding particle movement [8]. Furthermore, if we set
¢r = 3 on the particle surface, more anions accumulate near
the particle surface due to the electrostatic force. Consequently,
the value of n3 is always greater than zero within the double
layer. For completeness, corresponding streamlines around the
particle are also shown in Fig. 8. It is very interesting to note
that when xa = 0.01, the mobility of colloidal particles and
the velocity of the fluid are lower than for xa = 7.3. There-
fore, the change of the value of the stream function is smaller
in Fig. 8a than in Fig. 8b, indicating that the particle moves in
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Fig. 7. Contours of n§ at two levels of ka when ¢ =0.1, 8 =0, ¢y = 3.0, and
a=1:(a) ka=0.01, (b) ka="7.3.

the same direction of V*ng relative to the fluid on the virtual
surface.

Finally, the influence of the particle concentration, measured
by the volume fraction ¢ = (a/b)? of the particle in the cell, on
the diffusiophoretic mobility in general is presented in Figs. 9
and 10. Fig. 9 shows the variation of scaled diffusiophoretic
mobility as a function of volume fraction ¢ at various ¢r, for a
representative case of ka = 1.0. Clearly the mobility decreases
accordingly when the dispersion gets more and more concen-
trated. This is fully expected because the higher the concen-
tration of particles, the more significant the interaction among
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Fig. 8. Contours of stream function at two levels of ka when ¢ =0.1, B =0,
¢r=3.0,and @ = 1: (a) ka = 0.01, (b) ka =7.3.

particles in the neighborhood, and thus the more important the
steric hindrance for the fluid flow during diffusiophoresis. Here
the steric hindrance refers to the resistance of fluid motion ow-
ing to the existence of neighboring particles. Surely it is difficult
to swim fast in a crowded swimming pool. In addition, we also
find that the steric hindrance delays the dominance of the po-
larization effect on the diffusiophoretic mobility, as shown in
Figs. 9 and 10, where the occurrence of local maximum shifts
to the right side along the ¢ or ka axis. The shift may be
so profound that the local maximum, caused by the polariza-
tion effect explained earlier, is pushed beyond the scope of the

| |
0 5
0,

Fig. 9. Variation of scaled diffusiophoretic mobility (U*/UO) as a function of
¢y at various values of ¢ when ka =1.0, =0, and o« = 1.
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Fig. 10. Variation of scaled diffusiophoretic mobility (U* /U 0 as a function of
ka at various values of ¢ when ¢y =4.0, =0, and ¢ = 1.

figure. Though the specific case presented is for ¢ = 4.0 in
Fig. 10, this delay or shift-to-the-right behavior is typical in our
other calculations. This is again due to the crowd of the par-
ticles when the volume fraction is increased. When the double
layer around each particle is thick (small k@), the overlapping is
very profound at concentrated dispersions (large volume frac-
tion). Therefore, the polarization effects are somewhat offset by
one another, making the system shift toward the uniform phase.

4. Conclusions

We investigated here diffusiophoresis phenomena in con-
centrated colloidal dispersions at arbitrary zeta potentials and
double-layer thicknesses. When the diffusion coefficients of
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cations and anions in the electrolyte solution are identical, each
other, the diffusiophoretic mobility is found to exhibit both a lo-
cal maximum and a local minimum with increasing ¢, and ka,
due to the impact of polarization effect on the electric force ex-
erted on the particle. This is similar to the corresponding case
of dilute colloidal suspensions at high zeta potential reported
in Refs. [22,24]. The previous simplified model for low zeta
potential and very thin double layer is acceptable only when
|¢r| < 1, and it overestimated the actual magnitude of mobil-
ity [31]. The deviation gets more and more severe as ¢, or ka
increases. Moreover, the particle velocity may not even move in
the same direction as that of the concentration gradient. In ad-
dition, we compared the equilibrium electrical potentials and
ionic concentration difference at various double layer thick-
ness. We showed that the ion distribution around the particle,
which determines the diffusiophoretic mobility, is affected by
factors such as the double-layer overlapping, ion concentration
gradient, and polarization effect. Finally, we find that the influ-
ence of steric hindrance on potential distribution as well as fluid
flow must be taken into account as the colloidal dispersions be-
come more and more concentrated. Overall, we conclude that
the polarization effect by far is the most important factor in the
determination of the colloid mobility.
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