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An algorithm for the calculation of the electrostatic potential
distribution governed by the Poisson-Boltzmann equation is
presented. The algorithm is applicable to both a single planar
surface and two parallel, identical, planar surfaces. The surface
under consideration is coated with an ion-penetrable membrane,
which bears fixed charges. Both uniformly distributed fixed
charges and nonuniformly distributed fixed charges due to the
dissociation of the functional groups in the membrane are con-
sidered. The liguid phase contains an arbitrary a:b electrolyte
or mixed a:b and c:d electrolytes. The result obtained for two
parallel surfaces is readily applicable to the estimation of both
the electrostatic pressure and the interaction free energy between
these surfaces. © 1995 Academic Press, Inc.
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1. INTRODUCTION

In a recent study, we proposed a numerical scheme for
the calculation of the electrostatic force between two parallel,
identical charged surfaces immersed in both an a:5 clectrolyte
solution and in a mixed solution of a:b and ¢:d electrolytes
{1). This is an extension of the result presented by Chan et
al. (2) in which the discussion is mainly focused on sym-
metric electrolytes. The algorithm provides an efficient way
of estimating the electrostatic potential distribution between
two solid surfaces. This distribution is governed by the Pois-
son-Boltzmann equation, which needs to be solved numer-
ically, in general. In particular, since extensive use of tables
for elliptic functions is involved in the numerical treatment,
it is extremely time-consuming.

The classic rigid surface model, i.e., fixed charges exist only
on an ion-impenetrable surface, is insufficient for the description
of the behavior of a certain class of colloidal particles. Typical
examples include biological cells and some artificial mem-
branes. A feature common to these particles 1s that they are
covered by an ion-penetrable surface layer, which usually carries
fixed charges. In other words, the fixed charges are distributed
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over a finite volume in space, rather than on a surface. Ap-
parently, the relevant analysis for a rigid surface model needs
to be modified to take this nature into account. The aim of
this study is to extend our previous analysis for rigid surfaces
(1) to the case of ion-penetrable surfaces.

2. ANALYSIS

Let us consider a planar surface coated with an ion-pen-
etrable membrane (Fig. 1), and a pair of identical, paraliel
surfaces separated by a dimensionless distance L (Fig. 2}.
The membrane has a dimensionless thickness 4.

2.1. Uniformly Distributed Fixed Charges

In the first case we assume that the fixed charges in the
membrane are distributed uniformly (independent of posi-
tion) with density —ZeN, Ny, with Z, N, Ny, and e being,
respectively, the valence of the charged groups, Avogadro’s
number, the density of the charged groups, and the clemen-
tary charge. The distribution of the electrostatic potential of
a charged surface immersed in an a:b electrolyte solution is
described by the Poisson-Boltzmann equation

d’Y/dX? = [exp(bY) — exp(—aY) + iN]/(a + b),
i=0,1. [1]

In this expression, Y = e¢/kT, X = «r, and «* =
4mwe(a*nd + b2n9)/ kT, where ¢ is the electrostatic poten-
tial, r represents the distance, ¢ and T are the dielectric con-
stant of the system and absolute temperature, respectively,
n? and nY denote the number concentration of cation and
that of anion in the bulk liquid phase, respectively, and &
and « are, respectively, the Boltzmann constant and the re-
ciprocal Debye length. The value of N is Z Ny Ny/ans, and
i is a region index; { = | denotes the membrane phase, and
i = 0 represents the double-layer region.

2.1.1. Single Surfuce

The boundary conditions associated with [1] for a single
surface are
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The potential profile of a single surface bearing an ion-penetrable

Y= 0and (dY/dX)—~0as X - [2a]
Y(X=d)=Y(X—=>d") =Y,

and (dY/dX)y.q- = (dY/dX)xar [2b]

Y= Y.and (dY/dX)—=> 0as X — 0, [2¢]

where ¥ and Y, are, respectively, the dimensionless potential
as X — (0 and the dimensionless potential at membrane-
liquid interface,

2.1.1.1 I:1 electrolyte. The distribution of the electro-
static potential in the membrane phase can be estimated by
first integrating [1] with / = 1, subject to [2¢], to give

dY/dX = Q5 ,Sgn(-Y,), [3]
where
Q.1 ={[2cosh Y+ N{a=1)Y —2cosh Y,
— N(a = 1)Y,]Sgn(—Y,)}'”?. [3a]
Define
g1 =2sinh Y+ N(a=1) [4a]
Sfi1=2cosh Y+ Nla=1)Y
= Q2,8gn(—Y,)+ 2cosh Y, + N(a = 1)Y,. [4b]
These two expressions yield
g =sinh{[1/N(a = 1)]
X1 fa1 = [[g1 — N(a = 1D]* +4]']}
+ N(a=1)/2. [5]
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Note that since f;, is a function of Q,, so is g;,. Differen-
tiating [ 3a] with respect to ¥ gives

dQ;,/dY = (£:1/20:1)8gn(~Y,). [6]
Equations [3] and [6] lead to
dX/dQs, = 28gn(=Y.)/ g1 = [2/&.l. [71

The electrostatic potential distribution in the double-layer
region can be ¢valuated by first integrating [1] with { = 0,
subject to [2a]. We have

dY/dX = Q4,Segn(-Y,), [8]
where
Q41 = [2(cosh ¥ — 1)]'/2, [8a]

Following the same procedure as that employed in the der-
ivation of [ 7], we obtain

dX/dQs, = 1/{I(Q&/2)+ 11> = 1}'2 [9]
From [2b], [3], and [8], we have, for ¥, <0,
Yo=Y, +[2/N(a= 1)]{cosh ¥, — 1). [10)]

The numerical procedure is summarized in Appendix B.

2.1.1.2. qb electrolyte. In the membrane phase, inte-
grating [1] with { = 1 subject to [2c] yields
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FIG. 2. The potential profile between two identical parallel surfaces,
each bearing an ion-penetrable membrane.
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dY/dX = QSgn(-Y,), [

where

Q, = {{[2/(a + B)}{(1/b)[exp(bY) — exp(hY,)]
+ (1/a) X [exp{—aY) — exp(—a¥,)]

+ N(Y - Y} }Sen(=Y,)}'%. [lla]

Let
g = exp(bY) —exp(—a¥)+ N
L= (1/ab)[aexp(bY) + bexp(—aY)] + NY

= [(a + b)/2]1Q: + (1/b)exp(bY,)
+ (1/a)exp{—aY,) + NY..

[12]

[13]
Expressing exp[(b — a)Y], exp(—2aY), and exp{2bY} in

terms of (g, — N) and (f; — NY), and substituting the re-
sultant expressions into [11}], we obtain (Appendix A)

g = exp{{b/N)[ fi — (a,/az)'* (g, — NY}

—exp{(—a/N)f — (ay/e2)' (g, — N)]} + N, [14]
where
_ . latpy b*(a—1)
= a’+ 3ab+ B*  ala®— b*) [14a]
b*a—~1) b(a* — b?)
_ A2 _
oz = b +a(a2—b2) a’+ 3ab+ b*’ [14b]

Following the same procedure as that employed in the der-
ivation of { 7] leads to
dX/dQ, = 2/g!. [15]

In the double-layer region, integrating [ 1] with { = 0 subject
to [2a] gives

dY/dX = QsSen(—Y,), [16]
where
Qs = {[2/(a + )I{(1/b)[exp(bY) — 1]
+(1/a)[exp(—aY) — 1]} }'/2. [l6a]
Define
ga = exp(bY) — exp(—a¥) [17]
fa=[aexp(bY) — b exp(~aY)]/ab
= [a+b)/2]1Q4 + (1/b) + (1/a). [18]
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Following the same procedure as that employed in the der-
ivation of [14] leads to

, g | 1
8= aafd*?‘i'(zz—ﬁ b faga
b 2 bi(b—a) gZ

b 2 5 —af(h—a)
A

ay = a’b?/(a+ b)° [19a]
dX/dQs = |2/gq4l. [20]

From [2b], [11], and [16] we obtain, for Y, <0,

Yo=Y+ (1/N){(1/b)[exp(bY.) — 1]

+ (1/a)exp(—aY,)— 11}. [21]
The potential distribution in the membrane phase and that
in the double-layer region can be calculated by following the
same procedure as that emploved in the case of 1:1 electrolyte
{Section 2.1.1.1} except that [10] is replaced by {21].

2.1.2. Two Parallel Surfaces
In this case, the boundary conditions associated with [1]
are [2b], [2¢], and

Y=Y, ,and (dY/dX)=0atX=L/2, [22]

Y, being the value of Y at the midpoint of two surfaces.

2.1.2.1. 1:1 electrolyte. The distribution of the electro-
static potential in the membrane phase is calculated by [7],
and that in the double-layer region can be evaluated through
the algorithm proposed by Chan er al. (2). Following the
same procedure as that employed in the derivation of [10],
we obtain

Y=Y, +[2/N{a=1){cosh Y. — cosh Y,). [23]

The procedure for the evaluation of the electrostatic potential
distribution is summarized in Appendix C.

Following the same procedure as that suggested by Chan
et al. (2), the result obtained for two parallel surfaces in the
present study is readily applicable to the estimation of both

the electrostatic pressure and the interaction free energy be-
tween these surfaces.

2.1.2.2. a:b electrolyte.  The electrostatic potential dis-
tribution in the membrane phase is governed by [15], and
that in the double-layer region is determined through the
algorithm suggested by Kuo and Hsu ( 1). Following the same



486

procedure as that employed in the derivation of [10], we
obtain

Y= Yo+ (1/N){(1/b)[exp(bY.) — exp(bY )]

+ (1/a)(exp(—al.) — exp(—a¥)}}. [24]

The numerical procedure for the resolution of [15] and that
for the estimation of the electrostatic potential distribution
in the double-layer region are the same as that employed in
the case of 1:1 electrolyte (Section 2.1.2.1), except that [23]
is replaced by [24].

2.2. Nonuniformly Distributed Fixed Charges

Suppose that the fixed charges in membrane arise from
the dissociation of the functional groups it bears according
to the reaction

AH—= A~ + H7, [25]
where AH and 4~ denote, respectively, the acid functional
groups and the conjugated basic groups. At equilibrium,

K, = (ng-)(nu+)/nan, [26]
where K, is the equilibrium constant, and n,-, n,y, and
ny-+ are the number concentrations of A~, AH, and H™,
respectively. The functional groups in the membrane are
assumed to distribute uniformly with density V,. We have

NONA:HA—+I’1AH. [27]

The distribution of H™ follows the Boltzmann distribution

np+ = pgexp(—Y), [28]
where ny; represents the number concentration of H™ in
the bulk liquid phase. For simplicity, we assume that the
bulk concentrations of H™ and OH ™ are relatively smaller
than that of the electrolytes. In this case, the Poisson-
Boltzmann equation for an a:b electrolyte solution can be
written as

d*Y/dX? = [exp(bY) — exp(—aY) + iN)]/(a + b},

i=0,1. [29]

As in the case of uniformly distributed fixed charges, i is the
region index. The value of N, can be determined by [26]
through [28]. We have

N, = N(Z = 1)/[1 + (ma;/Kexp(=Y)]. [30]

2.2.1. Single Surface

The boundary conditions associated with [29] for a single
surface are those described by [2a] through [2¢]. The dis-
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tribution of the electrostatic potential in the membrane phase
can be estimated by first integrating [29] with / = 1, subject
to [2c], to give
dY/dX = O,
Qsa = [2/(a + 5)]'2{(1/b)[exp(bY) — exp(bY,)]
+ (1/a)[exp(—aY) — exp(—at,)]
+ Ny — No(Yo) 312,

[31]

[31a]

where
Ny = N(Z = D)In[exp(Y) + (nuz/K.)].  [31b]
Define
o = eXp(bY) —exp(—aY) + N, [32a]
foa = (1/B)exp(bY) + (1/a)exp{—aY) + N,
= [{a+ b)/21Q%L + (1/b)exp(bY,)
+ (1/a)exp{—aY,) + N,(Y.). [32b]

2.2.1.1, 11 elecrrolyte. In the membrane phase and
1:1 electrolyte [32a] and [ 32b] reduce to
Ga=2sinh Y+ N(Z=1,a=1})/
[1 + (nug/Ko)exp(—Y)] [33a]
fear=2cosh Y+ N(Z=1,a=1DIn[exp(Y)+ (nu;/K)]

=Q2, +2cosh Y, + Npy(Y,,a=1). [33b]
Solving these expressions for f,, gives
Sy =g+ (l/ag)+ N(Z=1,a=1)
X]n[a9+(nH3/Ka)]s [34}
where
— 2 3\ 172773
= | % (%8 07
”‘9_[ 2 +(4 +27) ]
2 3\ 1/271/3
g ag [ 4] X4
- = —+ = - 4
[2+(4+27) ] y; [P4al
g = (2&% - 90!4(15 + 27“6)/27 [34b]
oy = (30!5_053)/3 [3401
ag = —n K, [34d]
s = (nHa'/Ka)gs,al —1 [346]
s = (np /KD + NZ=1,a=1}—g. [34]
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Following the same procedures as those employed in the
derivation of [7] and [10], we obtain, respectively,

dX/dQs,al = |2fgs,a1i [35]

and
Nyla=1,Y)=Ny(a=1,Y. Y+ 2(cosh Y. — 1). [36]

The procedure for the evaluation of the electrostatic po-
tential distribution in the double-layer region is the same as
that for the case of uniformly distributed fixed charges (Sec-
tion 2.1.1.1), except that [10] is replaced by [36].

2.2.1.2. a:b electrolyte. Consider first the electrostatic

potential in the membrane phase. Equations [31b] and [32b]
lead to

foa={1/b)afy + (1/a)atd + No, [37]
where
ayo = exp[N,/N(Z = 1)] — (mui/K,).  [37a]
From [30] and [32a], we have
8o = alo — o + N(Z=1)/(1 + ang/Kearp).  [38]

Thus, for a given f, (or @), [37] can be solved for N,
and g and g, are then determined by [37a] and [38],
respectively. Following the same procedure as that employed
in the derivation of [7] and [10], we obtain, respectively,

dX/dQs. = |2/g.l [39]
and
Ny(Yy) = No(Y,) + (1/b)[exp(bY.) — 1]
+ (1/a)[exp(—a¥,) — 1]. [40]

The procedure for the evaluation of the electrostatic po-
tential distribution in the double-layer region is the same as
that for the case of uniformly distributed fixed charges (Sec-
tion 2.1.1.2), except that [21] is replaced by [40].

2.2.2. Two Parallel Surfaces

In this case, the boundary conditions associated with [29]
are [2b], [2c], and [22].

2.2.2.1. 1:1 electrolyte. The electrostatic potential dis-
tribution in the membrane phase is governed by [35], and
that in the double-layer region can be evaluated by the al-
gorithm proposed by Chan et al. (2). Following the same
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procedure as that employed in the derivation of [10], we
obtain

Npla=1,Y5) = Ny(a=1,7Y)

+ 2(cosh Y, — cosh Y,) [41]
Details about the numerical procedure for the estimation of
the electrostatic potentials are the same as those elaborated
in Section 2.1.2.1, except that [23] is replaced by [41].

2.2.2.2. ah electrolyte.  The electrostatic potential dis-
tribution in the membrane phase is governed by {39], and
that in the double-layer region can be evaluated by the al-
gorithm proposed by Kuo and Hsu (1). Following the same
procedure as that employed in the derivation of [10], we
obtain

Np(Yq) = Np(Y.) + (1/D)[exp(bY.) — exp(bY )]

+ (1/a)lexp(—aY,) —exp(—a¥n)]l. [42]
Details about the numerical procedure for the calculations

of the electrostatic potentials are the same as those stated in
Section 2.1.2.2, except that [24] is replaced by [42].

2.3. Donnan Potential

Suppose that 4 is large enough that ¥ = Ypg, as X — 0,
¥pon being the dimensionless Donnan potential. From [1],
we have

exp(hYpan) — eXp(—a¥pon) + N = 0. (43]
A numerical procedure for the resolution of this equation
can be found in (4).

If the fixed charges arise from the dissociation of the func-
tional groups in the membrane, [29] can be used to deter-
mine the Donnan potential. We obtain

eXp(bYDun) - exp(_aYDon) + Na(YDon) =0. [44]

Rearranging this equation gives

exp{Ypon) = { [exp(¥pon)]'™*
+ (anlKa)[exD(YDon)]_a - [cxp(YDon)] 1+6
— (g / K)[exp(Ypon) 1P} /N(Z = 1), [45]
As an initial guess for Ypgn, we let 2 = b =1 in [45] and
solve the resultant expression for €exp{¥per). The value of

exp( Ypon) thus obtained is denoted by exp(Y bos)- It can be
shown that
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exp(¥ boa)

: 7'62 ‘8_% _}3_?1_.’2 1/37 & @_% 5_?!,"2 1/3
‘[T+(4+27) ] [2+(4+27) ]

—(1/3}{(mug/ K,y + N(Z=1,a=1)}], [46]
where
By =—1 = (1/3)(muz/K) + N(Z=1,a=1)]* [46a]
By = (1/)(2ru/K) + N(Z=1,a=1)]
+ (22 [(ruz/ K+ N(Z=1,a= 1)]%. [46b]

When exp(¥pon ) is replaced on the right-hand side of [45]
by this expression, a new exp( Ypoq ) 1s obtained. This step is
continued until a satisfactory value of Yp,, is reached.
For an isolated surface with a small M, and a large X,
Y.~ [l —exp{—d)] Ypou [47]

In the case of two interacting surfaces and a large &, Ypop 18
suggested as an initial guess for Y.

3. DISCUSSION

The present algorithm can be extended without too much
difficulty to more complicated cases. For example, if the lig-
uid phase contains mixed 4:b and ¢: d electrolytes, we define
Uy = andlexp(dY) — exp(—aY)]

+ bnl[exp(bY) — exp(dY)]

+ cn[exp(dY) —exp(—cY)] [48a]
Vy = no[(a/d)exp(dY) + exp(—aY)]
+ nllexp(bY) — (b/d) X exp(dY)
+ nl[{c/d)exp{dY) + exp(—cY¥)] [48b]
U= Uy + anN [48¢c]
V, = V4 + anNY. [48d]

In these expressions, n$ and n? are the number concentra-
tions of cations in the bulk liquid phase, and »$ and #$ are
those of anions, Following the procedure as that described
by Kuo and Hsu (1), the potential distribution can be cal-
culated.

According to [30], as K, = oo, N, reducesto N (Z = 1).
In this case, n,q — 0 and #n,- = NgN,. In other words, if
the functional groups in the membrane phase dissociate
completely, the fixed charges will distribute uniformly. From
this point of view, the discussion in Section 2.1 is a special
case of that in Section 2.2. On the other extreme, if K, —
0, the membrane becomes free of fixed charges.
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Suppose that a membrane also carries basic functional
groups, which undergo the dissociation reaction

BH™ = B+ HY, [49]

where £ and BH™ denote, respectively, the basic functional
groups and the conjugated acidic groups. At equilibrium,

Ky = (np)(my+)/ Bgu+, [50]

where K, denotes the equilibrium constant, ng and ng -+, are
the number concentrations of B and BH ™, respectively. The
basic functional groups in the membrane are assumed to
distribute uniformly with density Nj. In this case, NV, and
N,, defined by [30] and [31b], respectively, need to be mod-
ified by N}, and N}, respectively, where

NZ=1)

_ _ N(Z'=1)
1+ (nyy/K)exp(—Y)

1+ (Kp/npd)exp(Y)
[51]

NG

Ny = N(Z = 1)In[exp(Y) + (an;/Ka)]

—N'(Z'= Din[exp(—Y) + (Kp/nuz)]. [52)

In these expressions, NgN, = np + ngy+t and N =
Z'NyN./an®, Z' being the valence of basic groups. Substi-
tuting [51] and [52] into [32a] and [ 32b], respectively, vields
Joa = (1/b)exp(bY) + (1/a)exp(—a¥)

+ In{[exp(Y) + (mug/K)IVZ"0/

[exp(—Y) + (Kb/nHS)]N’(Z,=I)} [53]
8o = exp(bY) — exp(—aY}
N(Z = 1exp(Y) N(Z' = 1) [54]

exp(Y) + (nuz/K,)

Thus, for a given Q. ,, f . is determined by [32b], exp(Y)
can be determined by [53], and g, , is evaluated by [54].
The algorithm based on [39] is applicable.

If K, approaches infinity and K, approaches zero, i.e., all
the functional groups in membrane dissociate completely,
the fixed charges distributed uniformly with density
—eNL(No — Np). This reduces to the case of Section 2.1.
On the other hand, if K, — 0 and K, — <0, the membrane
becomes free of fixed charges.

I+ (Kp/nug)exp(Y)

APPENDIX A
Based on [12] and [13], we have
(g, — N)? = exp(2bY) + exp{—2aY)
—2exp[(h— a)Y]
b2(fy — NY)? = exp(2bY) + (b/a)exp(—2aY)

[Al]

+ (2b/a)exp[(b — a)Y] [A2]
a’(fi — NY)? = exp(—2aY) + (a/b)’exp(2bY)
+ (2a/BYexp[(b — )Y]. [A3]
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Subtracting [A1] from [A2] yields

b*(f, — NY) — (& — N)?
= [(b* — a®)/b*exp(—2aY)

+ [2(a+ b)/alexp[(b — a)Y]. [A4]

Subtracting the product [A1] X (a/b)? from [A2] gives

a’(f;— NYY — (a/b)(g, — N)*
= [(&* — a*)/b*lexp(—2aY)

+ [2a(a + b)Y/ b3 exp[(b — a)Y). [AS]
Subtracting [ A4] from [A5], we have
ah?
I Yy
x| (@ 0= N2 =2 g - m2] 1as)

Subtracting the product [A4] X (a/b?) from [A5] gives

exp(—2aY)

- ZE—‘:—‘;Q (b~ NY)* - (g~ NP1, [A7]
Substituting [A6] and [A7] into [A2], we obtain
exp(2bY) = bi(f, — NY)? - %

.
X [b*(fi—NY) — (g~ N)*1— @3 )

x|ta= 00~ N1y = L (g - W] (8]
Substituting {A6] through [A8] into [A1] yields

i~ NY)? = (g — N)2, [A9]

where «; and «; are defined in [14a] and [14b]. Therefore
Y=1f— (/) (g, — N)I/N. [A10]

This expression leads to [14].
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APPENDIX B

Membrane Phase (Step 1)

For a guessed value of Y, Y., ¥, , is evaluated by [10].
The potential distibution is then calculated by integrating
[7] from @, — Oand X = 0 to Q;; = O, (Y;-.) and
X — d~. If the calculated value of Y-, ¥,- . is unequal to
Y40 a new Y, is assumed. This procedure is continued
until the condition Y-, = ¥, = Y, is satisfied.

Double-Layer Region (Step 2)

The value of Y, is evaluated by [2b]. The potential dis-
tribution in the double-layer region can be estimated by in-
tegrating [9] from Qd.l = 0and X - oo to Qd.l - Qd,l {Yd)
and X — d*.

APPENDIX C

Membrane Phase (Step 1)

For a set of guessed values of Y, and Yy, Y., and ¥,,,
Y4 is calculated by [23]. Integrating [7] from @, — 0
and X > 0to Q) > Q) (Ys-Jand X = 4 . I ¥, is
unequal to Yy- ., a new Y, is assumed. This procedure
is continued until the condition Y-, = Yy, = Y 7 is sat-
isfied.

Double-Layer Region (Step 2)

Based on the value of Y, in Step 1, Eq. [2.6] in Chan
et al. (2) can be integrated from 4 — O0and X — (L/2)t0
Q= Qu(Yp)and X > d7 . Yy, # Y], anew Y is
assumed, and we return to Step 1. This procedure is contin-
ued until the condition Y+, = ¥} is satisfied.

Note that if the membrane is thick enough, Y. is close to
Ypon. This can reduce considerably the calculation time.
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