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Evaluation of the electric force in electrophoresis
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Abstract

A new expression for the evaluation of the electric force acting on a colloidal particle in an applied electric field is derived under the condition
of weak applied electric field. The expression derived, which is based on the Maxwell stress tensor, is applicable to both rigid and soft particles for
various types of surface conditions and to both symmetric and asymmetric geometries. We show that, depending upon the electrophoresis condi-
tions, the electric force evaluated by the methods commonly used in the literature can be overestimated, thereby leading to incorrect electrophoretic
mobility.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Electrophoresis is used widely by experimentalists in vari-
ous fields to characterize the charged conditions on the surface
of an entity of colloidal size [1,2]. It is also frequently used as a
tool to separate entities of similar physical properties that can-
not be differentiated by other typical analytical methods [3,4].
The most important output of electrophoresis measurement is
the electrophoretic mobility, defined as the electrophoretic ve-
locity per unit strength of an applied electric field. Theoreti-
cally, this quantity is determined from the fact that the total
force, which includes the electrical force and the hydrodynamic
force, acting on an entity vanishes in the steady state. Several
different expressions have been used to evaluate the latter in
various types of problems. These include, for example, prob-
lems of total symmetric nature such as an isolated sphere in an
infinite medium [5] or a dispersion of spherical particles [6,7],
and those not of total symmetric nature such as two spheres
in an infinite medium [8]. Often, because detailed derivations
of these expressions are not presented, their applicability needs
justification.

The purpose of this work is to derive, in detail, the appro-
priate expressions to evaluate the electrical force acting on an
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entity under conditions of practical significance. The applicabil-
ity of the relevant expressions in the literature is also discussed.

2. Theory

Let us consider the general case illustrated in Fig. 1, where
a colloidal particle of surface Ωp is placed in a medium, which
may have a boundary of surface Ωb. The space between the
particle and the boundary is filled with an aqueous solution

Fig. 1. Schematic representation of the problem considered where a colloidal
particle of surface Ωp is placed in a medium, which may have a boundary of
surface Ωb. A uniform electric field E parallel to the z-direction is applied; θ is
the solid angle.

http://www.elsevier.com/locate/jcis
mailto:jphsu@ntu.edu.tw
http://dx.doi.org/10.1016/j.jcis.2006.09.076


J.-P. Hsu et al. / Journal of Colloid and Interface Science 305 (2007) 324–329 325
containing z1:z2 electrolytes; z1 and z2 are, respectively, the
valences of cations and anions. A uniform electric field E of
strength E is applied in the z-direction. We assume that the liq-
uid phase is an incompressible Newtonian fluid. The applied
electric field is relatively weak compared with that established
by a charged surface. This is realistic, since the surface poten-
tial is on the order of 25.7 mV to 10 kV and the Debye length
ranges from 10 nm to 1 µm, which implies that the strength of
the electric field established ranges from 25.7 to 109 kV/m. The
strength of the applied electric field in practice is much lower
than these values. Both the surface of the particle and that of
the boundary are nonconductive and nonslip.

2.1. Electrokinetic equations

Since the Reynolds number in electrophoresis is very small,
the governing equations for the present problem can be ex-
pressed as

(1)∇ ·
[
nj u − Dj

(
∇nj + zj enj

kBT
∇Ψ

)]
= 0,

(2)∇2Ψ = −ρe

ε
= −

2∑
j=1

zj enj

ε
,

(3)∇ · u = 0,

(4)0 = η∇2u − ∇p + ρeE.

In these expressions ∇ and ∇2 are, respectively, the gradient
operator and the Laplace operator, Dj , nj , and zj are, respec-
tively, the diffusion coefficient, the number concentration, and
the valence of ionic species j , e is the elementary charge, kB
is the Boltzmann constant, T is the absolute temperature, Ψ is
the electric potential, ε is the permittivity of the liquid phase,
ρe is the space charge density, and u, η, and p are, respectively,
the velocity, the viscosity, and the pressure of the liquid phase.
E = −∇Ψ and ρeE is the electric body force acting on the liq-
uid.

If the applied electric field is weak, u, p, Ψ , and nj can be
expressed, respectively, as [9,10]

(5)u = u(0) + δu,

(6)p = p(0) + δp,

(7)Ψ = Ψ (0) + δΨ,

(8)nj = n
(0)
j + δnj .

Here, a quantity with superscript (0) refers to the equilibrium
value; that is, when E is not applied, a quantity with prefix δ

denotes a perturbed value arising from E. Note that u(0) = 0. By
substituting Eqs. (5)–(8) into Eqs. (1)–(4), the problem under
consideration can be divided into an equilibrium problem and a
perturbed problem.

2.1.1. Equilibrium problem
Let us consider first the quantities in the equilibrium state.

For the electrical field, we have

(9)∇n
(0)
j + zj en

(0)
j ∇Ψ (0) = 0,
kBT
(10)∇2Ψ (0) = −
2∑

j=1

zj en
(0)
j

ε
,

(11)0 = −∇p(0) + ε∇2Ψ (0)∇Ψ (0).

Integrating Eq. (9) from Ψ (0) = 0 and n
(0)
j = n∞

j to Ψ (0) = Ψ (0)

and n
(0)
j = n

(0)
j leads to a Boltzmann distribution

(12)n
(0)
j = n∞

j exp

(
−zj eΨ

(0)

kBT

)
,

where n∞
j is the bulk concentration of ionic species j . Substi-

tuting Eq. (12) into Eq. (10) gives

(13)∇2Ψ (0) = −
2∑

j=1

zj en
∞
j

ε
exp

(
zj eΨ

(0)

kBT

)
.

Combining Eqs. (10) and (11) yields

(14)−∇p(0) = ε

2∑
j=1

zj en
(0)
j

ε
∇Ψ (0).

Integrating this expression from p(0) = p∞ and n
(0)
j = n∞

j to

p(0) = p(0) and n
(0)
j = n

(0)
j yields

(15)p(0) = p∞ +
2∑

j=1

kBT
(
n

(0)
j − n∞

j

)
.

This is the equilibrium or static pressure distribution, where
u = 0.

2.1.2. Perturbed problem
Under the condition of weak applied electric field, O’Brien

and White [9] proposed using the expression

(16)nj = n∞
j exp

(
−zj e(Ψ

(0) + δΨ + gj )

kBT

)
, j = 1,2,

to take the effect of double-layer polarization into account,
where gj is a potential used to describe double-layer polar-
ization. The governing equation for δΨ can be obtained from
Eqs. (13) and (16), and Ψ = Ψ (0) + δΨ as

∇2δΨ = ∇2Ψ − ∇2Ψ (0)

= −
2∑

j=1

zj en
∞
j

ε

[
exp

(
−zj e(Ψ

(0) + δΨ + gj )

kBT

)

(17)− exp

(
zj eΨ

(0)

kBT

)]
.

Combining Eqs. (8), (12), and (16) yields

δnj = n∞
j exp

(
−zj e(Ψ

(0) + δΨ + gj )

kBT

)

(18)− n∞
j exp

(
−zj eΨ

(0)

kBT

)
.

Substituting Eqs. (5), (7), and (18) into Eq. (1), we obtain
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∇2gj − zj e

kBT
∇Ψ (0) · ∇gj = 1

Dj

δu · ∇Ψ + 1

Dj

δu · ∇gj

(19)+ zj e

kBT
∇δΨ · ∇gj + zj e

kBT
∇gj · ∇gj .

Because δu, δp, δΨ , and δnj are all on the order of E,
the products of any two of these quantities becomes negligi-
ble. Therefore, the governing equations for the flow field, by
collecting terms on the order of E only, are

(20)∇ · δu = 0,

(21)0 = η∇2δu − ∇δp + ε∇2Ψ (0)∇δΨ + ε∇2δΨ ∇Ψ (0).

For convenience, Ψ (0), δΨ , δu, and δp are replaced, respec-
tively, by Ψ1, Ψ2, u, and p, and Eqs. (13), (17), and (19)–(21)
are rewritten as

(22)∇2Ψ1 = −
2∑

j=1

zj en
∞
j

ε
exp

(
zj eΨ1

kBT

)
,

∇2Ψ2 = −
2∑

j=1

zj en
∞
j

ε

(23)×
[

exp

(
−zj e(Ψ1 + Ψ2 + gj )

kBT

)
− exp

(
zj eΨ1

kBT

)]
,

∇2gj − zj e

kBT
∇Ψ1 · ∇gj = 1

Dj

u · ∇Ψ + 1

Dj

u · ∇gj

(24)+ zj e

kBT
∇Ψ2 · ∇gj + zj e

kBT
∇gj · ∇gj ,

(25)∇ · u = 0,

(26)0 = η∇2u − ∇p + ε∇2Ψ1∇Ψ2 + ε∇2Ψ2∇Ψ1.

In the last expression, the sum of the last two terms on its right-
hand side denotes the electric body force acting on the liquid.

2.1.3. Low surface potential
The special case of low surface potential is often discussed in

the literature. In this case the effect of double-layer polarization
can be neglected, δnj = 0 [11], and Eqs. (22)–(26) become [12–
15]

(27)∇2Ψ1 = κ2Ψ1,

(28)∇2Ψ2 = 0,

(29)∇ · u = 0,

(30)0 = η∇2u − ∇p + ε∇2Ψ1∇Ψ2.

The last term on the right-hand side of Eq. (30) denotes the elec-
tric body force, where −ε∇2Ψ1 = ρe is the space charge density
and −∇Ψ2 = E is the applied electric field [12–15]. In the lit-
erature, the electric body force is represented by −ρe∇Ψ =
ε∇2Ψ ∇Ψ in many studies [6,7,10,16–25], some of which are
not of total symmetric nature [16,21,22,24,25]. That is, Eq. (26)
or Eq. (30) is replaced by

(31)0 = η∇2u − ∇p − ε∇2Ψ ∇Ψ.

Note that for a system not of total symmetric nature, such
as a sphere normal to a plane [22,25], an extraneous electrosta-
tic force ε∇2Ψ1∇Ψ1 is included in Eq. (31). This implies that
the electric field established by the equilibrium electric poten-
tial, −∇Ψ1, is also a driving force for the electrophoresis of a
particle and the mobility will be overestimated.

2.2. Scaled governing equations

For a more concise treatment, the scaled quantities are used
in subsequent analyses. To this end, the following scaling fac-
tors are chosen respectively for the length scale, the electrical
potential, the concentration of ionic species, and the velocity:
the radius of a particle a, the equilibrium surface potential ζa,
the bulk concentration of electrolyte n∞

j , and the reference elec-

trophoretic velocity UE = εζ 2
a /ηa. In terms of scaled quanti-

ties, the governing equations for an arbitrary surface potential,
Eqs. (22)–(26), can be rewritten as [25–28]

(32)∇∗2Ψ ∗
1 = − 1

(1 + α)

(κa)2

Ψr

[
exp

(−ΨrΨ
∗
1

) − exp
(
αΨrΨ

∗
1

)]
,

∇∗2Ψ ∗
2 − (κa)2

(1 + α)

[
exp

(−ΨrΨ
∗
1

) + α exp
(
αΨrΨ

∗
1

)]
Ψ ∗

2

(33)= (κa)2

(1 + α)

[
exp

(−ΨrΨ
∗
1

)
g∗

1 + exp
(
αΨrΨ

∗
1

)
αg∗

2

]
,

(34)∇∗2g∗
1 − Ψr∇∗Ψ ∗

1 · ∇∗g∗
1 = Ψ 2

r Pe1u∗ · ∇∗Ψ ∗
1 ,

(35)∇∗2g∗
2 + αΨr∇∗Ψ ∗

1 · ∇∗g∗
2 = Ψ 2

r Pe2u∗ · ∇∗Ψ ∗
1 ,

(36)∇∗ · u∗ = 0,

(37)0 = ∇∗2u∗ − ∇∗p∗ + ∇∗2Ψ ∗
1 ∇∗Ψ ∗

2 + ∇∗2Ψ ∗
2 ∇∗Ψ ∗

1 ,

where a symbol with an asterisk denotes a scaled quan-
tity; Ψr = ζa/(z1e/kBT ) is the scaled surface potential of
the particle; Pej = ε(z1e/kBT )2/ηDj , j = 1,2, is the elec-
tric Peclet number of ionic species j ; α = −z2/z1; and
κ = [∑2

j=1(n
∞
j (ezj )

2/εkBT )]1/2 is the reciprocal Debye
length.

Similarly, the scaled governing equations for the case of low
surface potential are

(38)∇∗2Ψ ∗
1 = (κa)2Ψ ∗

1 ,

(39)∇∗2Ψ ∗
2 = 0,

(40)∇∗ · u∗ = 0,

(41)0 = ∇∗2u∗ − ∇∗p∗ + ∇∗2Ψ ∗
1 ∇∗Ψ ∗

2 .

2.3. Boundary conditions

2.3.1. Electric field
Three types of boundary conditions are usually assumed:

constant surface potential [8,12,13,16–20,25–29], constant sur-
face charge density [15,16,21], and charge-regulated surface
[6,7,14,22–24]. If the surface potential of a particle and that
of a boundary are maintained respectively at ζa and ζb, then the
boundary conditions for Ψ1 and Ψ2 are

(42)Ψ1 = ζa on Ωp,

(43)Ψ1 = ζb on Ωb,

(44)n · ∇Ψ2 = 0 on Ωp,
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(45)n · ∇Ψ2 = −E cos θ on Ωb,

where n is the unit normal vector directed into the liquid phase.
If the surface of a particle and that of a boundary are main-
tained at constant surface charge density, then the correspond-
ing boundary conditions become

(46)n · ∇Ψ1 = −σa

ε
on Ωp,

(47)n · ∇Ψ1 = −σb

ε
on Ωb,

(48)n · ∇Ψ2 = 0 on Ωp,

(49)n · ∇Ψ2 = −E cos θ on Ωb,

where σa and σb are respectively the surface charge density of
the particle and that of the boundary. For the case of a charge-
regulated surface, let us consider, for example, the dissociation
reaction below on the surface of a particle [7]:

(50)AH ⇔ A− + H+.

It can be shown that the charge density on the particle sur-
face, σa, is

(51)σa = −e[A−] = − eNS

1 + ([H+]b/Ka) exp(−(eΨ1/kBT ))
,

where Ka = [A−]S[H+]S/[AH]S is the equilibrium dissociation
constant for the dissociation reaction represented by Eq. (50),
and NS is the density of dissociable functional groups on the
particle surface. Here, a symbol with square brackets denotes
the concentration of a species; the subscripts S and b represent
respectively the surface property and the bulk liquid property.
In this case, the boundary condition associated with Ψ1 on the
particle surface, Eq. (46), needs to be replaced by

(52)n · ∇Ψ1 = − eNS/ε

1 + ([H+]b/Ka) exp(−(eΨ1/kBT ))
.

If we let ∇∗ = a∇ , Ψ ∗
1 = eΨ1/kBT , A = e2NSa/εkBT , and

B = [H+]b/Ka, then this expression can be rewritten as

(53)n · ∇∗Ψ ∗
1 = − A

1 + B exp(−Ψ ∗
1 )

.

If Ψ1 is low, it can be shown that the corresponding surface
charge density σa is [6,14,22–24]

(54)σa = − eNS

{1 + [H+]b/Ka}2
− (e2NS/kBT ){[H+]b/Ka}

{1 + [H+]b/Ka}2
Ψ1.

In this case, Eq. (46) reduces to

n · ∇Ψ1 = − eNS/ε

{1 + [H+]b/Ka}
(55)− (e2NS/εkBT ){[H+]b/Ka}

{1 + [H+]b/Ka}2
Ψ1,

or in terms of scaled symbols as

(56)n · ∇∗Ψ ∗
1 = A

1 + B
− AB

[1 + B]2
Ψ ∗

1 .

Suppose that the ionic concentration reaches the equilibrium
value on the boundary surface and the surface of a particle is
ion-impenetrable. Then the boundary conditions for gj are [9]

(57)gj = −Ψ2 on Ωb,

(58)n · ∇gj = 0 on Ωp.

2.3.2. Flow field
If we let U be the particle velocity in the z-direction and ez

be the unit vector in the z-direction, then the boundary condi-
tions associated with the flow field are

(59)u = Uez on Ωp,

(60)u = 0 on Ωb.

2.4. Electrophoretic mobility

For the present case, only the z-components of the forces
acting on a particle, including the electrostatic force and the
hydrodynamic force, need be considered. The z-component of
the former, FEz, can be calculated by integrating the Maxwell
stress tensor over the particle surface,

(61)FEz =
�
S

(
σE · n

) · ez dS,

where S represents particle surface, σE = εEE − (1/2)εE2I is
the Maxwell stress tensor, E = −∇Ψ = n(∂Ψ/∂n) + t(∂Ψ/∂t)

is the applied electric field, I is the unit tensor, t is the unit tan-
gential vector on the particle surface, n and t are, respectively,
the magnitude of n and that of t, and E2 = E · E. Substituting
σE into Eq. (61) yields

(62)FEz =
�
S

(
ε
∂Ψ

∂n

∂Ψ

∂z
− 1

2
ε

[(
∂Ψ

∂n

)2

+
(

∂Ψ

∂t

)2]
nz

)
dS,

where nz is the z-component of n. Since Ψ = Ψ1 + Ψ2, this
expression becomes

FEz =
�
S

(
ε
∂Ψ1

∂n

∂Ψ1

∂z
− 1

2
ε

[(
∂Ψ1

∂n

)2

+
(

∂Ψ1

∂t

)2]
nz

)
dS

+
�
S

(
ε
∂Ψ2

∂n

∂Ψ2

∂z
− 1

2
ε

[(
∂Ψ2

∂n

)2

+
(

∂Ψ2

∂t

)2]
nz

)
dS

+
�
S

(
ε

[
∂Ψ1

∂n

∂Ψ2

∂z
+ ∂Ψ2

∂n

∂Ψ1

∂z

]

(63)− 1

2
ε

[
2
∂Ψ1

∂n

∂Ψ2

∂n
+ 2

∂Ψ1

∂t

∂Ψ2

∂t

]
nz

)
dS.

Because a particle cannot be driven by its equilibrium elec-
trostatic field, the terms involving (∂Ψ1/∂n)2, (∂Ψ1/∂t)2, and
(∂Ψ1/∂n)(∂Ψ1/∂z) should vanish. Also, (∂Ψ2/∂n)2, (∂Ψ2/

∂t)2, and (∂Ψ2/∂n)(∂Ψ2/∂z) are all small. The magnitude of
each of the rest terms is on the order of E, and therefore,
Eq. (63) can be approximated by

FEz =
�
S

(
ε

[
∂Ψ1

∂n

∂Ψ2

∂z
+ ∂Ψ2

∂n

∂Ψ1

∂z

]

(64)− ε

[
∂Ψ1 ∂Ψ2 + ∂Ψ1 ∂Ψ2

]
nz

)
dS.
∂n ∂n ∂t ∂t



328 J.-P. Hsu et al. / Journal of Colloid and Interface Science 305 (2007) 324–329
This expression is applicable to both symmetric and asymmet-
ric systems at an arbitrary surface potential subject to all three
types of surface conditions.

For a nonconductive particle, ∂Ψ2/∂n = 0, and Eq. (64) be-
comes

(65)FEz =
�
S

(
ε

[
∂Ψ1

∂n

∂Ψ2

∂z

]
− ε

[
∂Ψ1

∂t

∂Ψ2

∂t

]
nz

)
dS.

If the surface of a particle is maintained at a constant potential,
∂Ψ1/∂t = 0, and Eq. (65) can further be simplified as

(66)FEz =
�
S

ε
∂Ψ1

∂n

∂Ψ2

∂z
dS =

�
S

σEz dS,

where σ = −εn · ∇Ψ1 = −ε(∂Ψ1/∂n) is the surface charge
density, and Ez = −∂Ψ2/∂z is the strength of the local elec-
tric field in the z-direction. Equation (66) was used by Shugai
and Carnie [13] for the electrophoresis of a sphere with a thick
double layer parallel to a plane, normal to a plane, and along
the axis of a cylindrical pore, and by Hsu and Ku [17] for the
electrophoresis of a finite cylinder along the axis of a cylin-
drical pore. Both assumed a weak E and low, constant surface
potential. It is interesting to note that for a symmetric system,
since ∂Ψ1/∂t = 0, Eq. (66) is not limited to the case of constant
surface potential, and becomes applicable to all three types of
surface conditions in this study. The electrophoresis of a finite
cylinder along the axis of a cylindrical pore [15], for example,
belongs to this category.

The expression

(67)FEz =
�
S

σEz dS =
�
S

σ

(
−∂Ψ

∂z

)
dS

is widely used to evaluate FEz [10,16,19–21,23,24,29], where
σ = −εn · ∇Ψ = −ε(∂Ψ/∂n) is the surface charge density. In
terms of Ψ1 and Ψ2, we have

FEz =
�
S

(
ε
∂Ψ1

∂n

∂Ψ1

∂z
+ ε

∂Ψ1

∂n

∂Ψ2

∂z
+ ε

∂Ψ2

∂n

∂Ψ1

∂z

(68)+ ε
∂Ψ2

∂n

∂Ψ2

∂z

)
dS.

The presence of the first, the third, and the fourth terms on the
right-hand side of this expression implies that it is only applica-
ble to some special symmetric electrophoresis problems such
as a sphere moving at the center of a spherical cavity [19] or a
sphere [20] or a spheroid [23] moving along the axis of a cylin-
drical pore.

The hydrodynamic force acting on a particle in the z-direct-
ion, FDz, can be calculated by integrating the hydrodynamic
stress tensor over its surface; that is,

(69)FDz =
�
S

(
σ H · n

) · ez dS,

where σH = −pI + 2ηΔ is the hydrodynamic stress tensor,
Δ = [∇u + (∇u)T ]/2 is the rate of deformation tensor, and the
superscript T denotes matrix transpose. Note that Eq. (69) is
suitable for both rigid [8,13] and soft particles [10,28,30]. If we
Table 1
Summary of the present method for the calculation of the electrophoretic
mobility of a colloidal particle under the condition of weak applied electric
field

1. Types of particle:
rigid or soft

2. Governing equations:
(1) High surface potential [25–28]

(a) Electric field
Eqs. (22)–(24) or Eqs. (32)–(35)

(b) Flow field
Eqs. (25) and (26) or Eqs. (36) and (37)

(2) Low surface potential [12–15]
(a) Electric field

Eqs. (27) and (28) or Eqs. (38) and (39)
(b) Flow field

Eqs. (29) and (30) or Eqs. (40) and (41)
3. Types of boundary conditions for electric field:

constant surface potential, constant surface charge density, charge-
regulated surface

4. Electrostatic force in z-direction:

FEz =
�
S

(
ε

[
∂Ψ1

∂n

∂Ψ2

∂z
+ ∂Ψ2

∂n

∂Ψ1

∂z

]

− ε

[
∂Ψ1

∂n

∂Ψ2

∂n
+ ∂Ψ1

∂t

∂Ψ2

∂t

]
nz

)
dS

5. Hydrodynamic force in z-direction:

FDz =
�
S

[
tzη

(
∂un

∂t
+ ∂ut

∂n

)
+ nz

(
−p + 2η

∂un

∂n

)]
dS

6. Force balance at steady state:

FEz + FDz = 0

let u = nun + tut = n(u · n) + t(u · t), then Eq. (69) can be
rewritten as

(70)FDz =
�
S

[
tzη

(
∂un

∂t
+ ∂ut

∂n

)
+ nz

(
−p + 2η

∂un

∂n

)]
dS.

For a rigid particle (∂un/∂n)S = 0 and (∂un/∂t)S = 0; this ex-
pression can be further simplified as

(71)FDz =
�
S

η
∂(u · t)

∂n
tz dS +

�
S

−pnz dS.

Note that FDz comprises a viscous force and a pressure term
[14–17,20,21,23,24,31]. The electrophoretic mobility of a par-
ticle can be determined from the fact that the net force acting
on it in the z-direction vanishes at steady state; that is,

(72)FEz + FDz = 0.

3. Conclusions

The method proposed in this study is summarized in Ta-
ble 1, and two methods commonly used in the literature for
the case of low surface potential are summarized in Table 2.
Since the present method is applicable to all types of elec-
trophoresis problems, regardless of the surface conditions on
a particle and the geometry of a system, it is the most general
one among the three methods. As presented in Table 2, for an
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Table 2
Summary of two widely used methods for the calculation of the electrophoretic
mobility of a colloidal particle under conditions of weak applied electric field
and low surface potential

Method I [14,15,17]

1. Types of particle:
rigid

2. Governing equations:

∇2Ψ1 = κ2Ψ1, ∇2Ψ2 = 0,

∇ · u = 0, 0 = η∇2u − ∇p + ε∇2Ψ1∇Ψ2

3. Types of boundary conditions for electric field:
(1) Arbitrary geometry

constant surface potential
(2) Symmetry geometry

constant surface potential, constant surface charge density, charge-
regulated model

4. Electrostatic force in z-direction:

FEz =
�
S

ε
∂Ψ1

∂n

∂Ψ2

∂z
dS =

�
S

σEz dS

5. Hydrodynamic force in z-direction:

FDz =
�
S

η
∂(u · t)

∂n
tz dS +

�
S

−pnz dS

6. Force balance at steady state:

FEz + FDz = 0

Method II [16,19,20,23,24]

1. Types of particle:
rigid

2. Governing equations:

∇2Ψ1 = κ2Ψ1, ∇2Ψ2 = 0

∇ · u = 0, 0 = η∇2u − ∇p + ε∇2Ψ ∇Ψ

3. Types of boundary conditions for electric field:
(1) Arbitrary geometry

inapplicable, in general
(2) Symmetry geometry

constant surface potential, constant surface charge density, charge-
regulated model

4. Electrostatic force in z-direction:

FEz =
�
S

ε
∂Ψ

∂n

∂Ψ

∂z
dS =

�
S

σEz dS

5. Hydrodynamic force in z-direction:

FDz =
�
S

η
∂(u · t)

∂n
tz dS +

�
S

−pnz dS

6. Force balance at steady state:

FEz + FDz = 0
arbitrary geometry, Method I is suitable for the electrophore-
sis of a rigid particle with a constant surface potential. For a
symmetric geometry, it becomes applicable to all three types of
boundary conditions. Method II is inapplicable to a problem of
asymmetric nature, in general. It can be used for all three types
of boundary conditions, however, if a problem is of symmetric
nature.
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