

# Heat Transfer in the Evaporators of a Double-Evaporator Refrigerating System

# CHAO-JEN LI, JIUNG-HORNG LIN, and CHIN-CHIA SU

Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan

This paper presents the heat transfer characteristics of the evaporators in a double-evaporator refrigerating system with an environment-friendly refrigerant, propane (R-290). Based on the Buckingham Pi theorem, dimensionless correlations are developed to predict the heat transfer coefficients of the refrigerant in high- and low-temperature evaporators ( $h_H$  and  $h_L$ ) and the ratio of the cooling capacity of the high-temperature evaporator to the total capacity ( $\alpha$ ) in the system. The results show that  $h_H$  is affected mainly by the condensing pressure, the length of the low-temperature capillary tube, and the logarithmic-mean temperature difference of the high-temperature evaporator, while  $h_H$  is affected mainly by the length of the high-temperature capillary tube and the logarithmic-mean temperature difference of the low-temperature evaporator. Note, though, that the condensing pressure and the logarithmic-mean temperature difference of the high-temperature evaporator are the main factors affecting  $\alpha$ . Some of the correlations result in good predictions, though the required numbers of variables of these correlations are much more than those presented in this work.

A comparison of the experimental measurements of  $h_H$  and  $h_H$  to the values calculated by the correlations from the literature is made. Some of the correlations result in good predictions, though the required variables of these correlations are much more than those presented in this work.

# **INTRODUCTION**

The high ozone-depleting potential (ODP) and global warming potential (GWP) has led to the restriction in the use of chlorofluorocarbons (CFC) and hydrochlorofluorocarbons (HCFC), such as R-12 and R-22 [1]. Propane (R-290), with zero ODP and extremely low GWP characteristics, is very attractive in this respect and has been recommended as an alternative to R-22 due to the similarities in their refrigerating properties.

The two-phase heat transfer coefficient of the refrigerant affects the performance of the evaporator in a refrigerating system. For the two-phase flow in the evaporator, the heat transfer involves both nucleate boiling and forced-convection. Several authors [2–5] have proposed correlations for the two-phase heat transfer coefficient in the evaporator. These correlations have been developed through an extensive database of fluids, including water, R11, R12, R13B1, R22, R113, R114, R134a, R152, R22/R124/R152a, benzene, n-pentane, n-heptane, cyclohexane,

methanol, ethanol, n-butanol, hydrogen, helium, neon, nitrogen, ammonia, and ethylene glycol. However, propane (R-290) is not included in this list and warrants further study.

From a thermodynamic viewpoint, a refrigerator with two evaporators in series and one capillary tube performs better than that with only one evaporator. A two-evaporator refrigerator with the zeotropic refrigerant R22/R11 proposed by Lorenz-Meutzner [6] showed a power savings of up to 20% compared to a conventional refrigerator with R-12. With two capillary tubes and two evaporators connected in series, different evaporating temperatures can be obtained by a refrigerating system with pure azeotropic or zeotropic refrigerants [7]. For such a system, the distribution of the cooling load between the evaporators may be an important characteristic.

The design of the distribution of the cooling load between the evaporators in a refrigerating system with two evaporators connected in series is an important study. Based on the present experimental results and the Buckingham Pi theorem, dimensionless correlations for the heat transfer coefficients of refrigerant in the high- and low-temperature evaporators and the ratio of the cooling capacity of the high-temperature evaporator to the total capacity are developed. The experimental measurements of the heat transfer coefficients of the refrigerant are then compared

The authors would like to acknowledge the financial support by the National Science Council of Taiwan under the contract of NSC89-2212-E-002-143.

Address correspondence to Dr. Chin-Chia Su, Department of Mechanical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan. E-mail: chinchiasu@ntu.edu.tw

| P <sub>c</sub><br>(kPa) | f<br>(Hz) | d <sub>H</sub><br>(mm) | <i>d</i> <sub><i>L</i></sub> (mm) | <i>L</i> <sub>e</sub><br>(m) | <i>D</i> <sub><i>i</i>,<i>i</i></sub> (mm) | <i>D</i> <sub><i>o</i>,<i>i</i></sub> (mm) | <i>D</i> <sub><i>i,o</i></sub> (mm) | <i>D</i> <sub><i>o</i>,<i>o</i></sub> (mm) | <i>L<sub>H</sub></i> (m) | <i>L<sub>L</sub></i> (m) |
|-------------------------|-----------|------------------------|-----------------------------------|------------------------------|--------------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------------------|--------------------------|--------------------------|
| 1764                    | 40        | 1.0                    | 1.4                               | 2                            | 8.7                                        | 9.525                                      | 14.85                               | 15.875                                     | 1.6                      | 0.3                      |
| 1666                    | 50        |                        |                                   |                              |                                            |                                            |                                     |                                            | 1.9                      | 0.6                      |
| 1568                    | 60        |                        |                                   |                              |                                            |                                            |                                     |                                            | 2.2                      | 0.9                      |
| 1470                    | 70        |                        |                                   |                              |                                            |                                            |                                     |                                            | 2.5                      | 1.2                      |
| 1372                    | 80        |                        |                                   |                              |                                            |                                            |                                     |                                            | 2.8                      |                          |

with the results calculated by the correlations in the literature [2-5].

### EXPERIMENTAL METHOD

Table 1 Test conditions

#### Facility

Figure 1 shows the experimental facility of a series-connected two-evaporator refrigerating system with R-290. The test appa-

ratus is composed of a refrigerant loop and two heat-exchange fluid loops. The states of the working fluids are monitored with T-type thermocouples and pressure gauges.

The reciprocating compressor in the refrigerant loop is controlled by the frequency converter. The output of the converter for stable operation can be adjusted to 40–80 Hz. The rotating speed of the fan controlled through a voltage transformer affects the condensing pressure of the system. The dimensions of these components are listed in Table 1. The two evaporators are double-tube with the same dimensions.  $D_{i,i}$  and  $D_{o,i}$  represent



the inside and outside diameter of the inner tube, respectively, while  $D_{i,o}$  and  $D_{o,o}$  represent the inside and outside diameter of the outer tube, respectively. The refrigerant flows in one direction through the inner tube, while the heating medium flows in the opposite direction through the annular space between the inner and outer tubes. Note that the evaporators and capillary tubes are all made of copper and heat-insulated.

Both heat-exchange loops are composed of a refrigerator, a pump, a flow meter, a thermometer controller, and an electrically heated unit. The heating media of both evaporators are water/glycol (50/50 wt.%) mixture. The temperatures of water/glycol entering the high- and low-temperature evaporators are set at around  $25^{\circ}$ C and  $-9.5^{\circ}$ C, respectively. The condensing pressure, the lengths of the capillary tubes for the high- and low-temperature evaporator, and the compressor frequency are the variables of the experiment. Table 1 lists the details of the test conditions.

#### Data Reduction and Dimensionless Correlation

#### The Heat Transfer Coefficient of the Refrigerant

To calculate the heat transfer coefficient of the refrigerant in both evaporators, the heat transferred to the refrigerant should be known. For a given evaporator, the cooling capacity (Q) may be expressed as

$$Q = (U \cdot A) \cdot (LMTD) \tag{1}$$

where

$$(U \cdot A) = \left(\frac{1}{h_r \cdot A_i} + R + \frac{1}{h_{\rm hm} \cdot A_o}\right)^{-1} \tag{2}$$

$$(LMTD) = \frac{(T_{\rm hm,out} - T_{r,\rm in}) - (T_{\rm hm,in} - T_{r,\rm out})}{\ln\left(\frac{(T_{\rm hm,out} - T_{r,\rm in})}{(T_{\rm hm,in} - T_{r,\rm out})}\right)}$$
(3)

Assuming that the variations in  $T_{\text{hm,in}}$  are negligible and keeping  $m_{\text{hm}}$  constant, the heat transfer coefficients of the heating media  $(h_{\text{hm}})$  are more or less fixed. The conduction resistances (R) are more or less constant, while the inside and outside heat transfer areas,  $A_i$  and  $A_o$ , are fixed. With all temperatures in Eq. (3) and the cooling capacity  $(Q = \dot{m}_{\text{hm}} \cdot C_{p_{\text{hm}}} \cdot (T_{\text{hm,in}} - T_{\text{hm,out}}))$  measured, the experimental values of the heat transfer coefficient of refrigerant  $(h_r)$  can then be obtained through Eqs. (1–3).

#### Dimensionless Correlations

The quality of the refrigerant in the high- and low-temperature evaporators is different, and the analyses for the heat transfer coefficient of refrigerant in the evaporator  $(h_r)$  are thus divided into two categories: the heat transfer coefficients of refrigerant in the high- and low-temperature evaporators,  $h_H$  and  $h_L$ . The analytic process used to develop the dimensionless correlations for predicting  $h_r$  in the system is based on the Buckingham Pi theorem. The first step is to determine the variables that may influence  $h_r$ : both the diameters and lengths of the high-temperature  $(d_H \text{ and } L_H)$  and low-temperature  $(d_L \text{ and } L_L)$  capillary tube, the inlet conditions of the refrigerant  $(P_c \text{ and } \Delta T_{sc})$ , the frequency of compressor (f), the saturated properties of R-290 (liquid density  $\rho_f$ , liquid viscosity  $\mu_f$ , and liquid-specific heat  $C_{pf}$ ), and the logarithmic-mean temperature difference of the specific evaporator  $(LMTD_H, LMTD_L)$ . Note that the properties of refrigerant are obtained by using REFPROP [8].  $L_H$  and  $L_L$  are non-dimensionalized by  $d_H$  and  $d_L$ , respectively. However, in order to non-dimensionalize  $h_r$ ,  $P_c$ ,  $\Delta T_{sc}$ , and f, a new repeating variable  $\overline{d}$ , based on the definition of hydraulic diameter, is defined as  $(d_H^2 + d_L^2)(d_H + d_L)^{-1}$ .  $h_r$  can then be expressed as

$$h_r = f_1(P_c, L_H, L_L, d_H, d_L, \bar{d}, \Delta T_{\rm sc}, \rho_f, C_{p_f}, \mu_f, f, LMTD)$$
(4)

Similarly, the ratio of the cooling capacity of the hightemperature evaporator to the total capacity ( $\alpha$ ) can be expressed as

$$\alpha = f_2(P_c, L_H, L_L, d_H, d_L, d, \Delta T_{\rm sc}, \rho_f, C_{p_f}, \mu_f, f, LMTD)$$
(5)

where  $d_H$ ,  $d_L$ ,  $\bar{d}$ ,  $\rho_f$ ,  $\mu_f$ , and  $C_{\rm pf}$  are the repeating variables. The dimensionless correlations for  $h_H$ ,  $h_L$ , or  $\alpha$  can now be expressed as

$$\Pi_{8,9,\mathrm{or}^{10}} = A \cdot \Pi_1^B \cdot \Pi_2^C \cdot \Pi_3^D \cdot \Pi_4^E \cdot \Pi_5^F \cdot \Pi_6^G \cdot \Pi_7^H \quad (6)$$

where  $\Pi_1$ ,  $\Pi_2$ ,  $\Pi_3$ ,  $\Pi_4$ ,  $\Pi_5$ ,  $\Pi_6$ ,  $\Pi_7$ ,  $\Pi_8$ ,  $\Pi_9$ , and  $\Pi_{10}$  in Eq. (6) represent  $P_c$ ,  $L_H$ ,  $L_L$ ,  $\Delta T_{sc}$ , f,  $LMTD_H$ ,  $LMTD_L$ ,  $h_H$ ,  $h_L$ , and  $\alpha$ , respectively, as shown in Table 2. By substituting the experimental values into the statistical software STATISTICA, the values of constant A and exponents of the  $\Pi$  parameters are obtained.

Table 2 Dimensionless parameters Π group

| Pi Groups       | Definition                                                                         | Effect               |
|-----------------|------------------------------------------------------------------------------------|----------------------|
| $\Pi_1$         | $\frac{\bar{d}^2 \cdot \rho_f \cdot P_c}{\mu_f^2}$                                 | Condensing pressure  |
| Π <sub>2</sub>  | $\left(\frac{L_H}{d_H}\right)$                                                     | Geometry             |
| Π <sub>3</sub>  | $(\frac{L_L}{d_L})$                                                                | Geometry             |
| Π <sub>4</sub>  | $(\frac{\bar{d}^2 \cdot \rho_f^2 \cdot C_{p_f} \cdot \Delta T_{\rm sc}}{\mu_f^2})$ | Subcooling           |
| Π <sub>5</sub>  | $\frac{\bar{d}^2 \cdot f \cdot \rho_f}{\mu_f}$                                     | Compressor frequency |
| П <sub>6</sub>  | $(\frac{\bar{d}^2 \cdot \rho_f^2 \cdot C_{p_f} \cdot LMTD_H}{\mu_f^2})$            | $LMTD_H$             |
| Π <sub>7</sub>  | $\left(\frac{d^2 \cdot \rho_f^2 \cdot C_{p_f} \cdot LMTD_L}{\mu_f^2}\right)$       | $LMTD_L$             |
| Π <sub>8</sub>  | $\frac{h_H \cdot \bar{d}}{C p_f \cdot \mu_f}$                                      | $h_H$                |
| П9              | $\frac{h_L \cdot \bar{d}}{C_{p_f} \cdot \mu_f}$                                    | $h_L$                |
| Π <sub>10</sub> | $\frac{Q_H}{Q_H + Q_L}$                                                            | Ratio of $Q_H$       |
|                 |                                                                                    |                      |

vol. 27 no. 8 2006

#### RESULTS

## The Dimensionless Correlation for $h_{\rm H}$

Note that  $LMTD_L$  is not one of the main factors affecting  $h_H$ . The dimensionless correlation for  $h_H$  is thus

$$\Pi_8 = 10^{-4.52} \cdot \Pi_1^{-0.343} \cdot \Pi_2^{0.097} \cdot \Pi_3^{-0.209} \cdot \Pi_4^{-0.045} \cdot \Pi_5^{-0.021} \cdot \Pi_6^{0.888}$$
(7)

From the exponents of the  $\Pi$  parameters in Eq. (7), it is clear that  $h_H$  is affected mainly by  $P_c$ ,  $L_L$ , and  $LMTD_H$ . The effect of  $P_c$  on  $h_H$  seems more significant than that of  $L_L$ . Increasing  $P_c$  will increase the mass flow rate of refrigerant  $(\dot{m}_r)$  but decrease  $LMTD_H$ . For the two-phase flow in the evaporator, the heat transfer involves both nucleate boiling and forced convection. The nucleate boiling heat transfer increases with LMTD [9], while forced-convection heat transfer increases with Reynolds number, which is in proportion to  $\dot{m}_r$ . It seems that the effect of  $LMTD_H$  induced by  $P_c$  on  $h_H$  dominates that of  $\dot{m}_r$ . In addition, both  $\dot{m}_r$  and  $LMTD_H$  decreases with  $L_L$  [7], which induce  $h_H$  to decrease with  $L_L$ . Figure 2 shows that the range of the maximum error ( $\beta$ ) for  $h_H$  using Eq. (7) is between -16% and +16%. Note that  $\beta$  represents the maximum deviation of the experimental data from the predicted values.

## The Dimensionless Correlation for $h_L$

Again,  $LMTD_H$  is not a main factor affecting  $h_L$ . The dimensionless correlation for  $h_L$  is

$$\Pi_9 = 10^{-6.095} \cdot \Pi_1^{-0.038} \cdot \Pi_2^{-0.185} \cdot \Pi_3^{-0.08} \cdot \Pi_4^{0.023} \cdot \Pi_5^{0.0002} \cdot \Pi_7^{0.688}$$
(8)

Equation (8) shows that  $L_H$  and  $LMTD_L$  are the main factors affecting  $h_L$ .  $h_L$  decreases with  $L_H$  but increases with  $LMTD_L$ ;  $\dot{m}_r$  decreases but  $LMTD_L$  increases with  $L_H$  [7]. It seems that  $h_L$  decreases with  $L_H$ , as the effect of  $\dot{m}_r$  on  $h_L$  dominates that of  $LMTD_L$  induced by  $L_H$ . Figure 3 shows that  $\beta$  for  $h_L$  using Eq. (8) is between -12% and +16%.

#### The Dimensionless Correlation for $\alpha$

The ratio of the cooling capacity of the high-temperature evaporator to the total capacity ( $\alpha$ ) is an important characteristic of the system because the relative cooling capacities of the two evaporators in the system may vary in various applications. The analysis shows that  $\alpha$  can be expressed as

$$\Pi_{10} = 10^{-1.416} \cdot \Pi_1^{-0.253} \cdot \Pi_2^{-0.0815} \cdot \Pi_3^{-0.02}$$
$$\cdot \Pi_4^{-0.052} \cdot \Pi_5^{-0.027} \cdot \Pi_6^{1.563} \cdot \Pi_7^{-0.999} \tag{9}$$

From the relative values of the exponents of  $\Pi$  parameters in Eq. (9),  $\alpha$  is mainly affected by  $P_c$ ,  $LMTD_H$ , and  $LMTD_L$ .  $\alpha$  decreases with  $P_c$  and  $LMTD_L$  but increases with  $LMTD_H$ . However, the effect of  $LMTD_L$  on  $\alpha$  is more significant than that of  $P_c$ . Figure 4 shows that  $\beta$  for  $\alpha$  using Eq. (9) is between -10% and +10%.

## Comparison of Experimental Results with Existing Correlations

For the two-phase heat transfer coefficients of a refrigerant in the two evaporators,  $h_H$  and  $h_L$ , some correlations may be





**Figure 3** Measurement of  $h_L$  versus predicted  $h_L$  using Eq. (8).

found from various sources (e.g., [2–5]). These correlations for the two-phase heat transfer coefficient cover both the nucleate boiling and forced convection regions. A comparison is thus made for these correlations with the test values measured in this work. Correlation from Gungor-Winterton [2]

A large database for water, R11, R12, R22, R113, R114, and ethylene glycol was used by Gungor-Winterton [2]. The empirical equation obtained for the two-phase heat transfer coefficient





**Figure 5** Measurements versus predictions in  $h_r$  with correlation [2].

in evaporator is

$$h_r = E \cdot h_f + S \cdot h_{\text{pool}} \tag{10}$$

The expressions for  $h_f$ ,  $h_{pool}$ , E, and S in Eq. (10) are

$$h_f = 0.023 \cdot \text{Re}_f^{0.8} \cdot \text{Pr}_f^{0.4} \cdot k_f / D_{i,i}$$
(11)

$$h_{\text{pool}} = 55 \cdot \text{Pr}^{0.12} \cdot (-\log_{10} \text{Pr})^{-0.55} \cdot M^{-0.5} \cdot q^{0.67}$$
 (12)

$$E = 1 + 24000 \cdot Bo^{1.16} + 1.37(1/X_{tt})^{0.86}$$
(13)

$$S = \frac{1}{1 + 1.15 \cdot 10^{-6} E^2 \cdot \operatorname{Re}_f^{1.17}}$$
(14)

where *Bo* and  $X_{tt}$  in Eq. (13) are

$$Bo = \frac{q}{\lambda \cdot G} \tag{15}$$

$$X_{tt} = \left(\frac{1-x}{x}\right)^{0.9} \left(\frac{\rho_v}{\rho_f}\right)^{0.5} \left(\frac{\mu_f}{\mu_v}\right)^{0.1}$$
(16)





Figure 7 Measurements versus predictions in  $h_r$  with correlation [4].

Figure 5 shows that, compared with the experimental results in the present work, both  $h_H$  and  $h_L$  calculated by the correlation from [2] are over-predicted by about 0–40%.

[3]. The correlation for the two-phase heat transfer coefficient in evaporator is

$$h_r = h_f \cdot (C_1 \cdot Co^{C_2} \cdot (25 \cdot Fr_{lo})^{C_5} + C_3 \cdot Bo^{C_4} \cdot F_{fl}) \quad (17)$$

where Co is a convection number expressed as

# Correlation from Kandlikar [3]

A large database for water, R11, R12, R13B1, R22, R113, R114, R-152, neon, and nitrogen was also used by Kandlikar

$$Co = \left(\frac{1-x}{x}\right)^{0.8} \left(\frac{\rho_v}{\rho_f}\right)^{0.5} \tag{18}$$



The constants  $C_1$  through  $C_5$  and the fluid-dependent parameter  $F_{fl}$  are given in the literature [3]. Figure 6 shows that both  $h_H$  and  $h_L$  calculated by the correlation from [3] are underpredicted by about 0–35%.

#### Correlation from Steiner-Taborek [4]

Again, a large database for water, R11, R12, R13B1, R22, R113, benzene, n-pentane, n-heptane, cyclohexane, methanol, ethanol, n-butanol, hydrogen, helium, nitrogen, and ammonia were used by Steiner-Taborek [4]. The correlation for the twophase heat transfer coefficients in evaporator is

$$h_r = ((h_{\text{pool}})^3 + (h_{cb})^3)^{1/3}$$
(19)

where  $h_{cb}$  is the forced convection coefficient, which is a function of  $\mu_f$ ,  $\mu_v$ ,  $k_f$ ,  $k_v$ ,  $\rho_f$ ,  $\rho_v$ , G, the Fanning friction factor, quality, and the local liquid- and gas-phase forced convection coefficients. The expression of  $h_{cb}$  is very complex; therefore, the details are not listed here. Figure 7 shows that  $\beta$  for both  $h_H$ and  $h_L$  from the correlations of [4] is between -12% and +10%.

#### Correlation from Wattelet et al. [5]

The database for R-12, R134a, and a mixture of R22/R-124/ R-152a were used by Wattelet et al. [5]. The correlation for the two-phase heat transfer coefficient in evaporator is

$$h_r = ((h_{\text{pool}})^{2.5} + (h_{cb})^{2.5})^{0.4}$$
(20)

where  $h_{cb}$  can be expressed as

$$h_{cb} = (1 + 1.925 \cdot X_{tt}^{-0.83}) \cdot h_l \cdot \delta \tag{21}$$

The reduction parameter  $\delta$  in Eq. (21) is

$$\delta = 1.32 \cdot Fr_f^{0.2} \quad \text{if} \quad Fr_f < 0.25$$
  
$$\delta = 1 \qquad \qquad \text{if} \quad Fr_f \ge 0.25$$

Figure 8 shows that  $\beta$  for both  $h_H$  and  $h_L$  from the correlations of [5] is between -11% and +9%.

Note that  $\beta$  for both  $h_H$  and  $h_L$  from the correlations of [4, 5] are smaller than those from the present correlations, Eqs. (7) and (8). However, the required numbers of variables of the current correlations are much fewer than those of the correlations from [4, 5].

## CONCLUSIONS

The dimensionless correlations for analyzing the characteristics of the series-connected two-evaporator refrigerating system with R-290 as the refrigerant,  $h_H$ ,  $h_L$ , and  $\alpha$ , are developed in this paper. In addition, a comparison of the experimental measurements of  $h_H$  and  $h_L$  to those calculated by the correlations from literature is made. Some conclusions may thus be drawn:

- 1. Based on the present experimental results and the Buckingham Pi theorem, the dimensionless correlations for  $h_H$ ,  $h_L$ , and  $\alpha$  can be developed. The accuracy of those is acceptable.
- 2.  $P_c$ ,  $L_L$ , and  $LMTD_H$  are the dominant factors of  $h_H$ , while  $L_H$  and  $LMTD_L$  are those for  $h_L$ . On the other hand, the dominant factors for  $\alpha$  are  $P_c$ ,  $LMTD_H$ , and  $LMTD_L$ .
- 3.  $\beta$  for both  $h_H$  and  $h_L$  from the correlations of [2, 3] are greater than those from the current correlations, Eqs. (7) and (8), while that from the correlations of [4, 5] are smaller.
- 4. In this study, the dimensionless correlations for R-290 may be applied to other refrigerants with refrigerating properties close to R-290, such as R-22.
- 5. For the two-phase heat transfer coefficient of a refrigerant in an evaporator, the accuracy in prediction with some correlations from the literature [4, 5] is good. However, the specific correlations are much more complicated than the dimensionless correlations developed in this paper.

#### NOMENCLATURE

| Bo                     | boiling number                                                         |
|------------------------|------------------------------------------------------------------------|
| $C_p$                  | specific heat, $J \cdot kg^{-1}K^{-1}$                                 |
| $C_{1} - C_{5}$        | constants in Eq. (17)                                                  |
| $d_H$                  | diameter of the high-temperature capillary tube, mm                    |
| $d_L$                  | diameter of the low-temperature capillary tube, mm                     |
| $D_{i,i}$              | inside diameter of the inner tube of evaporator, mm                    |
| $D_{i,o}$              | inside diameter of the outer tube of evaporator, mm                    |
| $D_{o,i}$              | outside diameter of the inner tube of evaporator, mm                   |
| $D_{o,o}$              | outside diameter of the outer tube of evaporator, mm                   |
| Ε                      | enhancement factor                                                     |
| <i>Fr<sub>lo</sub></i> | Froude number with all flow as liquid                                  |
| F                      | frequency of the compressor, $s^{-1}$                                  |
| G                      | mass flux, $k \cdot gm^{-2}s^{-1}$                                     |
| $h_{cb}$               | heat transfer coefficient of convective boiling, $W\cdot m^{-2}K^{-1}$ |
| $h_f$                  | heat transfer coefficient of saturated liquid, $W\cdot m^{-2}K^{-1}$   |
| $h_H$                  | heat transfer coefficient of refrigerant in the high-                  |
|                        | temperature evaporator, $W \cdot m^{-2}K^{-1}$                         |
| $h_L$                  | heat transfer coefficient of refrigerant in the low-                   |
|                        | temperature evaporator, $W \cdot m^{-2}K^{-1}$                         |
| $h_{\rm pool}$         | heat transfer coefficient of pool boiling, $W \cdot m^{-2}K^{-1}$      |
| $k_f$                  | thermal conductivity of saturated liquid, $W \cdot m^{-1}K^{-1}$       |
| $L_H$                  | length of the high-temperature capillary tube, m                       |
| $L_L$                  | length of the low-temperature capillary tube, m                        |
| $LMTD_H$               | logarithmic-mean temperature difference of the high-                   |
|                        | temperature evaporator, K                                              |
| $LMTD_L$               | logarithmic-mean temperature difference of the low-                    |
|                        | temperature evaporator, K                                              |
| M                      | molecular weight                                                       |
| M                      | mass flow rate, kg s <sup><math>-1</math></sup>                        |
| $P_c$                  | condensing pressure, Pa                                                |
| $\Pr_f$                | Prandtl number of saturated liquid                                     |
| Q                      | heat flux, $W \cdot m^{-2}$                                            |

vol. 27 no. 8 2006

- $Q_H$  cooling capacity of the high-temperature evaporator, W  $Q_L$  cooling capacity of the low-temperature evaporator,
- W Re<sub>f</sub> Reynolds number of saturated liquid
- *S* suppression factor
- *T* Temperature, K
- U overall heat transfer coefficient,  $W \cdot m^{-2}K^{-1}$
- X Quality

# Greek Symbols

- $\Delta T_{\rm sc}$  Subcooling, K
- $\rho_f$  density of saturated liquid, k  $\cdot$  gm<sup>-3</sup>
- $\rho_v$  density of saturated vapor, k  $\cdot$  gm<sup>-3</sup>
- $\mu_f$  viscosity of saturated liquid, Pas
- $\mu_v$  viscosity of saturated vapor, Pas
- A ratio of cooling capacity
- B range of maximum error
- Π dimensionless parameter
- $\lambda$  latent heat (J · m<sup>-3</sup>)

# REFERENCES

- United Nations Environment Program, Decisions of the Fourth Meeting of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer, Copenhagen, Denmark, 28 July, 1992.
- [2] Gungor, K. E., and Winterton, R. H. S., A General Correlation for Flow Boiling in Tubes and Annuli, *Int. J. Mass Transfer*, vol. 29, no. 3, pp. 351–358, 1986.
- [3] Kandlikar, S. G., A General Correlation for Saturated Two-Phase Flow Boiling Heat Transfer inside Horizontal and Vertical Tubes, ASME Journal of Heat Transfer, vol. 112, pp. 219–228, 1990.
- [4] Steiner, D., and Taborek, N., Flow Boiling Heat Transfer in Vertical Tubes Correlated by an Asymptotic Model, *Heat Transfer Engineering*, vol. 13, pp. 43–69, 1992.
- [5] Wattelet, J. P., Chato, J. C., Souza, A. L., and Christoffersen, B. R., Evaporative Characteristics of R-12, R-134a, and a Mixture at Low Mass Fluxes, *ASHRAE Transactions*, vol. 100, no. 2, pp. 603–615, 1994.

- [6] Lorenz, A., and Meutzner, K., On Application of Nonazeotropic Two-Component Refrigerants in Domestic Refrigerators and Home Freezers, *Proc. XIV Int. Cong. Refrig.*, Moscow, vol. 2, pp. 1005– 1011, Paris.
- [7] Li, C. J., and Su, C. C., Experimental Study of a Series-Connected Two-Evaporator Refrigerating System with Propane (R-290) as the Refrigerant, *Applied Thermal Engineering*, vol. 23, pp. 1503–1514, 2003.
- [8] McLinden, M. O., Lemmon, E. W., Klein, S. A., and Peskin, A. P., NIST Thermodynamic Properties of Refrigerants and Refrigerant Mixtures Database (REFPROP), Version 6.0, National Institute of Standards and Technology, Gaithersburg, MD, 1998.
- [9] Forster, H. K., and Zuber, N., Dynamics of vapor bubbles and boiling heat transfer, *AIChE J*, vol. 1, pp. 531–535, 1995.



**Chao-Jen Li** is a researcher at the Industrial Technology Research Institute in 2005. He received his Ph.D. from the department of mechanical engineering, National Taiwan University, in 2004. His main research interests are heat transfer, refrigeration and air conditioning, and numerical analysis.



**Jiung-Horng Lin** is a Ph.D. student in the department of mechanical engineering, National Taiwan University, Taipei, Taiwan. He is currently studying the heat transfer characteristics of some wavy channels in PHEs and the application of absorption refrigeration system on automobiles.



**Chin-Chia Su** is a professor of mechanical engineering at National Taiwan University, Taipei, Taiwan. He received his Ph.D. in 1986 from Cambridge University, UK. His main research interests are heat transfer, refrigeration and air-conditioning, and fuel cell technology. He has published more than 70 articles in journals, books, and proceedings.

24

Copyright of Heat Transfer Engineering is the property of Taylor & Francis Ltd and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use.