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Abstract

In this study, the dynamic fracture analysis of 'nite cracks in anisotropic elastic solids sub-
jected to incident horizontally polarized shear waves is investigated. The in2uence of 'nite length
of the crack on the dynamic stress intensity factor will be discussed in detail. A linear coordi-
nate transformation is introduced to simplify the problem. The linear coordinate transformation
reduces the anisotropic 'nite crack problem to an equivalent isotropic problem. An alternative
methodology di5erent from the conventional superposition method is developed to construct the
di5racted 'elds. The transient solutions are determined by superposition of two proposed fun-
damental solutions in the Laplace transform domain. For stationary cracks, the exact analytical
solutions of dynamic stress intensity factors for two crack tips are obtained in explicit forms
and have accounted for the contributions of all the di5racted waves. For a step-stress wave, the
maximum dynamic overshot of stress intensity factor is 4=� for any combination of material
constants and incident angles. If the stress intensity factor reaches the fracture toughness of the
material, the two crack tips are assumed to propagate along the crack tip line with constant
subsonic velocities. The in2uence of the di5racted waves generated from the other crack tip on
the propagating crack tip is analyzed. It is shown in this study that the di5racted waves from the
other crack tip have signi'cant in2uence on the stress intensity factors for propagating cracks.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Scattering of elastic waves by cracks has aroused attention over the years for its
importance toward the non-destructive evaluation of materials and the dynamic fracture
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analysis of materials. The interaction of a stress wave with a crack is a complicated
problem and the analysis is mainly restricted to relatively simple problems. Most of the
works for dynamic fracture analysis have been directed toward the solutions of prob-
lems without any characteristic length. The complete solutions of this kind of problems
can be obtained by integral transform methods in conjunction with direct applica-
tion of the Wiener–Hopf technique (Noble, 1958) and the Cagniard–de Hoop method
(de Hoop, 1958) of Laplace inversion. If the cracked problem has a characteristic length
or the loading condition is unsymmetrical, then it is hard to apply the same procedure
using integral transform methods. The problem of an unbounded elastic solid contain-
ing a semi-in'nite crack subjected to a pair of concentrated point loadings on the
crack faces has been studied by Freund (1974a). A straightforward application of the
Wiener–Hopf method was not successful and he proposed a fundamental solution aris-
ing from an edge dislocation climbing along the line ahead of the crack tip with a
constant speed to overcome the diDculties of the case with a characteristic length. The
solution can be constructed by taking integration over a climbing edge dislocation of
di5erent moving velocity. The limitation of above-mentioned problems is that the in-
cident 'eld must be represented as a function of f(t=x), say self-similar. For problems
of non-in'nite domain or with complicated loading conditions, the solutions cannot be
obtained by using this method. A powerful and eDcient methodology based on super-
imposing a fundamental solution in the Laplace transform domain was proposed by Tsai
and Ma (1992). Exact transient closed form solutions of stresses and dynamic stress
intensity factors for a stationary semi-in'nite crack subjected to a suddenly applied dy-
namic body force in an unbounded medium have been obtained by Tsai and Ma (1992)
for the in-plane case. This superposition methodology was generalized and applied to
analyze the propagating crack interacting with boundaries for in-plane deformation by
Tsai and Ma (1997a,b), but only the e5ects of 'rst few re2ected waves from the
boundaries were taken into account.

Many researchers have already devoted to the study of 'nite-crack problems for
isotropic materials. Thau and Lu (1971), following the work of Kostrov (1964) and
Flitman (1963), treated the transient problem of di5raction of an arbitrary plane dilata-
tional wave by a 'nite crack in an in'nite elastic solid. However, their results are exact
only at the time interval that the dilatational wave has traveled the length of the crack
twice. Sih and Embley (1972) have studied the near-'eld solution for the problem
of a 'nite crack under transient in-plane loading. They reduced the mixed boundary
value problem to a standard Fredholm integral equation and subsequently inverted the
Laplace transform of the stress components by a combination of numerical means and
an application of the Cagniard inversion technique. Most of the investigators, however,
have either solved problems of a 'nite crack valid for a short time, or 'nally used
a numerical technique to obtain the solutions in the physical domain. Because of the
mathematical diDculties, the transient closed form analytical solution for the problem
of a 'nite crack has not been attempted until Ing and Ma (1996, 1997) proposed useful
fundamental solutions to overcome this diDculty.

Finite cracks in orthotropic materials under dynamic loadings have been investigated
by Kassir and Bandyopadhyay (1983), Shindo and Nozaki (1991), Rubio-Gonzalez
and Mason (1999, 2001) using integral transform method. This method leads to a
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Fredholm integral equation rather than a Wiener–Hopf equation on the Laplace trans-
form domain. They solved the Fredholm integral equation in the Laplace transform
domain numerically, and the dynamic stress intensity factor was obtained by numeri-
cal Laplace inversion. Zhang (2000) applied the time-domain traction boundary inte-
gral equation (BIE) to obtain the dynamic stress intensity factor of a 'nite crack in
anisotropic solids under anti-plane deformation. Albuquerque et al. (2002) developed
a multi-domain boundary element formulation to solve a two-dimensional dynamic
anisotropic problem with cracks. They computed the dynamic stress intensity factors
by using traction singular quarter point elements.

In the study of crack propagation, Yo5e (1951) began to investigate a steady-state
crack growth problem of a crack of 'xed length propagating in an in'nite elastic body
subjected to a uniform remote tensile stress. Kostrov (1966) and Achenbach (1970a,b)
have used the method based on Green’s function to solve the problems of crack propa-
gation for anti-plane deformation. In a series of paper, Freund (1972a,b, 1973, 1974b)
developed important analytical methods for evaluation of the transient stress 'eld of
a propagating crack in a homogeneous material under quite general dynamic loading
situation. An indirect analytical approach was proposed by Freund based on superposi-
tion over fundamental solutions. Based on the superposition method proposed by Fre-
und, a series of problems for non-planar crack propagation in an in'nite domain were
solved by Ma and Burgers (1986, 1987, 1988) and Ma (1988, 1990). For the aforemen-
tioned problems, either the direct application of the well-known Wiener–Hopf technique
(Noble, 1958) is used or the superposition method proposed by Freund is performed to
solve the problem. However, if a crack is subjected to incident non-planar waves, it is
hard to use the well-known methods directly to obtain the transient solutions. The major
reference on the dynamic fracture mechanics can be found in the extensive monograph
by Freund (1990). Recently, Rosakis (2002) reviewed the dynamic crack propagation
of intersonic shear rupture of theoretical and experimental results. Guo et al. (2003)
investigated the problem of rapid shear cracking in isotropic materials by numerical
simulation and experiments. They obtained analytical solutions for a sub-Rayleigh or
an intersonic crack by either accelerating or decelerating to a di5erent cracking speed.
Samudrala and Rosakis (2003) studied the nature of intersonic crack propagation along
a bimaterial interface by optical techniques.

Because of the mathematical diDculties, the explicitly analytical solution for the
dynamic fracture problem of a propagating 'nite crack subjected to dynamic loading
in anisotropic solids has not yet been obtained. In this study, the theoretical transient
analysis is performed for 'nite cracks in unbounded anisotropic media subjected to
horizontally polarized shear waves as shown in Fig. 1. Investigations on the prob-
lems for anisotropic materials are tedious due to the presence of many material con-
stants. It is desirable to reduce the dependence on material constants in advance of the
analysis of a given problem. A linear coordinate transformation is introduced in this
study to simplify the problems. Based on this transformation, the original problems of
anisotropic materials with 'nite cracks are converted to equivalent isotopic problems
with a similar geometrical con'guration. In analyzing this problem, the interaction of
waves with two crack tips must be taken into account and it is impossible to solve
this complicated problem by using the standard integral transform method. Two useful
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Fig. 1. Schematic and coordinate systems of a 'nite crack subjected to an incident horizontally polarized
shear wave.

fundamental solutions are proposed to overcome these diDculties. The exact solutions
of dynamic stress intensity factors are derived for the anisotropic stationary 'nite crack
problem. Based on the analytical solutions, the transient responses of stress intensity
factors are discussed in detail by numerical calculations. The analytical solutions show
that the dynamic stress intensity factor of a stationary 'nite crack will reach a maxi-
mum value, and then decrease and oscillate near the static value. If the dynamic stress
intensity factor reaches the fracture toughness of the material, then the two crack tips
of the 'nite crack are assumed to propagate with constant subsonic velocities along the
crack tip line. The in2uence of the 'rst two di5racted waves generated from the other
crack tip on the dynamic stress intensity factor of the propagating crack is analyzed
and discussed in detail.

2. A linear coordinate transformation and fundamental solutions

The anti-plane anisotropic problem can be converted to a corresponding isotropic
problem by properly changing the geometry of the original con'guration and the trac-
tions on the boundary. In other words, the anisotropic anti-plane problem can be sim-
pli'ed to an isotropic problem with the aid of a suitable coordinate transformation.
By using a linear coordinate transformation, the complete full-'eld static solutions of
anisotropic multilayered media subjected to concentrated shear forces and screw dislo-
cations in an arbitrary layer were obtained by Lin and Ma (2000).

In this section, a linear coordinate transformation and two fundamental problems are
proposed to solve the problem of a 'nite crack in an anisotropic material subjected
to horizontally polarized shear waves and propagates with constant velocities. The
solutions for an exponentially distributed traction applied on the propagating crack
faces and an exponentially distributed displacement along the propagating crack tip
line in the Laplace transform domain will be referred to as the fundamental solutions.
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The di5racted waves generated from two crack tips can be successfully constructed by
superimposing the fundamental solutions in the Laplace transform domain.

2.1. The linear coordinate transformation

Consider the problem of a semi-in'nite crack propagating in an anisotropic un-
bounded medium under anti-plane deformation. The crack is assumed to propagate
along the crack line (i.e. positive x-axis) with a constant subsonic velocity v. In
analyzing this problem, it is convenient to express the governing equations of wave
motions in the moving coordinate (�; y) which is attached to the propagating crack
tip. For the absence of body force, the two-dimensional wave motion of a homoge-
neous anisotropic solid under anti-plane deformation in terms of the displacement is
governed by

C55
92w(�; y; t)

9�2 + 2C45
92w(�; y; t)
9�9y + C44

92w(�; y; t)
9y2

= �
(
v2 92w(�; y; t)

9�2 − 2v
92w(�; y; t)
9�9t +

92w(�; y; t)
9t2

)
; (1)

where �=x−vt, w(�; y; t) is the out-of-plane displacement in the z-direction, Cij (i; j=
4; 5) are elastic moduli and � is the mass density of the anisotropic material. The
�y-plane has been assumed to coincide with one of the plane of material symmetry
so that in-plane and anti-plane deformations are uncoupled. The relevant shear stress
components are

�yz(�; y; t) = C44
9w(�; y; t)

9y + C45
9w(�; y; t)

9� ; (2)

��z(�; y; t) = C45
9w(�; y; t)

9y + C55
9w(�; y; t)

9� : (3)

Introduce a linear coordinate transformation (Ma, 1996; Lin and Ma, 2000)

& = �− C45

C44
y; (4)

Y =
Ce

C44
y; (5)

Z = z; (6)

where

Ce =
√

C44C55 − C2
45: (7)

Assume that C44 and C45 as well as
√

C44C55 − C2
45 are all positive. The transfor-

mation given by Eqs. (4)–(6) reduces Eq. (1) to the standard wave equation for the
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isotropic solid in the (&; Y ) coordinate system as

(1 − bv2)
92W (&; Y; t)

9&2 + 2b2v
92W (&; Y; t)
9&9t +

92W (&; Y; t)
9Y 2 = b2 92W (&; Y; t)

9t2 ; (8)

where W (&; Y; t) is the displacement in the Z-direction and

W (&; Y; t) = w(�; y; t); (9)

b =
√
C44�
Ce

: (10)

It is easy to verify from Eqs. (2) and (3) that the relevant stress components in the
anisotropic solid are related to those in the corresponding isotropic solid by

�YZ(&; Y; t) = Ce
9W (&; Y; t)

9Y ; (11)

�&Z(&; Y; t) = Ce
9W (&; Y; t)

9& ; (12)

�yz(�; y; t) = �YZ(&; Y; t); (13)

��z(�; y; t) =
C45

C44
�YZ(&; Y; t) +

Ce

C44
�&Z(&; Y; t): (14)

From Eqs. (8), (11) and (12), it is noted that the original anisotropic problem is
converted into an equivalent isotropic problem by setting Ce = � (shear modulus).
From the relationship of displacement and shear stresses for an anisotropic solid and
the correspondent isotropic solid expressed in Eqs. (9), (13) and (14), one can see that
it is possible to obtain the solution for an anisotropic problem from a correspondent
result of an isotropic problem.

2.2. The fundamental solution of distributed loads applied on propagating
crack faces

Consider an anisotropic material in an unbounded medium containing a semi- in'nite
crack which lies on the negative �-axis and propagates with a constant velocity. An
anti-plane exponentially distributed traction in the Laplace transform domain is applied
on the upper and lower crack faces of the propagating crack. The boundary conditions
expressed in the Laplace transform domain for this fundamental problem are represented
as follows:

L�yz(�; 0; s) = es�� for −∞¡�¡ 0; (15)

Lw(�; 0; s) = 0 for 0¡�¡∞; (16)

where s is the Laplace transform parameter and � is a constant. The overbar symbol
is used for denoting the transform on time t. By using Eqs. (4)–(6), (9) and (13), the
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boundary conditions Eqs. (15) and (16) are rewritten as

L�YZ(&; 0; s) = es�& for −∞¡&¡ 0; (17)

LW (&; 0; s) = 0 for 0¡&¡∞: (18)

The fundamental problem for the governing equation (8) subjected to boundary con-
ditions Eqs. (17) and (18) can be solved by the application of standard integral trans-
form methods. The one-sided Laplace transform with respect to time and the two-sided
Laplace transform with respect to & of a function are de'ned by (Achenbach, 1973)

Lf(&; Y; s) =
∫ ∞

0
f(&; Y; t)e−st dt; (19)

Lf∗(�; Y; s) =
∫ ∞

−∞
Lf(&; Y; s)e−s�& d&: (20)

Apply the one-sided Laplace transform over time, and the two-sided Laplace trans-
form over & under the restriction of Re(�)¿Re(�), and the Wiener–Hopf technique is
'nally implemented. The solutions of shear stresses and displacement for this funda-
mental problem in the Laplace transform domain can be expressed as follows:

L�YZ(&; Y; s) =
1

2�i

∫
��

 ∗+(�)e−s[ ∗(�)|Y |−�&]

 ∗+(�)(�− �)
d�; (21)

L�&Z(&; Y; s) =
−sign(Y )

2�i

∫
��

�e−s[ ∗(�)|Y |−�&]

 ∗+(�)(�− �) ∗−(�)
d�; (22)

LW (&; Y; s) =
−sign(Y )

2�i

∫
��

e−s[ ∗(�)|Y |−�&]

Ces ∗+(�)(�− �) ∗−(�)
d�; (23)

where �� is the path of integration in the complex �-plane and

sign(Y ) =

{
1 if Y ¿ 0+;

−1 if Y 6 0−;

 ∗+(�) =
√

b + �(1 − bv);  ∗−(�) =
√

b− �(1 + bv);

 ∗(�) =  ∗+(�) ∗−(�):

The corresponding result of the dynamic stress intensity factor in the Laplace trans-
form domain is

LK(s) = lim
&→0+

√
2�& L�YZ(&; 0; s) = −

√
2(1 − bv)√
s ∗+(�)

: (24)

If the propagating velocity of the crack v=0 which is correspondent to the stationary
crack, then Eqs. (21)–(24) can be reduced to

L�YZ(X; Y; s) =
1

2�i

∫
��

 +(�)e−s[ (�)|Y |−�X ]

 +(�)(�− �)
d�; (25)
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L�XZ(X; Y; s) =
−sign(Y )

2�i

∫
��

�e−s[ (�)|Y |−�X ]

 +(�)(�− �) −(�)
d�; (26)

LW (X; Y; s) =
−sign(Y )

2�i

∫
��

e−s[ (�)|Y |−�X ]

Ces +(�)(�− �) −(�)
d�; (27)

LK(s) = lim
X→0+

√
2�X L�YZ(X; 0; s) = −

√
2√

s +(�)
; (28)

where X = & + vt and

 +(�) =
√
b + �;  −(�) =

√
b− �;

 (�) =  +(�) −(�):

2.3. The fundamental solution of distributed displacement ahead of a propagating
crack tip

Consider a semi-in'nite propagating crack contained in an unbounded anisotropic
medium. An exponentially distributed displacement ahead of the propagating crack tip
yields the following boundary conditions in the Laplace transform domain:

Lw(�; 0+; s) = es�� for 0¡�¡∞; (29)

Lw(�; 0−; s) = −es�� for 0¡�¡∞; (30)

L�yz(�; 0; s) = 0 for −∞¡�¡ 0: (31)

Follow a similar procedure as mentioned previously. The solutions of stresses and
displacement expressed in the Laplace transform domain are

L�YZ(&; Y; s) =
1

2�i

∫
��

Ces ∗−(�) ∗+(�)e−s[ (�)|Y |−�&]

(�− �)
d�; (32)

L�&Z(&; Y; s) =
−sign(Y )

2�i

∫
��

Ces ∗−(�)�e−s[ (�)|Y |−�&]

(�− �) ∗−(�)
d�; (33)

LW (&; Y; s) =
−sign(Y )

2�i

∫
��

 ∗−(�)e−s[ (�)|Y |−�&]

(�− �) ∗−(�)
d�: (34)

The corresponding result of stress intensity factor expressed in the Laplace transform
domain is

LK(s) = −Ce

√
2s(1 − bv) ∗−(�): (35)
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If the propagating velocity of the crack v=0 which is correspondent to the stationary
crack, then Eqs. (32)–(34) are reduced to

L�YZ(X; Y; s) =
1

2�i

∫
��

Ces −(�) +(�)e−s[ (�)|Y |−�X ]

(�− �)
d�; (36)

L�XZ(X; Y; s) =
−sign(Y )

2�i

∫
��

Ces −(�)�e−s[ (�)|Y |−�X ]

(�− �) −(�)
d�; (37)

LW (X; Y; s) =
−sign(Y )

2�i

∫
��

 −(�)e−s[ (�)|Y |−�X ]

(�− �) −(�)
d�; (38)

LK(s) = −Ce

√
2s −(�): (39)

3. Relations in the transformed domain for di�erent moving coordinate systems

The superposition method can be applied successfully only if the fundamental so-
lutions and the integral function of superposition are speci'ed in the same coordinate
system. The coordinate transformation relations of two di5erent moving coordinate sys-
tems should be established to solve the interaction of di5racted waves generated from
the other crack tip and the propagating crack. Consider two moving coordinate sys-
tems (�; y) and (�′; y) whose constant extending velocities are vA and vB, respectively.
If a function speci'ed in the (�; y) coordinate system is represented in the Laplace
transform domain as

LQ(�; y; s) = snesa
∫

F(�)e−s ∗A (�)y+s�� d�; (40)

where n is an arbitrary integer, and

 ∗A(�) =  ∗A+(�) ∗A−(�) =
√

b + �(1 − bvA)
√

b− �(1 + bvA):

Then this function can be transformed into the (�′; y) coordinate system with the
following form

LQ(�′; y; s) = snesa
∫

[1 − �(vA − vB)]n−1F
( −�

1 − �(vA − vB)

)

×e−s ∗B (�)y+s�[�′−a(vA−vB)] d�; (41)

in which

 ∗B(�) =  ∗B+(�) ∗B−(�) =
√

b + �(1 − bvB)
√

b− �(1 + bvB):

4. Transient solutions for a stationary �nite crack

The problem to be considered in this section is an in'nite anisotropic medium con-
taining a 'nite crack of length l subjected to a horizontally polarized shear wave
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as shown in Fig. 1. The origins of two coordinate systems (x; y) and (x′; y′) are located
at crack tips A and B, respectively. At time t=0, an incident plane horizontally polarized
shear wave arrives at the crack tip A. It is assumed that the stress intensity factors of
two crack tips will not exceed the fracture toughness of the material. Hence, the 'nite
crack does not propagate but remains stationary all time. The in2uence of 'nite length
of the crack on the dynamic stress intensity factor will be analyzed and discussed
in detail. The incident plane wave with an incident angle ’ is represented by the
general form

wi(x; y; t) = F(t + b0x cos’− b0y sin ’); (42)

where

b0 =
1

cos’

√
C44�

(C44 tan ’− C45)2 + C2
e

(43)

is the slowness of the plane wave in the speci'ed direction of an anisotropic material,
and

F(t) = H (t)
∫ t

0
f(�) d�: (44)

The function F is identically zero when its argument is negative, but is otherwise
an arbitrary wave form. Thus, the medium ahead of the incident plane wave front is
undisturbed. In Eq. (44), H ( ) denotes the Heaviside function and ’ (06’6 �=2) is
the angle of the negative x-axis and the normal to the wave front. From Eq. (2), the
incident horizontally polarized shear wave expressed in Eq. (42) will give rise to the
shear stress in the anisotropic medium as follows:

�i
yz(x; y; t) = −b0(C44 sin ’− C45 cos’)f(t + b0x cos’− b0y sin ’)

×H (t + b0x cos’− b0y sin ’): (45)

At time t =0, the incident plane wave front reaches the crack tip A and is di5racted.
Some time later, the incident plane wave will arrive at the crack tip B and another
di5racted wave will be induced. The di5racted waves will scatter back and forth be-
tween the crack tips A and B at a later time. The sequence of wave fronts of incident,
re2ected and di5racted waves in a short time period are shown in Fig. 2. In analyzing
this problem, the multiple di5ractions of stress waves by the 'nite crack must be taken
into account. This is the most diDcult part in analyzing the problem, and fundamental
solutions provided in Section 2 will be very useful to overcome this diDculty. Since
the idea of stress intensity factor is a well-established concept in fracture mechanics,
and it represents the cornerstone of applied linear elastic fracture mechanics, we will
focus our attentions mainly on the solution of the dynamic stress intensity factor in
the following derivation.

Introduce a linear coordinate transformation as indicated in Eqs. (4)–(6) by setting
v = 0 for the stationary crack, then the con'guration and coordinate systems as shown
in Fig. 1 for anisotropic materials are changed to that presented in Fig. 3 for isotropic
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Fig. 2. Sequence of wave fronts of the scattered waves in a short time period for the stationary crack.

materials. It is interesting to see from Fig. 3 that the crack length remains l, but the
incident angle and the velocity of plane wave are both changed. The new (transformed)
incident angle and the slowness of the plane wave become

 = tan−1
(
C44 tan ’

Ce
− C45

Ce

)
(46)

and

b =
b0 cos’

Ce

√
(C44 tan ’− C45)2 + C2

e ; (47)
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Fig. 3. Schematic and coordinate systems after using the linear coordinate transformation.

respectively. The incident shear stress in Eq. (45) can be rewritten as

�i
YZ(X; Y; t) = −b0C’f(t +bX cos  −bY sin  )H (t +bX cos  −bY sin  ); (48)

where

C’ = C44 sin ’− C45 cos’:

It is noted that

X ′ = x′ +
C45

C44
y′; (49)

Y ′ =
Ce

C44
y′; (50)

and the relations of the 'eld quantities in the (X; Y ) and (X ′; Y ′) coordinates are

�Y ′Z′(X ′; Y ′; t) = Ce
9W ′(X ′; Y ′; t)

9Y ′ ; (51)

�X ′Z′(X ′; Y ′; t) = Ce
9W ′(X ′; Y ′; t)

9X ′ ; (52)

W ′(X ′; Y ′; t) = −W (X; Y; t); (53)

�Y ′Z′(X ′; Y ′; t) = −�YZ(X; Y; t); (54)

�X ′Z′(X ′; Y ′; t) = �XZ(X; Y; t): (55)

The stress 'led induced by the incident plane wave as indicated in Eq. (48) can be
represented in the Laplace transform domain as

L� i
YZ(X; Y; s) =

1
2�i

∫
��

b0C’ Lf(s)
�− b cos  

e−s�Y tan  +s�X d�; (56)
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or expressed in the (X ′; Y ′) coordinate system as

L� i
Y ′Z′(X ′; Y ′; s) =

1
2�i

∫
��

b0C’ Lf(s)
� + b cos  

es�Y
′ tan  +s�(X ′+l) d�: (57)

Here the overbar symbol is used for denoting the Laplace transform on time t.
To ensure convergences of the complex integrals, we have the conditions that
Re(� − b cos  )¡ 0 in Eq. (56) while Re(� + b cos  )¿ 0 in Eq. (57). Before the
incident plane wave di5racted from the crack tip B, the stress 'eld is precisely the
same as that derived for a semi-in'nite crack which lies in the plane Y = 0 and
−∞¡X ¡ 0, and is struck by the same incident plane wave. The incident stress 'eld
L� i
YZ(X; 0; s) at Y = 0 generated by the horizontally polarized shear wave is

L� i
YZ(X; 0; s) =

1
2�i

∫
��

b0C’ Lf(s)
�− b cos  

es�X d�: (58)

The applied traction on the crack face, in order to eliminate the incident wave as
indicated in Eq. (58), has the functional form es�X . Since the solutions of applying
traction es�X on crack faces in the transform domain have been solved in Section 2,
the re2ected and di5racted 'elds induced by the crack tip A can be constructed by
superimposing the incident wave traction that is equal and opposite to Eq. (58). When
we combine Eqs. (58) and (27), the solution of displacement LwA1 for A1 wave (the
'rst wave di5racted from the crack tip A) can be expressed in the Laplace transform
domain as follows:

LWA1 (X; Y; s) =
−1
2�i

∫
��1

b0C’ Lf
�1 − b cos  

×
{

1
2�i

∫
��2

−sign(Y )e−s (�2)|Y |+s�2X

Ces +(�1)(�1 − �2) −(�2)
d�2

}
d�1

=
sign(Y )b0C’ Lf√
2bCe cos( =2)s

1
2�i

∫
��

e−s (�)|Y |+s�X

(�− b cos  ) −(�)
d�: (59)

The corresponding stress intensity factor expressed in the Laplace transform
domain is

LKA1 (s) =
−1
2�i

∫
��

b0C’ Lf
�− b cos  

{
−√

2√
s +(�)

}
d� =

−b0C’ Lf√
b cos( =2)

√
s
: (60)

By using the Cagniard–de Hoop method of Laplace inversion, the dynamic stress in-
tensity factor of the crack tip A induced by the incident wave will be

KA1 (t) =
−b0C’√

�b cos( =2)

∫ t

0

f(�)√
t − �

d�: (61)
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Subsequently, the incident plane wave will propagate toward to the crack tip B
and will be di5racted at time t = bl cos  . Follow the similar procedure that is used
for constructing the A1 wave, the displacement induced by B1 wave (the 'rst wave
di5racted from the crack tip B) can be constructed in the coordinate system (X ′; Y ′)
by Eqs. (57) and (27) as follows

LWB1 (X ′; Y ′; s) =
−sign(Y ′)b0C’ Lfe−sbl cos  

√
2bCe|sin( =2)|s

1
2�i

∫
��

e−s (�)|Y ′|+s�X ′

(� + b cos  ) −(�)
d�: (62)

The corresponding stress intensity factor in the transform domain of crack tip B is

LKB1 (s) =
b0C’ Lfe−sbl cos  

√
b|sin( =2)|√s

: (63)

The dynamic stress intensity factor at the crack tip B expressed in time domain
will be

KB1 (t) =
b0C’√

�b|sin( =2)|

∫ t−bl cos  

0

f(�)√
t − bl cos  − �

d�: (64)

After the 'rst incident plane wave arrives at crack tip A, the second wave that
reaches the tip A is the B1 wave. When the di5racted B1 wave arrives at the right tip
A of the 'nite crack at time t = bl(1 + cos  ), it carries a discontinuous displacement
in the Z-direction which violates the displacement condition for X ¿ 0. In order to
satisfy the condition that the displacement must be continuous for X ¿ 0, a distributed
displacement is required to close the opening displacement. The di5racted A2 wave
will be induced when the B1 wave arrives at the crack tip A at time t = bl(1 + cos  ).
To construct the A2 wave, we change the formulation for the B1 wave from (X ′; Y ′) to
(X; Y ) coordinate system, the displacement that we must eliminate ahead of the right
tip A is

LWB1 (X; 0; s) =
−b0C’ Lfe−sbl cos  

√
2bCe|sin( =2)|s

1
2�i

∫
��

e−s (�)|Y |+s�(X+l)

(�− b cos  ) +(�)
d�: (65)

The di5racted A2 wave can be obtained by superimposing the distributed displacement
that is equal and opposite to (65) in the Laplace transform domain as follows:

LWA2 (X; Y; s) =
b0C’ Lfe−sbl cos  

√
2bCe|sin( =2)|s

1
2�i

∫
��1

es�1l

(�1 − b cos  ) +(�1)

×
{

1
2�i

∫
��2

−sign(Y ) −(�1)e−s (�2)|Y |+s�2X

(�1 − �2) −(�2)
d�2

}
d�1

=
−sign(Y )b0C’ Lfe−sbl cos  

√
2bCe|sin( =2)|s

1
(2�i)2

×
∫
��1

∫
��2

 −(�1)es�1le−s (�2)|Y |+s�2X

(�1 − b cos  ) +(�1)(�1 − �2) −(�2)
d�2 d�1: (66)
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Here Eq. (38) has been used to construct the solution of the di5racted A2 wave. Using
Eqs. (65) and (39), the corresponding stress intensity factor at crack tip A due to the
A2 wave expressed in the Laplace transform domain will be

LKA2 (s) =
−b0C’ Lfe−sbl cos  

√
b|sin( =2)|√s

1
2�i

∫
��

 −(�)es�l

(�− b cos  ) +(�)
d�: (67)

The inversion Laplace transform of Eq. (67) will have the following form:

KA2 (t) =
b0C’

�3=2
√
b|sin( =2)|

∫ t−bl cos  

bl

∫ t−�−bl cos  

0

× f(-)
√
� + bl√

t − �− bl cos  − -(� + bl cos  )
√
�− bl

d- d�: (68)

By using the same process that is used for constructing A2 wave, the di5racted B2

wave, which is induced after the di5racted A1 wave arrives at crack tip B at time
t = bl, can be obtained from Eqs. (59) and (38) and is expressed in the coordinate
system of (X ′; Y ′) as follows:

LWB2 (X ′; Y ′; s) =
sign(Y ′)b0C’ Lf√
2bCe cos( =2)s

1
(2�i)2

×
∫
��1

∫
��2

 −(�1)es�1le−s (�2)|Y ′|+s�2X ′

(�1 + b cos  ) +(�1)(�1 − �2) −(�2)
d�2 d�1: (69)

The correspondent stress intensity factor induced by the B2 wave at the crack tip B
in the Laplace transform domain is

LKB2 (s) =
b0C’ Lf√

b cos( =2)
√
s

1
2�i

∫
��

 −(�)es�l

(� + b cos  ) +(�)
d�: (70)

Inversion of the Laplace transform yields

KB2 (t) =
−b0C’

�3=2
√
b cos( =2)

∫ t

bl

∫ t−�

0

f(-)
√
�+bl√

t−�−-(�−bl cos  )
√
�−bl

d- d�: (71)

The B2 wave, which is generated by di5racting the A1 wave at the left tip B of the
crack will return back to tip A at time t=2bl. After it arrives at tip A, the displacement
boundary condition for X ¿ 0 will be violated. An appropriate displacement along
X ¿ 0 must be superimposed to close the opening displacement ahead of the crack tip.
Combine the results of Eqs. (69) and (39), the corresponding stress intensity factor for
tip A in the Laplace transform domain can be obtained as follows:

LKA3 (s) =
−b0C’ Lf√

b cos( =2)
√
s

1
(2�i)2

∫
��1

∫
��2

 −(�1)G(�1; �2)es�1les�2l

(�1 + b cos  ) +(�1)
d�2 d�1;

(72)
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where

G(�1; �2) =
 −(�2)

(�1 + �2) −(−�2)
:

The inverse Laplace transform of Eq. (72) is

KA3 (t) =
−b0C’

�5=2
√
b cos( =2)

∫ t

2bl

∫ �−bl

bl

∫ t−�

0

f(-)√
t − �− -

×
[ √

t1 + bl
√
t2 + bl

(t1 − bl cos  )
√
t1 − bl(t1 + t2)

√
t2 − bl

]
t=�

d- dt1 d�; (73)

where

t1 + t2 = t:

Similarly, the stress intensity factor at the crack tip B due to the di5raction of B3 wave
at t = bl(2 + cos  ) is

KB3 (t) =
b0C’

�5=2
√
b|sin( =2)|

∫ t−bl cos  

2bl

∫ �−bl

bl

∫ t−�−bl cos  

0

f(-)√
t − �− bl cos  − -

×
[ √

t1 + bl
√
t2 + bl

(t1 + bl cos  )
√
t1 − bl(t1 + t2)

√
t2 − bl

]
t=�

d- dt1 d�: (74)

For the time being, we have constructed in detail for the 'rst three di5racted waves
which have contributions to the stress intensity factor at crack tips A and B. The process
of di5raction of the waves continues as time goes on. Following a similar procedure,
the complete solutions for dynamic stress intensity factor at tips A and B that account
for the contributions of the incident wave and all the di5racted waves induced from
the two crack tips can be expressed explicitly as follows:

KA(t) =
∞∑
n=1

KAn(t); (75)

KB(t) =
∞∑
n=1

KBn(t); (76)

where

KA1 (t) =
−b0C’√

�b cos( =2)

∫ t

0

f(�)√
t − �

d�;

KB1 (t) =
b0C’√

�b|sin( =2)|

∫ t−bl cos  

0

f(�)√
t − bl cos  − �

d�;
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KA2 (t) =
b0C’

�3=2
√
b|sin( =2)|

∫ t−bl cos  

bl

∫ t−�−bl cos  

0

× f(-)
√
� + bl√

t − �− bl cos  − -(� + bl cos  )
√
�− bl

d- d�;

KB2 (t) =
−b0C’

�3=2
√
b cos( =2)

∫ t

bl

∫ t−�

0

f(-)
√
� + bl√

t − �− -(�− bl cos  )
√
�− bl

d- d�;

KAn(t) =
(−1)nb0C’√

��n−1
√
b[q|sin( =2)| + (1 − q)cos( =2)]

∫ t−qbl cos  

(n−1)bl

∫ a1

bl

∫ a2

bl

· · ·
∫ an−2

bl

∫ t−�−qbl cos  

0

f(-)√
t − �− qbl cos  − -

×SIFA d- dtn−2 dtn−3 · · · dt1 d� for n = 3; 4; 5; : : : ;

KBn(t) =
(−1)n−1b0C’√

��n−1
√
b[(1 − q)|sin( =2)| + q cos( =2)]

×
∫ t−(1−q)bl cos  

(n−1)bl

∫ a1

bl

∫ a2

bl
· · ·

∫ an−2

bl

∫ t−�−(1−q)bl cos  

0

× f(-)√
t − �− (1 − q)bl cos  − -

SIFB d- dtn−2 dtn−3 · · · dt1 d�

for n = 3; 4; 5; : : : ;

in which

SIFA =[ √
t1+bl

√
t2+bl · · · √tn−1+bl

[t1+(−1)nbl cos  ]
√
t1−bl(t1+t2)(t2+t3) · · · (tn−2+tn−1)

√
t2 − bl

√
t3 − bl · · · √tn−1 − bl

]
t=�

;

SIFB =[ √
t1+bl

√
t2+bl · · · √tn−1+bl

[t1+(−1)n−1bl cos  ]
√
t1−bl(t1+t2)(t2+t3) · · · (tn−2+tn−1)

√
t2 − bl

√
t3−bl · · · √tn−1−bl

]
t=�

;

a1 = �− (n− 2)bl;

am = �− t1 − t2 − · · · − tm−1 − (n− m− 1)bl for m = 2; 3; 4; : : : ; n− 2;

q = 0; when n = 3; 5; 7; : : : ; q = 1; when n = 4; 6; 8; : : : ;

t1 + t2 + t3 + · · · + tn = t:



2004 Y.-S. Ing, C.-C. Ma / J. Mech. Phys. Solids 51 (2003) 1987–2021

As a speci'c example, if we consider an incident step-stress wave for which

f(t) =
�0

Ceb0
; (77)

then the solutions can be simpli'ed as

KA
ss(t) =

∞∑
n=1

KAn
ss (t); (78)

KB
ss(t) =

∞∑
n=1

KBn
ss (t); (79)

where

KA1
ss (t) =

−2�0C’

Ce cos( =2)

√
t
�b

H (t); (80)

KB1
ss (t) =

2�0C’

Ce|sin( =2)|

√
t − bl cos  

�b
H (t − bl cos  ); (81)

KA2
ss (t) =

2�0C’

�3=2Ce
√
b|sin( =2)|

∫ t−bl cos  

bl

√
t − �− bl cos  

√
� + bl

(� + bl cos  )
√
�− bl

d�;

KB2
ss (t) =

−2�0C’

�3=2Ce
√
b cos( =2)

∫ t

bl

√
t − �

√
� + bl

(�− bl cos  )
√
�− bl

d�;

KAn
ss (t) =

(−1)n2 �0C’√
��n−1Ce

√
b[q|sin( =2)| + (1 − q)cos( =2)]

×
∫ t−qbl cos  

(n−1)bl

∫ a1

bl

∫ a2

bl
· · ·

∫ an−2

bl

√
t − �− qbl cos  

×SIFA dtn−2 dtn−3 · · · dt1 d� for n = 3; 4; 5; : : : ;

KBn
ss (t) =

(−1)n−12�0C’√
��n−1Ce

√
b[(1 − q)|sin( =2)| + q cos( =2)]

∫ t−(1−q)bl cos  

(n−1)bl

×
∫ a1

bl

∫ a2

bl
· · ·

∫ an−2

bl

√
t − �− (1 − q)bl cos  

×SIFB dtn−2 dtn−3 · · · dt1 d� for n = 3; 4; 5; : : : :

The corresponding static solutions for the stress intensity factor due to a step-stress
wave are

KA;s
ss = −�0C’

Ce

√
�l
2

(82)
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Fig. 4. Transient responses of the normalized stress intensity factors at crack tip A for stationary cracks.

and

KB;s
ss =

�0C’

Ce

√
�l
2
: (83)

The exact transient solutions of dynamic stress intensity factors for multiple di5rac-
tions of a plane horizontally polarized shear wave by a stationary 'nite crack in an
anisotropic medium have been derived. The induced wave fronts of incident, re2ected
and di5racted waves in a short time period are shown in Fig. 2. Numerical results for a
step-stress wave case will be considered in the following discussion. Since the transient
solution is exact up to the arrival time of the next wave, only a 'nite number of waves
will be involved in the numerical calculation. The numerical calculation includes many
high dimensional integrals and it is performed by using the 24-term Gaussian formula.
Figs. 4 and 5 show the dimensionless dynamic stress intensity factors KA

ss=K
A;s
ss and

KB
ss=K

B;s
ss at tips A and B versus the dimensionless time t=bl for di5erent values of the

incident angle ’, respectively. It can be seen that the dynamic stress intensity factor
will increase with time and will reach a maximum value just before the di5racted
waves arrive at the crack tip. The stress intensity factors decrease after the di5racted
waves induced by the other tip reach the crack tip, and then oscillate near the static
value. The ratio of the value for maximum dynamic overshot can be calculated from
Eqs. (80)–(83) as follows

KA1
ss (t)|t=bl(1+cos  )

KA;s
ss

=
KB1

ss (t)|t=bl

KB;s
ss

=
4
�
: (84)
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Fig. 5. Transient responses of the normalized stress intensity factors at crack tip B for stationary cracks.

This result is the same as that for the isotropic case (Achenbach, 1970a). The maximum
value of stress intensity factor at tips A and B is the same and has the following
expression:

KA
ss;max = KA1

ss (t)|t=bl(1+cos  ) = KB
ss;max = KB1

ss (t)|t=bl

=
−2

√
2l�0C’√
�Ce

=
2
√

2l(C2
44 + C2

45)�0√
�Ce

sin
(

tan−1
(
C45

C44

)
− ’

)
: (85)

For small angle of ’ as indicated in Figs. 4 and 5, the stress intensity factor of crack
tip B increases more rapidly with time than that of crack tip A. The times that the
maximum values of the overshot occur are bl(1 + cos  ) and bl for crack tips A
and B, respectively. Because the time that the stress intensity factor of crack tip B
reaches its maximum value is shorter than that of tip A, it is very well possible that
the crack tip B will propagate earlier than crack tip A for large fracture toughness of
the material. Furthermore, if a pulse step-stress wave with a short duration time less
than bl(1 + cos  ) is considered, then it is also possible that crack propagation will
occur at crack tip B, but crack tip A remains stationary.

Figs. 6 and 7 show the dimensionless stress intensity factors KA
ss=(l

1=2�0) and
KB

ss=(l
1=2�0) versus the dimensionless time t=bl for di5erent values of the incident angle
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Fig. 6. Transient responses of the normalized stress intensity factors at crack tip A for di5erent incident
angles.

Fig. 7. Transient responses of the normalized stress intensity factors at crack tip B for di5erent incident
angles.



2008 Y.-S. Ing, C.-C. Ma / J. Mech. Phys. Solids 51 (2003) 1987–2021

Fig. 8. The relations of  and ’ for di5erent material constants.

’, respectively. It can be seen that the peak magnitude has no obvious relation with
the incident angle ’. It is well known that the magnitude of the stress intensity factor
increases as the incident angle ’ increases for an isotropic 'nite crack. However, it is
not generally true for an anisotropic 'nite crack. It is indicated in Figs. 6 and 7 that
the stress intensity factors of both tips are zero for ’ = 45◦. The reason is that the
stress intensity factor is dependent on the transformed angle  which is a function of
’ and material constants as indicated in Eq. (46). The transformed angle  equals zero
for ’ = 45◦ under the combination of material constants shown in Figs. 6 and 7. The
functions  (’) in Eq. (46) for di5erent material constants are plotted in Fig. 8 and
the solid line represents the isotropic case. From Eq. (46), it is found that the trans-
formed angle  ¿ 0 when ’¿ tan−1(C45=C44), and  ¡ 0 when ’¡ tan−1(C45=C44).
The special condition that will induce zero stress intensity factor for both tips is the
incident angle ’ = tan−1(C45=C44). For the isotropic material, we have C45 = 0 and
’ = 0.

5. Transient responses of a propagating �nite crack

In Section 4, the dynamic stress intensity factors of a stationary 'nite crack subjected
to incident horizontally polarized shear waves in an unbounded anisotropic medium
are investigated. It is assumed in Section 4 that the dynamic stress intensity factors
of two crack tips are always smaller than the fracture toughness of the material, so
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that the propagation of the 'nite crack will not occur. In this section, however, the
crack propagation event is considered and examined in detail. A similar geometry to
be considered here is an in'nite anisotropic medium containing a 'nite crack of length
l. For time t ¡ 0, the 'nite crack is undisturbed. At time t=0, an incident horizontally
polarized shear wave arrives at the crack tip A. The two crack tips are assumed to
propagate along the crack tip line with di5erent velocities at di5erent time as the stress
intensity factors reach the fracture toughness of the material. An incident step-stress
wave (as given in Eq. (77)) is considered for the following analysis. The shear stress
induced by the incident horizontally polarized shear wave can be represented in the
(X; Y ) coordinate system as

�i
YZ(X; Y; t) = −�0C’

Ce
H (t + bX cos  − bY sin  ): (86)

The stress 'led in Eq. (86) can be expressed in the Laplace transform domain as

L� i
YZ(X; Y; s) =

1
2�i

∫
��

�0C’

Ces(�− b cos  )
e−s�Y tan  +s�X d�; (87)

or expressed in the (X ′; Y ′) coordinate system as

L� i
Y ′Z′(X ′; Y ′; s) =

1
2�i

∫
��

�0C’

Ces(� + b cos  )
es�Y

′ tan  +s�(X ′+l) d�: (88)

Apply the superposition method as indicated in Section 4, the displacement LWA1d for
A1d (the 'rst wave di5racted from the stationary crack tip A) can be obtained from
Eqs. (87) and (27), and the result is

LWA1d(X; Y; s) =
sign(Y )�0C’√

2bC2
e cos( =2)s2

1
2�i

∫
��

e−s (�)|Y |+s�X

(�− b cos  ) −(�)
d�: (89)

The corresponding stress intensity factor is

KA1d(t) =
−2�0C’

Ce cos( =2)

√
t
�b

H (t): (90)

Eq. (90) is the well known solution of a stationary semi-in'nite crack subjected to an
incident plane wave. After some delay time tAf , the dynamic stress intensity factor of
tip A reaches its fracture toughness KA

c and the tip begins to propagate with a constant
velocity along the crack tip line. The delay time tAf can be determined from Eq. (90)
and yields

tAf = �b
[
Ce cos( =2)KA

c

2�0C’

]2

: (91)

Consequently, the fracture toughness KA
c must be less than the maximum amplitude

of dynamic stress intensity factor of tip A during the transient process for stationary
crack analysis, i.e., KA

c 6KA
max(t). It is known from the results for the previous section
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that the stress intensity factor of tip A will reach its maximum amplitude at time
t = bl(1 + cos  ). Hence, we have the condition for crack propagation that

KA
c 6KA1d

max(t) =
2�0|C’|

Ce

√
2l
�

= KA
c;max: (92)

At time t = tAf , the dynamic stress intensity factor of crack tip A reaches the
fracture toughness and this tip starts to propagate with a constant subsonic velocity
vA (bvA ¡ 1). The incident 'eld in Eq. (87) can be written in the Laplace transform
domain for the moving coordinate system (&; Y ) as follows:

L� i
YZ(&; Y; s) =

1
2�i

∫
��

�0C’(1 + bvA cos  )
Ces[(1 + bvA cos  )�− b cos  ]

e−s�Y tan  +s�(&−vAtAf ) d�;

(93)

where & = X − vA(t − tAf ). The applied traction on crack faces as indicated in Eq. (93)
has the functional form es�&. The di5racted 'eld generated from the propagating crack
tip A can be constructed by superimposing the fundamental solutions in Eqs. (21)–
(24) and the stress distribution in Eq. (93). The result of displacement expressed in
the Laplace transform domain is

LWA1v(&; Y; s) =
−1
2�i

∫
��1

�0C’(1 + bvA cos  )e−s�1vAtAf

Ces[(1 + bvA cos  )�1 − b cos  ]

×
{

1
2�i

∫
��2

−sign(Y )e−s ∗A (�2)|Y |+s�2&

Ces ∗A+(�1)(�1 − �2) ∗A−(�2)
d�2

}
d�1

=
sign(Y )�0C’(1 + bvA cos  )3=2e−stA

√
2bC2

e cos( =2)s2

× 1
2�i

∫
��

e−s ∗A (�2)|Y |+s�&

[(1 + bvA cos  )�− b cos  ] ∗A−(�)
d�; (94)

where

tA =
bvAtAf cos  

1 + bvA cos  
:

The corresponding dynamic stress intensity factor for the propagating crack tip A
can also be constructed by a similar manner as follows:

LKA1v(s) =
−1
2�i

∫
��1

�0C’(1 + bvA cos  )e−s�vAtAf

Ces[(1 + bvA cos  )�− b cos  ]

{
−√

2(1 − bvA)√
s ∗A+(�)

}
d�

=
−√

(1 − bvA)(1 + bvA cos  )�0C’e−stA
√
bCe cos( =2)s3=2

: (95)
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Apply the inverse Laplace transform to Eq. (95), the stress intensity factor for the
propagating crack tip A in time domain is

KA1v(t) =
−2

√
(1 − bvA)(1 + bvA cos  )�0C’√

�bCe cos( =2)

√
t − tAH (t − tAf )

= (1 − bvA)1=2 −2�0C’

Ce cos( =2)

√
t + bvA cos  (t − tAf )

�b
H (t − tAf )

= (1 − bvA)1=2 KA1d(t)|t=t+bvA cos  (t−tAf )H (t − tAf ): (96)

The dynamic stress intensity factor expressed in Eq. (96) is the transient solution for
a propagating semi-in'nite crack subjected to the same incident step-stress wave. It
has the interesting form of the product of a value (1 − bvA)1=2 and the corresponding
stress intensity factor KA1d(t) in Eq. (90) for a stationary crack by shifting the crack
tip to the origin of the moving coordinate system (&; Y ). The value (1 − bvA)1=2 is a
universal function which depends only on the crack speed vA and material properties.

Subsequently, the incident plane wave will arrive at the crack tip B at time t =
bl cos  . Following the similar procedure that is used for constructing the A1d wave, the
B1d wave (the 'rst wave di5racted from the stationary crack tip B) can be constructed
in the coordinate system (X ′; Y ′) by using Eqs. (88) and (27) and yields

LWB1d(X ′; Y ′; s) =
−sign(Y ′)�0C’e−sbl cos  

√
2bC2

e |sin( =2)|s2

1
2�i

∫
��

e−s (�)|Y ′|+s�X ′

(� + b cos  ) −(�)
d�: (97)

The corresponding dynamic stress intensity factor at the crack tip B induced by the
incident plane wave is

KB1d(t) =
2�0C’

Ce|sin( =2)|

√
t − bl cos  

�b
H (t − bl cos  ): (98)

Similarly, when the dynamic stress intensity factor KB1d(t) reaches the fracture tough-
ness KB

c after some delay time tBf , the crack tip B will begin to propagate with a constant
subsonic velocity vB (bvB ¡ 1). The crack tip B should start to propagate before the
A1d wave arrives the tip, i.e., tBf ¡bl, as we have discussed in the previous section.
The delay time tBf can be obtained from Eq. (98) and yields

tBf = �b
(
Ce sin( =2)KB

c

2�0C’

)2

+ bl cos  : (99)

The condition for the propagation of crack tip B is that the fracture toughness KB
c must

be less than KB1d
max(t), so we have

KB
c 6KB1d

max(t) =
2�0|C’|

Ce

√
2l
�

= KB
c;max: (100)
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Similarly, the incident 'eld expressed in Eq. (88) can be represented in the moving
coordinate system (&′; Y ′) as

L� i
Y ′Z′(&′; Y ′; s) =

1
2�i

∫
��

�0C’(1 − bvB cos  )
Ces[(1 − bvB cos  )� + b cos  ]

×es�Y
′ tan  +s�(&′−vBtBf +l) d�; (101)

where &′ = X ′ − vB(t − tBf ). The displacement 'eld in the Laplace transform domain
after the tip B propagates can be obtained from Eqs. (101) and (23), and the result is

LWB1v(&′; Y ′; s) =
−sign(Y ′)�0C’(1 − bvB cos  )3=2e−stB

√
2bC2

e |sin( =2)|s2

× 1
2�i

∫
��

e−s ∗B (�2)|Y ′|+s�&′

[(1 − bvB cos  )� + b cos  ] ∗B−(�)
d�; (102)

where

tB =
b cos  (l− vBtBf )

1 − bvB cos  
:

The stress intensity factor for the propagating crack tip B in time domain can be
obtained as follows:

KB1v(t) =
2
√

(1 − bvB)(1 − bvB cos  )�0C’√
�bCe|sin( =2)|

√
t − tBH (t − tBf )

= (1 − bvB)1=2 2�0C’

Ce|sin( =2)|

√
t − bvB cos  (t − tBf ) − bl cos  

�b
H (t − tBf )

= (1 − bvB)1=2 KB1d(t)|t=t−bvB cos  (t−tBf )H (t − tBf ): (103)

The dynamic stress intensity factor expressed in Eq. (103) has the form of the product
of a universal function (1−bvB)1=2 and the corresponding stress intensity factor KB1d(t)
in Eq. (98) for a stationary crack by shifting the crack tip to the origin of the moving
coordinate system (&′; Y ′).

At this point, the results and important features presented in this section are the same
as that for the semi-in'nite crack problem. The solutions are valid until the di5racted
waves (A1d and B1d) induced from the other crack tip arrive at the propagating crack
tips. The patterns of wave fronts for a short time after the crack tips propagate are
shown in Fig. 9. To investigate the dynamic crack propagation event for the 'nite
crack, the in2uence of the di5racted waves from the other crack tip on the propagating
crack must be taken into account. Hence we will proceed the analysis a step further.

At a later time, the di5racted B1d and B1v waves generated from the crack tip
B will arrive at the propagating tip A of the 'nite crack. The di5racted A2d and
A2v waves will be induced as B1d and B1v waves arrive at the moving crack tip A,
respectively. The displacement boundary condition for &¿ 0 will not be satis'ed and
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Fig. 9. Sequence of wave fronts of the scattered waves in a short time period for the propagating crack.

a distributed displacement is required to close the opening displacement ahead of the
propagating crack tip. In order to superimpose with the fundamental solution, we change
the formulations in Eqs. (97) and (102) to (&; Y ) coordinate system by using the
transformation relations established in Section 3; the displacements we must eliminate
ahead of the propagating tip A are

LWB1d(&; 0; s) =
−�0C’e−sbl cos  

√
2bC2

e |sin( =2)|s2

× 1
2�i

∫
��

es�(&−vAtAf +l+vAbl cos  )

(1 − �vA)3=2[(1 + bvA cos  )�− b cos  ] ∗A+(�)
d�;

(104)

LWB1v(&; 0; s) =
−�0C’(1 − bvB cos  )3=2e−stB

√
2bC2

e |sin( =2)|s2

× 1
2�i

∫
��

es�(&−vAtAf −vBtBf +l+vr tB)

(1 − �vr)3=2[(1 + bvA cos  )�− b cos  ] ∗A+(�)
d�;

(105)

where vr = vA + vB is the relative velocity between the two moving coordinate systems.
The di5racted A2d and A2v waves can be obtained by superimposing the distributed
displacement that is equal and opposite to Eqs. (104) and (105) ahead of the moving
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crack tip &¿ 0 in the Laplace transform domain, respectively. By using Eqs. (104),
(105) and (35), the corresponding stress intensity factors can be obtained as follows:

LKA2d(s) =
−√

1 − bvA�0C’e−sbl cos  

√
bCe|sin( =2)|s3=2

× 1
2�i

∫
��

 ∗A−(�)es�(l−vAtAf +vAbl cos  )

(1 − �vA)3=2[(1 + bvA cos  )�− b cos  ] ∗A+(�)
d�; (106)

LKA2v(s) =
−√

1 − bvA(1 − bvB cos  )3=2�0C’e−stB
√
bCe|sin( =2)|s3=2

× 1
2�i

∫
��

 ∗A−(�)es�(l−vAtAf −vBtBf +vr tB)
(1 − �vr)3=2[(1 + bvA cos  )�− b cos  ] ∗A+(�)

d�; (107)

Apply the inverse Laplace transform to Eqs. (106) and (107), the stress intensity factors
in time domain will be

KA2d(t) =
2
√

1 − bvA�0C’

�3=2
√
bCe|sin( =2)|

∫ t−bl cos  

b(l−vAtAf +vAbl cos  )
1−bvA

√
t − �− bl cos  

[vA� + l− vAtAf + vAbl cos  ]3=2

×
√

(1 + bvA)� + b(l− vAtAf + vAbl cos  )

[(1 + bvA cos  )� + b cos  (l− vAtAf + vAbl cos  )]

× (l− vAtAf + vAbl cos  )3=2√
(1 − bvA)�− b(l− vAtAf + vAbl cos  )

d�H (t − tA2d); (108)

KA2v(t) =
2
√

1 − bvA(1 − bvB cos  )3=2�0C’

�3=2
√
bCe|sin( =2)|

×
∫ t−tB

b(l−vAtAf −vBtBf +vr tB)
1−bvA

√
t − �− tB

(vr� + l− vAtAf − vBtBf + vrtB)3=2

×
√

(1 + bvA)� + b(l− vAtAf − vBtBf + vrtB)

[(1 + bvA cos  )� + b cos  (l− vAtAf − vBtBf + vrtB)]

× (l− vAtAf − vBtBf + vrtB)3=2√
(1 − bvA)�− b(l− vAtAf − vBtBf + vrtB)

d�H (t − tA2v); (109)

where

tA2d =
bl cos  + b(l− vAtAf )

1 − bvA
(110)
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and

tA2v =
b(l− vAtAf ) + tBf

1 − bvA
(111)

are the arrival time of the B1d and B1v waves at the propagating crack tip A, respec-
tively.

Similarly, the B2d and the B2v di5racted waves scattering from the propagating crack
tip B will be induced after the A1d and the A1v waves arrive the propagating tip B,
respectively. The dynamic stress intensity factors for the B2d and the B2v waves can
be obtained as follows:

LKB2d(s) =

√
1 − bvB�0C’√

bCe cos( =2)s3=2

× 1
2�i

∫
��

 ∗B−(�)es�(l−VBtBf )

(1 − �vB)3=2[(1 − bvB cos  )� + b cos  ] ∗B+(�)
d�; (112)

LKB2v(s) =

√
1 − bvB(1 + bvA cos  )3=2�0C’e−stA

√
bCe cos( =2)s3=2

× 1
2�i

∫
P�

 ∗B−(�)es�(l−vAtAf −vBtBf +vr tA)

(1 − �vr)3=2[(1 − bvB cos  )� + b cos  ] ∗B+(�)
d�: (113)

The inverse Laplace transform of Eqs. (112) and (113) are

KB2d(t) =
−2

√
1 − bvB�0C’

�3=2
√
bCe cos( =2)

×
∫ t

tB2d

√
t − �

√
(1 + bvB)� + b(l− vBtBf )

(vB� + l− vBtBf )3=2[(1 − bvB cos  )�− b cos  (l− vBtBf )]

× (l− vBtBf )3=2√
(1 − bvB)�− b(l− vBtBf )

d�H (t − tB2d); (114)

KB2v(t) =
−2

√
1 − bvB(1 + bvA cos  )3=2�0C’

�3=2
√
bCe cos( =2)

×
∫ t−tA

b(l−vAtAf −vBtBf +vr tA)
1−bvB

√
t − �− tA

(vr� + l− vAtAf − vBtBf + vrtA)3=2
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Fig. 10. Transient responses of the normalized stress intensity factors at propagating crack tip A for di5erent
incident angles.

×
√

(1 + bvB)� + b(l− vAtAf − vBtBf + vrtA)

[(1 − bvB cos  )�− b cos  (l− vAtAf − vBtBf + vrtA)]

× (l− vAtAf − vBtBf + vrtA)3=2√
(1 − bvB)�− b(l− vAtAf − vBtBf + vrtA)

d�H (t − tB2v); (115)

where

tB2d =
b(l− vBtBf )

1 − bvB
(116)

and

tB2v =
b(l− vBtBf ) + tAf

1 − bvB
(117)

are the arrival times of the A1d and A1v waves at the propagating crack tip B, respec-
tively.

Numerical calculation will be carried out and discussed according to the analytical
solutions obtained in this section. Figs. 10 and 11 show the dimensionless stress inten-
sity factors KA=KA

c and KB=KB
c versus the dimensionless time t=bl for di5erent values

of the incident angle ’ for crack tip A and B, respectively. Figs. 12 and 13 plot the
dimensionless stress intensity factors KA=KA

c and KB=KB
c versus the dimensionless time
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Fig. 11. Transient responses of the normalized stress intensity factors at propagating crack tip B for di5erent
incident angles.

Fig. 12. Transient responses of the normalized stress intensity factors at propagating crack tip A for di5erent
material constants.
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Fig. 13. Transient responses of the normalized stress intensity factors at propagating crack tip B for di5erent
material constants.

t=bl for di5erent combinations of material constants, respectively. It is seen from these
'gures that the magnitudes of stress intensity factors increase before the crack begins
to propagate, and arise a 'nite jump at the moment that the crack propagates and
then continue the same tendency as the stationary crack. As indicated in Fig. 11 and
Fig. 13, the two di5racted waves (A1d and A1v) generated from crack tip A have very
signi'cant in2uence on the stress intensity factor for the propagating crack tip B. Since
the stress intensity factor for crack tip B increases more rapidly than the crack tip A
before the crack propagation, which results the dynamic stress intensity factor for crack
tip B is greater than the crack tip A after the crack propagation. In order to get better
understanding of whether the stress intensity factor at tip B is larger than that at tip
A, the values of the ratios of KA1v(t)=KB1v(t) at the time that the 'rst di5racted wave
A1d generated from the crack tip A arrives at the propagating crack tip B for di5erent
transformed angle  are plotted in Figs. 14 and 15. It can be seen from these two
'gures that the value of KB1v is always larger than that of KA1v for any combination
of fracture toughness and crack speeds.

6. Conclusions

The transient responses of a 'nite crack in an unbounded anisotropic medium sub-
jected to an incident horizontally polarized shear wave are analyzed for stationary and
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Fig. 14. The ratio of the stress intensity factor of propagating crack tips A and B for various fracture
toughness.

Fig. 15. The ratio of the stress intensity factor of propagating crack tips A and B for various crack speeds.



2020 Y.-S. Ing, C.-C. Ma / J. Mech. Phys. Solids 51 (2003) 1987–2021

propagating cracks. Multiple di5racted waves generated by two crack tips are taken into
account. The exact transient solutions of dynamic stress intensity factors for stationary
cracks are obtained in compact formulations which account for the contributions of
all the di5racted waves. Each term in the formulations has its own physical meaning.
The dynamic stress intensity factors for stationary cracks subjected to a step-stress
wave increase with time and will reach a maximum value at the instance that the 'rst
di5racted wave generated from the other crack tip arrives at the tip. The ratio of the
maximum value and the corresponding static value is 4=� for both tips for various
incident angles and material constants. The stress intensity factors decrease after the
'rst di5racted wave has passed the crack tip and then oscillate near the static value.
The stress intensity factor increases very rapidly in a short time period for the left
crack tip B so that the fracture tends to occur 'rst at the crack tip B for high fracture
toughness.

For propagating crack, the two crack tips are assumed to propagate along the crack
tip line with constant subsonic velocities as the stress intensity factor reaches the
fracture toughness of the material. The in2uence of the 'rst two di5racted waves
generated from the other tip on the stress intensity factors of the propagating crack tip
is investigated. It is interesting to note that the dynamic stress intensity factor during
crack propagation of the crack tip B is larger than that of the crack tip A, which is
the tip that the incident plane wave 'rst strikes. The di5racted waves have signi'cant
in2uence on the stress intensity factor of the cracks especially for the crack tip B.
The in2uence of the di5racted waves on the dynamic stress intensity factor for higher
propagation velocity is relatively smaller than for low velocity.
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