
Wat. Res. Vol. 35, No. 13, pp. 3226–3234, 2001
# 2001 Elsevier Science Ltd. All rights reserved

Printed in Great Britain
0043-1354/01/$ - see front matterPII: S0043-1354(01)00050-1

HYDRODYNAMIC DRAG ON NON-SPHERICAL FLOC AND

FREE-SETTLING TEST

R. M. WU and D. J. LEE*

Department of Chemical Engineering National Taiwan University Taipei, Taiwan,
106, R.O.C.

(First received 7 March 2000; accepted in revised form 22 January 2001)

Abstract}This work numerically investigates the hydrodynamic drag force exerted on a porous spheroid
floc moving steadily through a quiescent Newtonian fluid over a wide range of the Reynolds number. The
flow patterns for a highly porous spheroid moving at an elevated Reynolds number are basically the same
as those at a low Reynolds number, which extends the applicable range of a creeping-flow based
correlation to the higher Reynolds number regime. The shape effect becomes more prominent as the
spheroid becomes more porous. Using the equivalent diameter, defined as the geometric mean diameter of
the principal axes, leads to a universal correlation relating to the drag force, aspect ratio, and interior
permeability. In addition, free-settling experiments are performed to estimate how the non-spherical
shape affects the three sludge samples. The possible errors in data reduction for the free-settling test
are attributed to the a=b ratio and the internal permeability. The errors range from 16–34% for
a=b ¼ 0:622:0. # 2001 Elsevier Science Ltd. All rights reserved
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NOMENCLATURE

a polar radius, m
A constant in Stokes-law like correlation, dimen-

sionless
b equatorial radius, m
CD drag coefficient, dimensionless
df equivalent diameter of spheroid, m
FD hydrodynamic resistance of porous sphere, N
FDS hydrodynamic resistance of porous spheroid, N
FS hydrodynamic resistance of non-porous sphere,

N
k permeability of porous spheroid, m2

L length of circular tube, m
r radial direction, m
R radius of circular tube, m
Re Reynolds number ð2raV=mÞ, dimensionless
V velocity of fluid, m/s
uf velocity of the surrounding fluid, m/s
up fluid velocity within the spheroid, m/s
z axial direction, m

Greek symbols
b dimensionless radius of sphere ð¼ a=

ffiffiffi
k

p
Þ, dimen-

sionless
m viscosity of fluid, Pa/s
r density of fluid, kg/m
O correction factor, dimensionless

INTRODUCTION

Sufficient information about the hydrodynamic drag

force exerted on a highly porous object is necessary
when considering its motion, such as sedimentation
or centrifugation of sludge flocs, which are highly
porous aggregates made of many primary particles

(Li and Ganczarczyk, 1989; Jiang and Logan, 1991).
Consider a porous sphere moving steadily through
a quiescent, infinitely large liquid pool. The drag

force exerted on the porous sphere can be stated as
follows:

FD ¼ pa2
� � 1

2
rV2

� �
CDO ð1Þ

where CD is the drag coefficient, a the radius of

sphere, V the velocity, r the fluid density, and O the
ratio of the resistance experienced by the porous
sphere to that by an equivalent solid sphere.

Drag coefficient is a function of Reynolds number
(Re) and floc sphericity (Clift et al., 1978; Tambo and
Watanabe, 1979; Namer and Ganczarczyk, 1993).
Under creeping-flow condition ðRe51Þ, CD for a

non-porous sphere is governed by the Stokes law:
CD ¼ 24=Re and O=1. For a highly porous sphere
moving steadily through an infinite medium, the

corresponding drag force ðFDÞ is less than that for a
non-porous sphere ðFSÞ. Restated, FD ¼ FSO, and
O51. Neale et al. (1973) analytically derived the
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correction factor O for a porous sphere under

creeping-flow condition. Matsumoto and Suganuma
(1977) experimentally verified the theoretical predic-
tions of Neale et al.
Lee et al. (1996) revealed that in many applications

involving sludge flocs, the corresponding sphere’s Re
could reach 40, upon which, the Stokes law would
fail. However, previous literature has largely adopted

the Stokes law-like correlation (i.e., CD ¼ A=Re,
where A is a constant) for satisfactorily interpreting
floc settling data beyond the creeping-flow regime

(Tambo and Watanabe, 1979; Mitani et al., 1983; Lee
and Hsu, 1994; Hung et al., 1996; Chu et al., 1997).
This approach, nevertheless, has its limitations.

Moreover, the floc interior is highly porous via mass
balance calculations with a porosity up to 99%
(Lee, 1994; Wu et al., 1998), which is markedly above
the valid limit for the conventionally used Darcy law

(Veerapaneni and Wiesner, 1996). Payatakes and
Dassios (1987) claimed that the Darcy law combined
with Beavers–Joseph–Saffman boundary conditions

could approximate flow process over a wide range of
porosity values.
At an elevated Reynolds number, the inertial force

plays an important role in determining the floc
movement, thus yielding nonlinear hydrodynamic
governing equations that require numerical solutions.

Wu and Lee (1998a) numerically solved the fluid flow
field and the associated hydrodynamic drag force
exerted on a highly porous sphere moving in an
infinite Newtonian fluid at Re ¼ 0:1240. Wu and Lee
(1998b) considered the case with a porous sphere
moving towards an impermeable plate. Wu and Lee
(1999) investigated a porous sphere moving along the

centerline of a circular tube. For a highly porous
sphere, the above studies confirmed the feasibility of
applying the Stokes law-like correlation beyond the

creeping-flow regime.
Although previous studies considering the motion

of a highly porous object often assumes a perfectly
spherical shape, a non-spherical shape characterizes

most naturally occurring objects (such as sludge
flocs). Other studies (for example, see Le Roux (1997)
and the references cited therein) have thoroughly

elucidated the characteristics of a non-spherical
object by considering the equivalent spherical dia-
meter or sphericity factor and then determining the

drag by using an appropriate sphere-based model.
Happel and Brenner (1983) derived the analytical
solution for the drag force exerted on a non-porous

spheroid under creeping-flow condition. Clift et al.
(1978) summarized pertinent literature prior to 1978.
Later, Chhabra (1995) provided experimental data
for non-porous, non-spherical particles moving

beyond a creeping-flow regime. Brenner (1996)
reviewed the approaches applied to the Stokes
hydrodynamic resistance of non-spherical particles.

Zlatanovski (1999) investigated the creeping flow
past a porous prolate spheroidal particle using the
Brinkman model.

The non-spherical shape of sludge flocs has

implications for the free-settling test. Nevertheless,
the hydrodynamic drag force of a highly porous
spheroid moving at an elevated Reynolds number
(>1) has seldom been investigated. This work

numerically investigates the fluid flow field and the
hydrodynamic drag force exerted on a moving
porous spheroid at a Reynolds number ranging from

0.1 to 40. The extent to which shape affects the drag
force is also discussed. Moreover, free-settling
experiments on three sludge samples, i.e., a waste

activated sludge and two cupric hydroxide sludges,
are performed to investigate the implications of
shape effects to data reduction and interpretation.

GOVERNING EQUATIONS AND SOLUTION

Consider a porous spheroid with principal-axis
radii of a and b, whose internal permeability is k,

moving along its axis of revolution at a steady speed
of V through an infinite, quiescent Newtonian fluid
of viscosity m and density r. The combined Darcy–
Brinkman model describes the flow field up within
the porous spheroid; meanwhile, the surrounding
Newtonian fluid field, uf , is governed by the steady-
state Navier–Stokes equations. To easily define the
boundary conditions in the computational domain,
an equivalent problem is considered: the spheroid is
fixed at the centerline while the surrounding fluid is

flowing at a uniform speed of V from infinity towards
the fixed spheroid. Wu and Lee (1998a) provides the
related boundary conditions. Figure 1 illustrates the

process along with the governing equations.
The governing equations are solved together with

the boundary conditions using the general-purpose

computational fluid dynamics program FIDAP 7.5
(FDI Inc., USA). The number of elements in the fluid
side and within the porous spheroid is about 18,000
and 30, respectively. Notably, the fluid field within

and around the porous spheroid is of major concern,
accounting for why more elements are allocated near

Fig. 1. Computation domain under investigation.
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the spheroid to increase accuracy. The maximum

relative error of 10�3 can be achieved by three to five
iterations. FIDAP evaluates the hydrodynamic drag
force on the porous spheroid ðFDSÞ with its post-
processing program FIPOST (FIDAP, 1993).

NUMERICAL CALCULATIONS

Fluid flow fields

Figures 2 and 3 plot the streamline and velocity
field for a=b ¼ 1:43 and 0.7, b ¼ 0:5 (highly porous
spheroid) or infinity (nonporous spheroid) at Re of
0.1 or 40, respectively. Where parameter b is the
dimensionless polar radius, defined as a=k0:5. Com-
paring these figures reveals the effects of aspect ratio
ða=bÞ, permeability, and Reynolds number on the
flow field. As expected, all fluid flow characteristics
for the porous sphere demonstrated in Wu and Lee

(1998a, b) are also noted in cases for porous
spheroid, which are briefly discussed as follows.

For non-porous spheroids, the originally flat-

shaped flow field is markedly distorted when
approaching the spheroid, as attributed to the no-
slip boundary condition that the fluid velocity drops
to zero on the solid surface. At Re=0.1, the

streamlines move mainly along (parallel to) the
spheroid surface, and are nearly symmetrical in
the front and the rear sides of the spheroid

(Figs 2(a) and 2(b)). The velocity field reveals a
similar feature (Figs 3(a) and 3(b)). The process is
termed hereinafter as ‘‘viscous-controlled’’.

At elevated Re, the boundary layer separation,
accompanied with asymmetric fluid flow patterns and
a wake region, appears behind the spheroid. Notably,

the actual streamlines for a floc moving steadily in a
pool could be obtained simply by adding a fluid
velocity �V onto the ones illustrated in Fig. 2.
Comparing Figs 2(b) and 2(d) reveals an essential

flow pattern difference. Owing to that the fluid does
not flow parallel to the solid surface, the inertia force
has come into play and, together with the viscous

force, dominates the flow process.

Fig. 2. Calculated streamline plots.
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Nevertheless, for a highly porous spheroid, the
fluid can not only flow around, but also flow through

the porous spheroid. At Re=0.1, the streamlines
remain nearly flat-shaped when passing through the
porous spheroid (Figs 2(e) and 2(f )). Except along

the central line of the spheroid interior, the fluid
velocity decreases (which is not clearly ascertainable
in Figs 2(e) and 2(f)), the fluid velocity remains

almost uninfluenced by the porous spheroid. A
similar pattern is noted at Re=40 (Figs 2(g)–(h)
and 3(g)–(h)), except that the corresponding velocity
has become higher than that at Re=0.1. (Note: These

two figures resemble each other while become hard to
differentiate with. Nevertheless, the velocity vectors
are in different scale, with those at Re=40 much

greater than those at Re=0.1.) This observation
closely corresponds to that of Wu and Lee (1998a, b)
for a porous sphere that, owing to the advection flow

through the spheroid interior, the boundary layer
separation and the after-spheroid wake do not occur
regardless of the Reynolds number. Li and Ganc-

zarczyk (1988, 1992) also found the advection flow in
a moving floc.

Drag force

The drag force exerted on the sphere can be
numerically evaluated, subsequently leading to the
correction factor OðFDS=FSÞ. Where FS is the drag
force exerted on the sphere of radius a. Table 1 lists
the calculation results. Some efforts had been devoted
to confirm the accuracy of computational results. A

comparison is made with literature with respect to
the non-porous cases ðb ¼ 1Þ over a wide range of
Re (Happel and Brenner, 1983). Generally, the
calculation results correlate well with literature with

a relative error less than 3%.
Figure 4 presents the correction factor O for a=b ¼

1:43 (oblate spheroid) as an illustrative example. The
O2b relationships at different a=b closely resemble
each other and are neglected for simplicity. The O2b
curves exhibit an S-shape characteristic; meanwhile,

Fig. 3. Calculated fluid velocity plots.
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O approaches zero at b50:5 (lower plateau; =0) or
at b > 40 (upper plateau; =0.92). The upper plateau
value at Re=0.1 correlates with Happel and Brenner

(1983) (0.941), which partially verifies the validity of
present numerical results. Consequently, the porous
spheroid at b > 40 could be taken as a non-porous
object. Both increasing Re and/or decreasing b leads
to a lower O. The b range within which Re is mostly
affecting O is between 0.5 and 10. For example, at
b ¼ 5, the O value is 0.648 or 0.520 at Re=0.1 or 40,
respectively. At b=0.5, the corresponding O values
are 0.0321 and 0.0108, respectively. Wu et al. (1998a,
b) estimated the b values for activated sludge floc, a
naturally occurring porous spheroid, as ranging from
1.4 to 6.8. Consequently, it is a difficult task to use
the O value obtained for creeping-flow condition in
interpreting the free-settling data of sludge flocs
over a wide range of Re, as usually adopted in
literature.

At Re=0.1, the corresponding upper plateau O
value at a=b ¼ 0:7 is 1.084, which is greater than that
for a=b ¼ 1:43. The reasons corresponding to the
larger plateau value for a prolate spheroid than those
for an oblate spheroid are self-evident. Again, this
value correlates well with that listed in Happel and

Brenner (1983) (1.087). Moreover, the relative error
is less than 0.28%.

Effects of nonspherical shape

According to equation (1) the product of CDO
controls the drag force. Figure 5 plots the numerical

values of the product of CDOðFDS=ðpa2rV2=2ÞÞ
against the spheroid’s Re ð¼ 2raV=mÞ at b ¼ 1:58
and 0.5, respectively, with a=b as a parameter. All
curves are a straight line of slope �1 on a log–log
scale. This finding suggests that the Stokes-law like
correlation can be extended from creeping-flow

Table 1. O value as a function of Re and b.

a=b ¼ 2:5 Re=0.1 1 5 10 20 30 40

b ¼ 5 0.494 0.483 0.453 0.435 0.391 0.369 0.350
2.24 0.228 0.218 0.184 0.160 0.127 0.110 0.099
1.58 0.138 0.130 0.105 0.089 0.068 0.059 0.052
0.5 0.017 0.016 0.012 0.010 0.007 0.006 0.005

a=b ¼ 1:67
b ¼ 5 0.618 0.607 0.579 0.566 0.524 0.506 0.490
2.24 0.325 0.312 0.271 0.242 0.198 0.175 0.160
1.58 0.207 0.197 0.163 0.141 0.111 0.096 0.086
0.5 0.028 0.026 0.020 0.016 0.012 0.011 0.009

a=b ¼ 1:43
b ¼ 5 0.648 0.637 0.609 0.595 0.552 0.534 0.520
2.24 0.357 0.344 0.300 0.269 0.221 0.197 0.180
1.58 0.232 0.221 0.184 0.160 0.126 0.109 0.098
0.5 0.032 0.030 0.023 0.019 0.014 0.012 0.011

a=b ¼ 1:25
b ¼ 5 0.688 0.677 0.652 0.640 0.598 0.582 0.569
2.24 0.394 0.380 0.335 0.303 0.252 0.226 0.207
1.58 0.261 0.249 0.210 0.183 0.146 0.127 0.115
0.5 0.037 0.035 0.027 0.022 0.017 0.014 0.013

a=b ¼ 1
b ¼ 5 0.691 0.683 0.657 0.639 0.630 0.633 0.620
2.24 0.449 0.435 0.388 0.353 0.302 0.265 0.244
1.58 0.278 0.265 0.221 0.190 0.163 0.153 0.139
0.5 0.046 0.043 0.034 0.028 0.022 0.018 0.016

A=b ¼ 0:8
b ¼ 5 0.809 0.802 0.780 0.767 0.719 0.703 0.690
2.24 0.516 0.502 0.453 0.416 0.352 0.320 0.296
1.58 0.363 0.349 0.300 0.266 0.215 0.190 0.172
0.5 0.058 0.054 0.042 0.035 0.027 0.023 0.020

A=b ¼ 0:7
b ¼ 5 0.851 0.843 0.821 0.806 0.752 0.734 0.719
2.24 0.557 0.543 0.493 0.454 0.386 0.350 0.325
1.58 0.398 0.384 0.332 0.295 0.240 0.212 0.192
0.5 0.066 0.062 0.048 0.040 0.031 0.026 0.023

a=b ¼ 0:6
b ¼ 5 0.903 0.897 0.874 0.857 0.797 0.776 0.759
2.24 0.609 0.595 0.544 0.503 0.429 0.391 0.363
1.58 0.443 0.428 0.374 0.333 0.272 0.241 0.219
0.5 0.076 0.072 0.056 0.047 0.036 0.030 0.027

a=b ¼ 0:5
b ¼ 5 0.977 0.972 0.950 0.930 0.862 0.836 0.816
2.24 0.679 0.665 0.612 0.568 0.487 0.445 0.413
1.58 0.504 0.488 0.430 0.385 0.316 0.280 0.255
0.5 0.091 0.085 0.067 0.056 0.043 0.037 0.032
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regime to that at a high Re. Furthermore, at a
prescribed Re, the CDO decreases with an increasing
a=b. This corresponds to the general conclusions that
the drag on a prolate spheroid is greater than that for
an oblate spheroid.
Shape effect becomes more prominent at a reduced

b and higher Re. Consider two porous spheroids
whose b ¼ 1:58 to be at the same a but at different
values of a=b of 0.6 and 1/0.6. According to Table 1,
the relative error in estimating their drag forces at
Re=0.1 and b ¼ 1:58, based on the sphere of radius
a while neglecting the shape effect, are approximately

of 60 and 25%, respectively. For example, O=0.443
and 0.278 at a=b ¼ 0:6 and 1, respectively. Hence the
relative error for drag force estimation is (0.278–
0.443)/0.278=�60%. At Re=10, the corresponding
relative errors become 76 and 26%, respectively.
Next, consider two porous spheroids whose b ¼ 0:5.
The relative errors at Re=0.1 are 65 and 40%; while

at Re=10, are 68 and 43%, respectively.
The ratio of CDO in Fig. 5 is evaluated based on

polar radius a. The equivalent diameter, defined as

df ¼ 2
ffiffiffiffiffi
ab

p
, the geometric mean of the two radii, was

frequently employed instead of a (Hung et al., 1996;
Chu et al., 1997). Figure 6 depicts the CDO data

evaluated based on df=2 rather than on a. (That is,
CDO ¼ FDS=ðpd2f rV2=8Þ. However, Re is still based
on polar radius a. When b becomes small, all data fall
onto a single curve that depends only on b. Restated,
the following expression is approximately valid for a
highly porous spheroid:

CDO ðbased on dfÞ ¼ AðbÞ=Re ðbased on aÞ ð2Þ

Equivalently, equation (1) could be stated as follows:

FDS ¼
A bð Þ
4

pmVb ð3Þ

Equation (3) is valid for a highly porous spheroid
moving at a Reynolds number from less than 0.1 to

40. The corresponding A values at various Re can be
found by allowing Re=1 in Fig. 6. For example, at
b ¼ 0:5 and 1.58, the corresponding A values are 1
and 10, respectively. If at a! b and b ! 1, A! 24,
then equation (3) reduces to the conventional
Stokes law.
Over the b range in which equation (3) becomes

valid, Fig. 7 illustrates the linear correlation between
AðbÞ and b value. A simple equation AðbÞ ¼ 6b� 2
describes the dependence for 0:55b51:58.

EXPERIMENTS

Samples and tests

We herein examined three sludge samples. A waste
activated sludge sample was taken from the wastewater
treatment plant in Neili Bread Plant, Presidental Enterprise
Co., Taoyuan, Taiwan, and was tested within 2 h after

Fig. 4. FDS=FS vs. b plot. a=b ¼ 1:43.

Fig. 5. FDS=ðpa2rV2=2Þ against Re plot for highly porous
spheroids.

Fig. 6. FDS=ðpd2f rV2=8Þ against Re plot for highly porous
spheroids. Re is based on the polar diameter 2a.
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sampling. The chemical oxygen demand (COD), suspended
solids (SS) and turbidity data were for the supernatant
drawn from the sludge, determined using EPA Taiwan
standard methods. The results read: 5.6mg/L (COD),
7.1mg/L (SS) and 1.39 NTU (turbidity). The weight
percentage of the sludge sample was 0.7% (w/w).
Cupric hydroxide sludge sample is prepared by mixing

50 gCuSO4�5H2O and 18 gNaOH with 950 g distilled water.
All chemicals are of GR grade from Merck Co. and were
used as supplied. To illustrate the fluid shear effect, a
Couette-flow reactor, which consists of two coaxial cylin-
ders having a length of 30 cm, an inner diameter of 8 cm and
an outer diameter of 9 cm, was employed for shear
experiments. The original cupric hydroxide sludge was
poured into the reactor whose inner cylinder rotated at
1000 rpm for 20min. After shearing samples were drawn
carefully from the reactor to test.
A glass cylinder (6 cm in diameter and 50 cm in height),

sectioned on a side with an attaching plane view glass, was
used for floc-settling test. A JAI 950 camera equipped with a
close-up lens was used to record the floc motion. The two
principal-axis radii of the floc were measured with the
assistance of software Inspector (Matrox), denoted as radius
a and b. By defining the mass center, the location versus
time data of the floc could be traced and recorded. The floc
moving speed could be found by numerical differentiation
and data smoothing. The ultimate error for length
measurement was determined by the optical resolution of
the camera system, estimated within 1%. From the distance
versus time data the floc moving speed can be found by
numerical differentiation and data smoothing. The max-
imum error in velocity estimation is within 2%.

RESULTS

Figure 8 depicts some terminal velocity versus floc

diameter ðdfÞ data, indicated with their a=b ratios.
The waste activated sludge flocs exhibits a more
irregular shape compared with the cupric hydroxide

slurries. As Fig. 8 depicts, the terminal velocity of
flocs increases with df , a self-evident result. The
experimental data clearly fall into three groups for

the three sludges used. However, large data scattering

reveals the possible role of the non-spherical shape.
Based on the same floc diameter, the velocity data
follow the sequence: sheared cupric hydroxide>
unsheared cupric hydroxide>activated sludge.

The investigated Reynolds number ranges for the
former two sludges are hence much greater than
that for the latter. The experimental range for

activated sludge includes: 0.0055Re52.9, and
0:65a=b52:2. The corresponding ranges for sheared
and unsheared cupric hydroxide sludges are

0.55Re529, and 0:55a=b51:6, and 0.25Re520,
and 0:75a=b52:2, respectively.

Drag force estimation

In literature works the floc in the free-settling tests

is commonly assumed spherical. Based on the force
balance for floc motion the density of floc (and the
porosity as well) is subsequently estimated (Lee et al.,
1996). Numerical simulations were carried out floc by

floc based on the corresponding measured a, b, and
V . These experimental data were used in numerical
simulations. Wu et al. (1999) estimated the b values
for the activated sludge and cupric hydroxide sludge
(sheared and unsheared) are approximately 2.5 and
10, respectively, which were adopted in the present

simulations. (Note: The permeability of flocs should
be a function of floc size. However, over a rather
wide range of floc size, the floc permeability was
noted to increase proportionally with the square of

floc size, hence yielding a nearly constant b value for
a specific sludge floc (Gmachowski, 1999)).
Two sets of simulations were conducted for each

floc settling test: the first for a porous spheroid of
measured principal-axis radii of a and b, and the
second for a porous sphere of df (2

ffiffiffiffiffi
ab

p
). The

Fig. 7. Correlation between AðbÞ and b values for highly
porous spheroids.

Fig. 8. Typical experimental terminal velocity vs. floc
diameter data. Numerical values are for a=b ratios.
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corresponding calculated drag forces were denoted as
FDS and FD, respectively. To interpret the free-
settling data requires the drag forces to floc motion.

The ratio FDS=FD thereby indicates the error range to
assume the floc as a sphere in free-settling test. A
ratio deviating more readily from unity indicates a
greater error might be introduced in interpreting free-

settling data.
Figure 9 illustrates the FDS=FD versus a=b relation-

ship for the three sludge samples. Regardless of the

sludge species, the three sets of results closely
correspond with each other. Apparently, FDS=FD ¼ 1
when a ¼ b. When a=b deviates from unity, the drag
force exerted on a spheroid would differ from that of
an equivalent sphere. The possible errors might be
introduced in data reduction for free-settling test

depending upon the a=b ratio and the internal
permeability. For example, for a=b ¼ 0:6 (prolate
spheroid), FDS=FD ¼ 1:33 for activated sludge ðb ¼
2:5Þ and =1.20 for cupric hydroxide ðb ¼ 10Þ.
Restated, the drag force exerted on an ‘‘elongated’’
floc with a ¼ 0:6b would be underestimated by
16–33%. On the other hand, for a ‘‘flattened’’ floc

with a ¼ 2b (oblate spheroid), the exerted drag force
would be overestimated by 20–34% to assume a
spherical shape.

CONCLUSIONS

This work numerically investigates the hydro-

dynamic drag force exerted on an individual spheroid
moving steadily through a quiescent Newtonian fluid
over a Reynolds number ranging from 0.1 to 40. The

spheroid, with a and b as the two principal-axis radii,
is assumed to be highly porous and is moving along
the axis of revolution. At the ratio, a=b, ranging from

0.5 to 2.5, the computational fluid dynamics soft-

ware, FIDAP 7.5, numerically solves the fluid fields
within and around the moving spheroid, from which
the corresponding hydrodynamic drag force is
subsequently evaluated. The flow patterns for a

highly porous spheroid moving at low or elevated
Reynolds number are basically the same. Both the
increase in Reynolds number, decrease in b and

increase in the ratio of principal-axis radii ða=bÞ lead
to a reduction in correction factor O. Moreover,
shape effects of highly porous spheroid become more

significant when b decreases. Employment of the
equivalent diameter, defined as the geometric mean
diameter of the principal-axis radii, leads to a

universal correlation.
Free-settling experiments are also conducted for

three sludge samples: a waste activated sludge and
two cupric hydroxide sludges. The possible errors

might be introduced in data reduction for free-
settling test, depending on the a=b ratio and the
internal permeability. The drag force exerted on an

‘‘elongated’’ floc with a ¼ 0:6b is underestimated by
16–33%. On the other hand, for a ‘‘flattened’’ floc
with a ¼ 2b, the exerted drag force is overestimated
by 20–34% to assume a spherical shape.
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