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Dynamic behavior of double-substrate interactive model
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Abstract
Although modeling microbial growth with one limiting substrate such as Monod model is a common practice, microbes very often consume

multiple substances from the environment for their growth. Therefore, the extension of current model to a multi-substrate analysis is needed for

practical applications. The dynamic behavior of a double-substrate interactive growth model with Andrew’s substrate inhibition model is

theoretically discussed in this article. The yield factors considered are either a constant or a linear function of limiting substrate. The simulation

indicated that there could be at least three non-trivial steady-state solutions with similar dynamic behavior for all the three cases, i.e. substrate

without inhibition, one or both substrate with inhibition. The steady state of highest productivity is always a stable one. The steady state of the

lowest productivity could change from a stable mode to an unstable mode while increasing dilution rate. And the limit cycle (sustained oscillation)

could appear during the transition. The other steady state is always unstable. For the cases of one or both limiting substrates inhibition, the fourth

steady state could appear, and it is always unstable.
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1. Introduction

Cells grow by taking up multiple substances from the

environment. These nutrients include different carbon sources

and a wide variety of components such as nitrogen, amino

acids, vitamins and so on. Therefore, the possibility of multi-

substrate limitations is quite frequently encountered in practice.

In fact, the situation of multiple limiting substrates is noted in

some experiments (Court and Pirt, 1981; Machado and Grady,

1989; Panikov, 1979).

Continuous culture is an important tool to produce the

desired products under optimal operating conditions and also to

determine the response of microorganisms to the environment.

Double-substrate limiting growth is the simplest condition of

multiple limiting substrates and needs to be examined first.

Those cases have been discussed for the microorganisms of

interest, including variation of cellular composition (Boer et al.,

2003), accumulation of storage compound (Durner et al.,
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2001), changing of cell metabolism (Weusthuis et al., 1994)

and excretion of metabolic intermediates (Jung et al., 2001).

These detail results were reviewed by Zinn et al. (2004). From

the viewpoint of maximum production, accurate control of the

growth nutrients in the culture broth is very important and needs

suitable kinetic model, especially in the case of multiple

limiting substrates. Therefore, the characteristics of the

proposed model need to be analyzed more clearly.

Some mathematical models are developed to describe the

growth rate of a biological population with two or more limiting

substrates. Bader (1978) classified the mathematical models of

double-substrate limiting growth making into two categories.

One is the non-interactive model which the growth rate of the

biological population is controlled by one limiting substrate at

one time. The other, interactive model, describes the growth

rate as a function of both two limiting substrates at the same time.

Chen and Christensen (1985) developed a unified model which is

based on the probability. Cybernetic hypothesis, developed

by Ramkrishna and coworkers (Dhurjati et al., 1985; Kompala

et al., 1984, 1986), described the response of microorganisms

tend to maximize yield among possible substrates, especially,

in continuous culture. The situation that nutrients were not

necessarily substitutable was noted by Baltzis and Fredrickson

(1988) both experimentally and theoretically, which later
Published by Elsevier B.V. All rights reserved.
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Nomenclature

a, b constant in the formulation of yield factor Y2

A, B functions defined in Eq. (7)

Cs1, Cs2 two limiting substrate concentrations

Cx cell concentration

Cxo scaling factor

D dimensionless dilution rate

Do dilution rate

Ki1, Ki2 model constants defined in Eq. (1)

Ks1, Ks2 model constants defined in Eq. (1)

K1, K2 dimensionless model constant defined in Eq. (3)

Pm1, Pm2, Pz functions defined in Eqs. (6a) and (6b)

S1, S2 dimensionless two limiting substrate concentra-

tions

t dimensionless time

to time

X dimensionless cell concentration

y1, y2 yield factors for two limiting substrates

Y1, Y2 dimensionless yield factors for two limiting

substrates

Greek symbols

l eigenvalue

m dimensionless specific cell growth rate

ms specific cell growth rate

msm maximum specific cell growth rate

Subscript

F the value in inlet stream
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resulted in an extension of cybernetic model by Pavlou and

Fredrickson (1989). Haas (1994) also proposed a formulation

which was based on non-interactive growth process occurring

among perfectly substitutable nutrients.

In this article, the dynamic behavior of a double-substrate

limited interactive growth model with Andrew’s substrate

inhibition model (Andrews, 1968) for each substrate proposed

by Liu et al. (1993) is discussed, i.e.

ms ¼
msmCs1Cs2

ððKs1 þ Cs1 þ C2
s1Þ=K i1ÞððKs2 þ Cs2 þ C2

s2Þ=K i2Þ
(1)

where ms is the specific growth rate, msm the maximum specific

growth rate, Cs1 and Cs2 the two limiting substrate concentra-

tions, Ks1 and Ks2 the model constants, and Ki1 and Ki2 are

substrate inhibition constants. When Ki1 and Ki2 approach to

infinity, inhibition effect is neglected and this model is reduced to

MeGee et al.’s model (1972) which is simply a product of two

Monod models for each substrate. Microbial growth, such as

Lacfobacillus plantarum (Lee et al., 1976), Saccharomyces

cereoisiue (Borzani et al., 1977), Saccharomyces carlsbergensis

(Finn and Wilson, 1954) and Klebsiella aerogenes (Harrison and

Pirt, 1967), in continuous cultures occasionally exhibits oscilla-

tory phenomena. The simple model failed to explain the observed

oscillatory behavior in the chemostat. The model with constant
yield term had been evidenced that it could not have any periodic

solutions (Crooke et al., 1980). In 1982, the studies of Crooke and

Tanner (1982) and Agrawal et al. (1982) first reported that if the

yield coefficient increases linearly with substrate concentration,

the stable steady state may undergo the Hopf bifurcation and a

limit cycle may appear. The single specie fermentation process

had been investigated and continue until now (Zhu and Huang,

2006). In this study, we discussed a double-substrate limiting

growth model and the yield factor either a constant or a linear

function of limiting substrate was used.

2. Theoretical formulation

2.1. Mathematical model

For a continuous bioreactor, system variables are cell

concentration (Cx) and two limiting substrate concentrations

(Cs1, Cs2). The governing equations with control variables,

dilution rate (Do) and two feed substrate concentrations (Cs1F,

Cs2F), can be described in the dimensionless forms as:

dX

dt
¼ mX � DX (2a)

dS1

dt
¼ �mX

Y1

þ DðS1F � S1Þ (2b)

dS2

dt
¼ �mX

Y2

þ DðS2F � S2Þ (2c)

where X = (Cx/Cxo), S1 = (Cs1/Ks1), S2 = (Cs2/Ks2), D = (Do/msm),

m = (ms/msm), t = (to/msm), Y1 = (Ks1y1/Cxo), Y2 = (Ks2y2/Cxo),

S1F = (Cs1F/Ks1), S2F = (Cs2F/Ks2).

The parameters Y1 and Y2 are the dimensionless yield factors

(cell/substrate) for the two limiting substrates, respectively.

Cxo is a scaling factor and to is time. The corresponding

dimensionless specific growth rate in Eq. (1) becomes:

m ¼ S1S2

ð1þ S1 þ K1S2
1Þð1þ S2 þ K2S2

2Þ
(3)

where K1 = (Ks1/Ki1) and K2 = (Ks2/Ki2).

The yield factor considered in this study was either a

constant (Y1) or a linear function of limiting substrate

(Y2 = a + bS2) (Essajee and Tanner, 1979).

2.2. Steady state

Besides the washout steady state (X, S1, S2) = (0, S1F, S2F),

the non-trivial solution can be expressed as:

m ¼ D (4a)

X ¼ Y1ðS1F � S1Þ (4b)

X ¼ Y2ðS2F � S2Þ (4c)

By substituting the growth Eq. (3) into Eq. (4a), one may have:

1

D
¼
�

1

S1

þ 1þ K1S1

��
1

S2

þ 1þ K2S2

�
(5a)
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And the following equation can be obtained from Eqs. (4b) and

(4c) by eliminating X.

S1 ¼ S1F �
Y2ðS2F � S2Þ

Y1

¼ S1F �
ðaþ bS2ÞðS2F � S2Þ

Y1

(5b)

Eq. (5a) is a hyperbola in the S1 � S2 phase plane when

K1 = K2 = 0 as discussed by Liu et al. (1993) and Eq. (5b) is

a parabolic curve with a right open end and the vertex is at Pm

(Pm1, Pm2), where

Pm1 ¼ �
ðaþ bS2FÞ2 � 4bS1FY1

4bY1

and Pm2 ¼ �
a� bS2F

2b

(6a)

The curve described by Eq. (5b) intersects with the line S2 = 0 at

(Pz, 0), where

Pz ¼ S1F �
aS2F

Y1

(6b)

in the S1 � S2 phase plane, the steady-state solutions are

the intersection points of these two curves, i.e. Eqs. (5a)

and (5b).

2.3. Local stability and bifurcation theory

The criterion of a local stability is that the real parts for all

eigenvalues of the Jacobian matrix at the respective steady state

are negative (Verhulst, 1990). The Jacobian matrix can be

expressed as:

J ¼

m� D � @m

@S1

X � @m

@S2

X

� m

Y1

� @mX

@S1Y1

�D � @m

@S2

X

Y1

� m

Y1

� @m

@S1

X

Y2

� @ðm=Y2Þ
@S2

X � D

0
BBBBB@

1
CCCCCA

The local stability of the continuous bioreactor with double

limiting substrates can be analysis as follows:
(I) F
or non-trivial solution:

The eigenvalues are the roots of the characteristic equation

of Eqs. (2a)–(2c), i.e. (J � lI) = 0.

ðlþ DÞðl2 þ Alþ BÞ ¼ 0 (7)

in which

A ¼ Dþ
��

@m

@S2

��
1

Y2

�
þ
�

@m

@S1

��
1

Y1

��
X

�
�

mX

Y2
2

��
@Y2

@S2

�
(7a)

B ¼ DX

��
@m

@S2

��
1

Y2

�
þ
�

@m

@S1

��
1

Y1

��

� mX2

Y1Y2
2

�
@m

@S1

��
@Y2

@S2

�
(7b)
When Y2 is a constant, the three roots of the characteristic

equation are:

�D; � D; �
��

@m

@S2

��
1

Y2

�
þ
�

@m

@S1

��
1

Y1

��
X (8)

In this case, there is no Hopf bifurcation possible (Leah, 1988).

When Y2 is a linear function of limiting substrate, the local

stability of non-washout steady state can be determined by the

sign of

�
@m

@S2

��
1

Y2

�
þ
�

@m

@S1

��
1

Y1

�
:

Since

@m

@S1

¼ 1� K1S2
1

ð1þ S1 þ K1S2
1Þ

2

S2

ð1þ S2 þ K2S2
2Þ

(9a)

and

@m

@S2

¼ 1� K2S2
2

ð1þ S2 þ K2S2
2Þ

2

S1

ð1þ S1 þ K1S2
1Þ

(9b)

the group

�
@m

@S2

��
1

Y2

�
þ
�

@m

@S1

��
1

Y1

�

is always positive if 1>K1S2
1 and 1>K2S2

2. Please note that the

case of K1 = K2 = 0 (no substrate inhibition) always satisfies

1>K1S2
1 and 1>K2S2

2. In this case, the steady state is stable

because of the negative eigenvalue. With substrate inhibition,

the steady state may be either stable or unstable. However,

when Y2 is a linear function of the second limiting substrate, the

three roots of the characteristic equation are:

�D;
�Aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B
p

2
;
�A�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 � 4B
p

2
(10)

Therefore, limit cycle is possible if A = 0 and B > 0 according

to Hopf bifurcation theory.
(II) F
or trivial solution (washout):
The three eigenvalues are:

l ¼ �D; � D; m� D (11)

It is a stable steady state when the dilution rate is greater than

the specific growth rate (D > m), and an unstable node other-

wise.

3. Result and discussion

Three cases, (I) both substrates without inhibition effect, (II)

substrate inhibition for one substrate only, and (III) substrate

inhibition for both limiting substrates, are discussed in the

following results using numerical simulations according to the

substrates with or without inhibition effect. The S1 � S2 phase

plane is used to exam the possible classes of steady states and



Fig. 1. Steady-state solutions from Eq. (5a) (dash line with different dilution

rate) and Eq. (5b) (solid line) for both substrates without inhibition (Y1 = 8,

a = 1, b = 5, S1F = 6, S2F = 6 and K1 = K2 = 0).
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bifurcation diagram commonly used is performed to classify

the possible phase plots with dilution rate.

3.1. Case (I): both substrates without inhibition effect

Fig. 1 shows the steady-state solutions in S1 � S2 phase

plane if both of the limiting substrates in the interactive model
Fig. 2. (a) Bifurcation diagram of both substrates without inhibition for cell, (b) subs

and K1 = K2 = 0).
follow the Monod models. The solid line is the feeding

parabolic curve as presented in Eq. (5b) which can be moved by

one of the operating factors, feeding concentration. The lines

are growth hyperbola curves from Eq. (5a) with K1 = K2 = 0

which is decided by the other operating factor, dilution rate. For

feeding curve, the characteristic of the parabolic curve with a

right open end and the vertex Pm (Pm1, Pm2) is important to the

appearance of the possible classes of steady states. The growth

hyperbola curves (Fig. 1) with three dilution rates, D = 0.1, 0.3

and 0.6, move upwards as the dilution rate increases. If the

hyperbola curves are above the feed point (S1F, S2F), a

hyperbola curves and parabolic curve never intersect with each

other. Therefore, only the trivial steady state is exist, that is the

washout condition. Critical dilution rate can be obtained where

the growth curve passes the feeding concentration (S1F, S2F).

Except for trivial solution, there are three possible classes of

steady states which are dependent upon the feeding concentra-

tion, i.e. the feeding parabolic curves. There is at most one non-

washout steady state for whole range of dilution rates when Pm2

(the coordinate of vertex of parabolic curve) is negative. This

steady state is the highest one located on the upper half portion

of the parabolic curve and always exists except the washout

steady state. When Pm2 is positive (i.e. S2F > a/b by Eq. (6a)),

there could be either one or three steady states, determined by

using the Eq. (5b) with S2 = 0. This intersection of S1 is noted as

Pz (Fig. 1). When Pz is positive ((Y1/a)S1F > S2F), i.e. the lower

half portion of feeding parabolic curves across the first
trate 1, (c) substrate 2, and (d) productivity (Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6



Fig. 3. Steady-state solutions from Eq. (5a) (dash line with different dilution

rate) and Eq. (5b) (solid line) for only one substrate inhibition (Y1 = 8, a = 1,

b = 5, S1F = 6, S2F = 6, K1 = 1 and K2 = 0).
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quadrant, there are three steady-state solutions. Otherwise

(Pz < 0), only one steady state can be obtained. In other words,

if Pm1 is positive (i.e. S1F > ((a + bS2F)2/4bY1) by Eq. (6a)),

there are three steady-state solutions in the middle range of the

dilution rate since Pz is always positive. It should be noticed

that the lowest steady state only exist in the case of three steady-

state solutions and in the lower range of the dilution rate.

For the purpose of illustration, the parameters (Y1 = 8, a = 1,

b = 5, S1F = 6 and S2F = 6) are chosen so that three non-trivial

steady states exist and the vertex is in the second quadrant. The

bifurcation diagram for cell and two limiting substrates in Fig. 1

with three steady states are shown in Fig. 2(a)–(c). The number

of steady state when dilution rate approaches zero is three

because of positive Pm2 and Pz. In Fig. 2(c), the variation of

three non-washout steady states (Sa, Sb and Sc) with dilution rate

is shown with three regions of S2, 0–1.1 (Sa), 1.1–2.8 (Sb) and 3–

6 (Sc). The highest steady state for S2 (Sc) is always a stable

attractor. The washout steady state is a saddle when Sc exists at

the same time and becomes stable when Sc disappeared

(D > m). This transition point is the critical operating dilution

rate. Above the transition point, only one stable is exist, i.e. the

washout steady state. Sb is always unstable (a saddle point) and

Hopf bifurcation phenomenon appears in the lower steady state

(Sa). Sa is a stable spiral steady state in lower dilution rate and is

changed to unstable spiral when dilution rate increases to

exceed bifurcation value. The limit cycle which is a circle in the

three dimensional space appears in the transition. This stable

limit cycle has an unstable spiral inside. When dilution rate

increases, the average radius of the cycle becomes bigger. Up to

maximum extend the cycle will break. Only one attracting

steady state (Sc) in the state space is presented in higher dilution

rate region and the maximum productivity which is the cell

concentration multiplying by dilution rate is also in this region

(Fig. 2(d)). The classification of possible phase plots is shown

in Table 1 where eight different situations are classified.

3.2. Case (II): substrate inhibition for one substrate only

For the inhibition effect of substrate 1 only, the steady-state

solution(s) formulated in Eqs. (5a) and (5b) with K2 = 0 are

shown in Fig. 3. The solid line is also the feeding parabolic

curves as discussed in case (I). The others are growth curves
Table 1

The classification of possible phase plots with dilution rate as parameter for both

Case

A B C D

Region of dilution rate 0–0.144 0.144–0.292 0.292–0.33 0.

Stable washout 0 0 0 0

Unstable washout 1 1 1 1

Stable node 2 1 1 1

Saddle 1 1 1 1

Stable spiral 0 1 0 0

Unstable spiral 0 0 1 1

Limit cycle 0 0 1 0

Total 4 4 5 4

Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6 and K1 = K2 = 0.
forming the U-shape curves. When the dilution rate increase,

the U-shape moves upward resulting in the width of the shape

decreases (Liu et al., 1993). The minimum of the U-shape

curves in which the slope equals to zero can be obtained from

the solutions of the first derivative of Eq. (5a) and S1 ¼
ffiffiffiffiffiffi
K1

p
.

Using the function substitute into Eq. (5a), one value of the

concentration of substrate 2 can be obtained since K2 = 0.

Therefore, both sides of the minimum of the U-shape curves are

monotonically increased to infinity which is limited by two

vertical asymptotes. The steady-state solutions are the

intersection points of the two curves, feeding and dilution

rate curves. The number of non-washout steady state in this

case is similar with case (I) except Sd shown in Fig. 3. Since

substrate inhibition causes right hand side of U-shape dilution

rate curves, the feeding parabolic curve intersects with U-

shape, generating an additional and maximum steady state.

Therefore, the maximum number of non-washout steady state is

two when the vertex in the third or fourth quadrants (Pm2 < 0).

When the vertex is in the first or second quadrant (Pm2 > 0),

non-washout steady state is four (Sa, Sb, Sc and Sd) in the

condition of Pz > 0 and two while Pz is below zero.
substrates without inhibition effect

E F G H

33–0.35 0.35–0.52 0.52–0.572 0.572–0.735 0.735–0.8

0 0 0 1

1 1 1 0

1 0 1 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

2 2 2 1



Fig. 4. (a) Bifurcation diagram of only one substrate inhibition for cell, (b) substrate 1, (c) substrate 2, and (d) productivity (Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6,

K1 = 1 and K2 = 0).
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Comparing with case (I), the parameters are the same except

additional parameter K1 = 1.

The bifurcation diagram as a function of dilution rate is

shown in Fig. 4(a)–(c) for cell and two limiting substrates,

respectively. Since Pm2 and Pz are positive, there are three non-

washout steady states when dilution rate approaches to zero due

to the selected parameters. The fourth steady state appears in

the middle range of the dilution rate and disappears at the

critical dilution rate (D = m). The variations of S2 for the four

non-washout steady states are indicated in Fig. 3(c) with four

regions of S2, 0–1.7 (Sa), 1.7–2.8 (Sb), 3.0–4.2 (Sc) and 4.2–6.0

(Sd). The behaviors of three steady state Sa, Sb and Sc are similar
Table 2

The classification of possible phase plots with dilution rate as parameter for only

Case

A B C

Region of dilution rate 0–0.028 0.028–0.068 0.068–0.1

Stable washout 0 0 0

Unstable washout 1 1 1

Stable node 2 1 1

Saddle 1 1 1

Stable spiral 0 1 0

Unstable spiral 0 0 1

Limit cycle 0 0 1

Total 4 4 5

Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6, K1 = 1 and K2 = 0.
to case (I); Sc is a stable attractor, Sb is a saddle and Sa is changed

from stable to unstable with increasing dilution rate. The stable

limit cycle also appears in Sa and starts at the bifurcation value

then breaks before Sd appears. Sd does not exist when dilution rate

is lower since its steady-state value of (S1, S2) is greater than (SF1,

SF2). It is always an unstable steady state. The washout steady

state is unstable in the lower range of dilution rate, and becomes

unstable as dilution rate increases resulting in the formation of

the Sd. Sd is disappeared at the critical dilution rate (D = m).

Productivity, defined by the product of cell concentration and

dilution rate, is shown in Fig. 4(d) as a function of dilution rate.

The maximum productivity is operated in the dilution rate Dm
one substrate inhibition

D E F G

0.1–0.12 0.12–0.209 0.209–0.269 0.269–0.3

0 1 1 1

1 0 0 0

1 1 1 0

1 2 1 0

0 0 0 0

1 1 0 0

0 0 0 0

4 5 3 1



Fig. 5. Steady-state solutions from Eq. (5a) (dash line with different dilution

rate) and Eq. (5b) (solid line) for both substrates with inhibition (Y1 = 8, a = 1,

b = 5, S1F = 6, S2F = 6, K1 = 1 and K2 = 2).
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and the steady-state value of S2 will be Sc (Fig. 3). Slightly

increasing dilution rate at Dm will lead to the steady state at only

one stable attractor-washout. The washout steady state is the

condition of loss of all cells at steady state that means the

productivity is zero. Therefore, an accurate flow-rate controller is

needed to avoid the disturbance of dilution rate which is function

of flow rate in operating bioreactor. The seven different classes of

phase plots are presented in Table 2.
Fig. 6. (a) Bifurcation diagram of both substrates with inhibition for cell, (b) substr

K1 = 1 and K2 = 2).
3.3. Case (III): substrate inhibition for both limiting

substrates

When both of the limiting substrates in the interactive model

produce an inhibition effect, the steady-state solution(s) is

formulated in Eqs. (5a) and (5b) and shown in Fig. 5. Although

the feeding parabolic curve (the solid line) is also the same as

discussed in case (I), the growth curves become more

complicated. The extreme of the curves which are the solutions

of first derivative of Eq. (5a) can be obtained in S1 ¼
ffiffiffiffiffiffi
K1

p
as in

case (II), but when using the function substitute into Eq. (5a), the

concentration of substrate 2 can be obtained two values since

K2 6¼ 0. Because S1 and S2 are symmetry in Eq. (5a), two extreme

of the curves can be also obtained in S2 ¼
ffiffiffiffiffiffi
K2

p
. Therefore, the

closed-loop contour curve is expressed in Fig. 5 for the growth

curves. When the dilution rate increases, the closed-loop contour

curve reduces its size and finally approaches a point, where the

dilution rate is the limiting dilution rate. The number of steady-

state solutions which are the intersection points of feeding and

dilution rate curves is similar as case (II). Therefore, the

additional steady state is obtained when compared with case (I)

and the maximum number of non-washout steady state is two

when thevertex is located in the third and fourth quadrants. When

the vertex is located in the first or second quadrant, there are four

steady states Sa, Sb, Sc and Sd in the condition of Pz > 0 and two

steady states while Pz < 0.

The parameters in the bifurcation diagram shown in

Fig. 6(a)–(c) are the same as case (II); however, the K2 is 2
ate 1, (c) substrate 2, and (d) productivity (Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6,



Table 3

The classification of possible phase plots with dilution rate as parameter for both limiting substrates with inhibition

Case

A B C D E F G H

Region of dilution rate 0–0.011 0.011–0.024 0.024–0.0352 0.0352–0.0368 0.0368–0.038 0.038–0.052 0.052–0.071 0.071–0.08

Stable washout 0 1 1 1 1 1 1 1

Unstable washout 1 0 0 0 0 0 0 0

Stable node 2 2 1 0 0 0 0 0

Unstable node 0 0 0 0 0 0 1 0

Saddle 1 2 2 1 1 1 1 0

Stable spiral 0 0 1 1 0 0 0 0

Unstable spiral 0 0 0 0 1 1 0 0

Limit cycle 0 0 0 0 1 0 0 0

Total 4 5 5 3 4 3 3 1

Y1 = 8, a = 1, b = 5, S1F = 6, S2F = 6, K1 = 1 and K2 = 2.
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instead. The stability of four steady states is similar to case (II)

but the limit cycle is produced after Sd is disappeared. For

productivity versus dilution rate (Fig. 6(d)), the difference of

dilution rate between the maximum productivity and the limit

cycle is very closure. It also needs to accurately control the

dilution rate in order to obtain a maximum production due to

hysteresis effect. The eight regions have been classified for

different phase plots and are corrected in Table 3.

4. Conclusion

A typical plot to explain the effect of double substrates with

one variable yield factor is given by using specific or specified

values. The position of vertex (Eq. (6a)) and the intersection of S1

(Eq. (6b)) in S1 � S2 contour determine the maximum number of

steady state and there are function of control variables S1F and

S2F. In the case of both substrates without inhibition effect (case

(I)), at most one non-washout steady state is obtained for whole

range of dilution rate when Pm2 (the coordinate of vertex of

parabolic curve) is negative. When Pm2 is positive, there are three

steady-state solutions if Pz is positive and only one steady state if

Pz is negative. In the case of one substrate with inhibition (case

(II)), the number of non-washout steady state is similar to case (I)

except there is an additional steady state. Therefore, the

maximum number of non-washout steady state is two when

Pm2 < 0. If Pm2 > 0, there are four steady states in the condition

of Pz > 0 and two steady states while Pz < 0. In the case (III) with

substrate inhibition for both limiting substrates, the maximum

number of non-washout steady state is the same as case (II)

although the growth curve becomes a closed loop.

After simulation with many parameters, the steady state Sc is

always a stable one and the maximum productivity is also

operated in this condition. Sb and Sd (in cases (II) and (III)) are

unstable and Sa which is the lowest steady state could be change

from a stable mode to an unstable mode while dilution rate

increases. The limit cycle (sustained oscillation) could appear

during the transition. Because of the presence of hysteresis

effect in the cases of substrate inhibition with one or two

substrate, accurate control in operating bioreactor is needed to

avoid the disturbance of dilution rate for producing maximum

productivity.
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