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A linear dynamics model of Darcy’s form for a regenerator is first derived, from which 
a linear network analysis is employed to study the dynamic response of the regener- 
ator in a cyclic-flow system. It is shown that the dynamic response of the regenerator 
is determined by the design of the load impedance ZJs). The amplitude attenuation 
and phase shift between the mass flow and the pressure wave due to the effects of 
the regenerator configuration and the load impedance can be clearly seen from the 
present linear network analysis. It is found that introduction of load impedance will 
reduce the bandwith of a regenerator and increase the phase lag of the mass flow 
with respect to the pressure wave. 
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Nomenclature 

A, Flow area in regenerator (m2) 
A HT Surface area of regenerator (m2) 

c, Specific heat of gas at constant volume (J 
kg-’ K-‘) 

C, Specific heat of matrix (J kg-’ K-l) 

P Gas pressure (N me2) 
R Gas constant (m’ K-r ss2) 

Tr Gas temperature (K) 

T, Matrix temperature (K) 
t Time (s) 

V, Total volume of regenerator (m3) 

VO Volume of reservoir (m3) 
x Position (m) 

Greek letters 

P Gas density (kg mm3) 

PS Matrix density (kg mm3) 

I-L Gas viscosity 
V Kinematic viscosity (m2 s-r) 

Superscripts 

Steady state or mean value 
Perturbed value 

A regenerator is a cold-storage element in regenerative 
coolers such as Stirling, pulse-tube and Gifford-McMahon 
coolers. The transient heat transfer in regenerators has been 
studied by many researchers1-5. Guo6*’ studied the dynamic 
response of a regenerator using linear system theory, and 
a network model and a distributed-parameter model of the 
regenerator were derived. The studies focused only on the 
dynamic model of the regenerator. In practice, the regener- 
ator is just one component in a system and the dynamic 
response of the regenerator should be analysed from the 
viewpoint of a dynamic system. 

Huang and Lu8 studied the dynamic characteristics of a 
regenerator connecting an infinite reservoir (zero 
impedance) and a reciprocating piston at isothermal con- 
ditions. Their study was further extended to emulate closely 
the practical situation in pulse-tube coolers. The dynamic 
response of a non-isothermal regenerator connecting a load 
impedance resulting from the flow resistance of a passage 

and the flow capacitance of a finite reservoir (Figure I ) is 
studied here using the linear network model. 

Linear perturbation model of regenerator 

The regenerator is an energy-storage element made from 
screen mesh wire or powders. Assuming one-dimensional 
flow, no axial conduction, an ideal gas, constant properties 
and an isotropic regenerator, the transient governing equa- 

Figure 1 Regenerator system in the present study 
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tions can be derived from the conservation of mass, Dynamic response of regenerator in a cyclic- 
momentum and energy of the gas. flow system 

To linearize the governing equations, the inertia terms 
and the second-order terms in the momentum equations are 
neglected and a modified frictional coefficient a which var- 
ies with the amplitude riz,, of the oscillating flow, i.e. a 

=A%%%), . IS used to account for the pressure loss of the 
regenerator. The linearly perturbed equations thus can be 
deri_ved by using the perturbation relations:_ti(x,t) =, s(x) 
+ liz(x,t);p(x,t) = P(x) + P(x,r); TXx,t) = TAX) + TXx,t); 
T,(x,t) = T,(x) + Fs(x,t>: 

The dynamic response of a regenerator as shown in Figure 
1 is now considered. The regenerator connects a reciprocat- 
ing piston at the hot side with a constant temperature TH 
and a passage at the cold side with a constant temperature 
TL. The reservoir is at a constant temperature T, and has a 
fixed volume V,. This configuration is similar to an orifice 
pulse-tube cooler, except that the pulse tube and the heat 
exchangers are not included. 

Gas continuity equation 

T %w) 
-- 

aye 

ai’dx,t) + RGe d&,0 = o 

at Pave at A, ax 

Gas momentum equation 

L a$x,t) + @%x,t) 

F at ax 
+ RF riz(x,t) = 0 

Gas energy equation 

5 !!?I$ +%$ + $ [T&t) - i’,(x,t)] = 0 
Y &! 

Regenerator matrix energy equation 

a%4 
7 s yg- + [T&x,t> - Tf(x,t)] = 0 

(1) 

(2) 

(3) 

(4) 

where: the flow capacitance C, = A,I(RT,,,); the thermal 
capacitance C, = pav.&l(R~ve); the how inductance LF = 
l/A,; the flow resistance RF = ~w/A,; the gas time con- 
stant TV = p~V,C,l(lzA,,); the matrix time constant’ r5 = 
p,( 1 - E)V,C,I(~A,,); and y = CP/Cy. 

Solving Equations (l)-(4) by Laplace transform and 
substituting the following boundary conditions: riz(O,s) = 
&r,(s); riz(L,s) = h,(s); p(O,s) = p,(s); p(L,s) = p*(s), we 
obtain the basic transfer-function model of the regenerator 

Load impedance 

The passage and the reservoir gives an equivalent circuit 
as shown in Figure 2. The impedance of the passage 
includes the resistance R&s), inductance LFt( s) and capaci- 
tance CFt(s). The impedance of the reservoir is dominated 
by a capacitance C&S). An equivalent load impedance 
&(s) can be defined at the exit of the regenerator: Z,(s) = 
all&, as shown in Figure 2. 

Dynamic model of cyclic-flow system 

A dynamic model of the regenerator in a cyclic-flow system 
expressed in Darcy’s form is given by 

1 

= Z*(s) {cosh[r,(s)L] - 1) + Z,,(s) sinh[r,(s)L] 
(7) 

where Aji = p, - p2. 

Effect of load impedance 

The dynamic response of the regenerator in a cyclic-flow 
system is affected by the design of the load impedance 
Z,(s). For the open end, i.e. G(s) = 0, the sizes of the 
passage and the reservoir are infinite. Equation (7) then 
becomes 

1 
&,&) = 

Z,,(s) sinWXs)Ll 
(8) 

1 r 1 For the closed end, i.e. the regenerator is blocked and Z,(s) 

G(s) I I cosh[ r,( s)L] 
1 

- - sinh[ lY,(s)L] 
= co, & = 0 always. 

B*(s) = 
Us) The design of the passage and the reservoir can be con- 

-7 /r\cinhlr f rV.1 , L %T\“,----‘-L- r\-I--, cosh[ r,( s)L] 
I 

trolled such that Zz(s) = Z,,(s). The transfer function for 

r i 
this load-matching condition then becomes 

x h(s) I I P,(s) 
(5) 

where r,(s) = sC,(s)(R, + sLF) and Z,,(s) is the charac- 
teristic impedance of the dynamic system defined as Zcr(s) 
= T,(s)I[sC&s)], where 

l+ 7s 
Tg(l + w) 

CR(s)= CF _ (6) 

y+ Is 
Tg(l + so 

z,(s) 

r--------- 1 r----1 

~~~~~~~ 

_--------- 
RECENERA TOR PASSACE RESERVOIR 

Figure 2 Equivalent circuit of the cyclic-flow system 
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G 
l/L (s) 

Q’JJ = {cosh[ r,( s)L] - 1) + sinh[ r,( s)L] 
(9) 

Dynamic response of regenerator 

For illustration, let us assume the following parameters: 
system mean pressure P,,, = 15 atm (abs); TH = 360 K; T,_ 
= 77 K; regenerator average temperature Ta,, = 218.5 K; 
piston swept volume V, = 6.0 cm3; piston stroke 0.7 cm; 
piston rod length 2.8 cm; regenerator diameter D = 1.1 cm; 
and regenerator length L = 5.7 cm. The modified frictional 
coefficient ?% is computed using the correlations of 
Tanaka”. - LY can be presented in terms of the cycle fre- 

quency f 

175 0.8 l.O07784,rrV$p* 

a=%+ cd,,w A+ 
(10) 

where: p* = p( T,)lp(T,,,) = 0.7 in the present case; E is 
the porosity; d,, is the hydraulic diameter defined as d,, = 
l d,/( 1 - E); and d, is the wire diameter. 

The heat transfer coefficient h inside the regenerator is 
evaluated by the correlation of Tanaka”’ 

(11) 

where: AHTIVR = 4( 1 - E)ld,,,; A, = A,IE; V, is the total 
volume of the regenerator; and k, is the thermal conduc- 
tivity of gas. 

Four kinds of stainless screen wire mesh are used: 150, 
200, 250 and 400 mesh. The regenerator properties are 
evaluated using the empirical equations derived by 
Chang”, and are listed in Table 1. 

The frequency response or Bode plot of G,,+,,(S) for the 
open-end configurati_on (Z, = 0) is presented in Figure 3. 
The attenuation of r& as well as the phase shift is larger 
for the regenerator with a larger mesh number (i.e. denser 
screen). The bandwidth of G,,+,(~w) is defined at -3 db 
gain which specifies the cut-off frequency fo,. It is seen 
from Table 2 that the bandwdith is wider for regenerators 
with a larger mesh number. However, the phase lags at fo, 
for the four kinds of regenerators are all small and very 
close, all within 4.2”. This means that a quasi-steady 
approximation of Darcy’s law can hold within the band- 
width, both in terms of gain and phase shift, for the open- 
end configuration (Z, = 0). 

The frequency response or Bode plot of G,,&s) for the 
load-matching configuration, i.e. _&(s) = Z,,(S), is shown 
in Figure 4. The attenuation of ti2 is more rapid for the 
regenerator with a small mesh number. But the phase lag 
increases more rapidly with increasing frequency for the 

Table 1 Regenerator properties 

Mesh 150 200 250 400 

d, (mm) 0.06604 0.05334 0.04064 0.02540 

‘d, (mm) 
0.732 0.707 0.735 0.666 
0.1603 0.1287 0.1127 0.554 

a (mm-*) 2691.63 5281.81 6886.6 28417.0 
P (mm-‘) 4.437 6.215 7.097 14.417 
&I k 16.23 21.97 26.08 52.28 
(mm-‘) 

regenerator with large screen wire mesh (i.e. denser 
screen). It is seen from Table 3 that the bandwidth of 
G,,&jo) as well as the phase lag increases with increasing 
mesh number (denser screen). It can be seen from Tables 
2 and 3 that the phase lag reaches a minimum value for 
the open-end configuration and then increases with increas- 
ing load impedance Z,(S). This indicates that the flow wave 
ti2 will lag further behind the pressure wave Ajj if the load 
impedance Z,(s) increases. 

At the load-matching condition, the effect of regenerator 
impedance vanishes. The pressure as well as the mass flow 
wave can be propagated directly to the other side of the 
regenerator without loss. Under this circumstance, the 
pressure and mass flow wave propagation is determined by 
the load impedance only. The transport of mass and 
momentum through the regenerator have the largest 
efficiency. The load-matching condition is thus the opti- 
mum configuration in the cyclic-flow system. The design 
of the load impedance G(s) plays an important role in the 
transport phenomena of waves in the cyclic-flow system of 
Figure 1. 

It can be further shown that for the open-end and load- 
matching configurations, the dynamic models in Darcy’s 
form [equations (9)] are reduced to the standard steady 
state Darcy’s equation if the cyclic flow frequency is low. 
That is 

lim IGmzAp (jw)j = Af, = L = constant 
-0 awL RFL 

(12) 

This indicates that a quasi-steady approximation of Darcy’s 
law can hold within the bandwidth shown in Tables 2 and 3. 

Realization of load impedance Z,(s) 

The load impedance Z,(S) for the passage and reservoir 
combination can be realized approximately by the flow 
resistance RF,, the flow capacitance C,, and the flow induct- 
ance L&S) of the passage and the flow capacitance C,,(S) 
of the reservoir (see Figure 2). Hence 

1 
z2(s) =&t + &, + 

s(C,, + C,,) 
(13) 

Here: Rn = f’(L,ld,)vl(U,); LFL = L,/A,; C,, = A, L,I(RTJ; 
and CFO = V,I(RT,), wheref’ is the frictional factor of oscil- 
lating pipe lIow12, v is the mean velocity in the passage and 
A, is the flow area in the passage. 

For the load-matching condition Z,(S) = Z,,(S), the 
dimensions of d,, L, and V, are evaluated and listed in Table 
4. It is seen that for the passage with diameter d, = 0.5 mm, 
the required length L, varies from 1.22 to 3.65 mm and the 
reservoir volume V, varies from 7.5 to 22.9 cm3. The pass- 
age in this case looks more like an orifice plate instead of 
a tube. This situation is quite similar to that of an orifice 
pulse-tube cooler. 

Conclusions 

A linear dynamic model of Darcy’s form for a regenerator 
is first derived, from which a linear network analysis is 
employed to study the dynamic response of the regenerator 
in a cyclic-flow system. It is shown that the dynamic 
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150 mesh 

- 
400 \250 

frequency f, Hz 

-8 
100 10’ 

frequency f, Hz 

Figure3 Bode plot of G,,,2ap (s) for open-end configuration (Z, = 0) 

Table 2 Cut-off frequency of G,,,,,,(jo) for Z,(s) = 0 Table 3 Cut-off frequency of G,,,(jo) for Z*(s) = z, (s) 

z” 

6 - 

.5 x10-7 
, 1 

150 mesh za = z,, 

l- 

‘250 

100 10’ 

frequency f, Hz 

0 

if 
-5 

a 

* -10 zi 
+z 
a -15 

-20 
100 10’ 102 

frequency f, Hz 

Figure 4 Bode plot of Gm2+, (s) for matched condition (Z, = Z,,) 
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Table 4 Load configuration for Z2(s) = z,(s) 

4 (mm) 0.2 0.5 1.0 1.25 2.0 

150 mesh & (mm) 0.015 1.2 33.0 100.0 944.0 
V, (cm? 23.1 22.9 21.5 20.1 12.2 

200 mesh L, (mm) 0.02 1.66 45.0 137.0 1291 .o 
V, (cm3) 16.7 16.6 15.6 14.5 7.4 

250 mesh L, (mm) 0.02 1.83 49.6 150.0 1417.0 
V, (cm3) 15.2 15.0 14.1 13.1 5.5 

400 mesh L, (mm) 0.04 3.65 98.95 299.8 - 
V, (cm? 7.5 7.4 6.9 6.2 - 

response of the regenerator is determined by the design of 
the load impedance Z*(s). The amplitude attenuation and 
phase shift between the mass flow and the pressure waves 
due to the effects of regenerator configuration and load 
impedance can be clearly seen from the present linear net- 
work analysis. It is shown that introduction of load imped- 
ance will reduce the bandwidth of a regenerator and 
increase the phase lag of the mass flow with respect to the 
pressure wave. This could reduce the cooling effect in a 
cooler, since the phase angle between the mass flow and 
the pressure (or temperature) waves is not in phase. The 
amplitude attenuation and the phase shift of the mass flow 
and the pressure waves due to the effect of the regenerator 
are clearly shown in the present study. Control of this 
phenomenon is quite important in the design of regenerat- 
ive-cycle coolers such as Stirling or pulse-tube coolers. 

Linear network analysis: B.J. Huang and C. W, Lu 
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