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In recent years, the evolution of qualitative physics has lead to the rapid development of deep- 
model-based diagnostic systems. Yu and Lee integrated quantitative process knowledge into a 
deep-model-based diagnostic system. In the qualitative/quantitative knowledge-based systems, the 
qualitative model and approximated numerical values are needed to construct a diagnostic system. 
This results in a bottleneck in the knowledge-acquisition step. On the other hand, another branch 
in artificial intelligence, artificial neural network (ANN), has the advantage of self-learning. This 
work utilizes the self-learning feature of the ANN such that the semiquantitative knowledge can 
be integrated into the qualitative/quantitative model in the learning steps. A chemical reactor 
example is used to illustrate the advantages of the proposed diagnostic system. Simulation results 
show that the proposed diagnostic system not only has the self-learning ability of ANN but also 
is transparent to the users. Moreover, it does not produce erroneous solutions when compared with 
the backpropagation ANN and it also gives less spurious solutions when compared with qualitative 
model-based systems. 

1. Introduction 
In recent years, the complexity of modern chemical 

plants and the availability of inexpensive computer 
hardware prompted us to develop automated fault diag- 
nosis instead of conventional diagnosis by the operator 
(Himmelblau, 1978; Isermann, 1984; Frank, 1990). Gen- 
erally, depending on the rigorousness of the process 
knowledge employed, techniques for automated fault di- 
agnosis can be classified into qualitative, qualitative/ 
quantitative, and quantitative approaches. The qualitative 
approach only considers the signs of coefficients in all 
governing equations of process variables. The signed di- 
rected graph (SDG) is a typical example. Upon diagnosis, 
the consistency of the branches of a given fault origin is 
checked to validate (or invalidate) this hypothesis and all 
possible fault origins are screened. In many cases, it simply 
gives multiple interpretations for a single event (Kramer 
and Palowitch, 1987; Chang and Yu, 1990). This is an 
inherent limitation of the qualitative model-based systems. 
Since only qualitative knowledge is employed, the diag- 
nostic resolution can only be improved to a certain degree. 

The quantitative model-based diagnostic systems, on the 
other hand, utilize the process model and on-line mea- 
surements to back-calculate crucial process variables. It 
finds the fault origins according to the perturbations in 
the calculated variables (Willsky, 1976; Isermann, 1984; 
Petti et al., 1990). Generally, this approach is too time- 
consuming and requires a significant amount of modeling 
effort. Originated from the artificial neural network 
(ANN), the backpropagation neural network is often em- 
ployed in fault diagnosis (Watanabe et al., 1989). Gen- 
erally, this type of approach can also be classified as a 
quantitative model-based diagnostic system. It utilizes a 
set of process data, such as the values of steady-state 
process variables for the nominal operating condition and 
these for the identified faulty conditions, to train the 
network (Watanabe et al., 1989; Venkatasubramanian et 
al., 1990; Ungar et al., 1990). Following the training, the 
model is established and ready for fault diagnosis. Despite 
its black-box nature, the backpropagation neural network 
can accurately pin down the fault origin in most cases. 
Unfortunately, the parameters (such as input variables, 

* To whom correspondence should be addressed. 

0SSS-5~5/92/263~-1937$03.O0/0 

number of processing elements, and learning constants) 
must be determined by trial and error. If thew parameters 
are not chosen adequately, the convergence of the network 
can be difficult and erroneous interpretations may result. 

Another approach is the qualitative/quantitative mod- 
el-baaed diagnostic system. Yu and Lee (1991) integrated 
semiquantitative knowledge (e.g., steady-state gains) into 
a deep model-based diagnostic system to improve diag- 
nostic resolution. One advantage of this approach is that 
the semiquantitative knowledge is added to a qualitative 
model (structure). The approach of Yu and Lee is similar, 
in concept, to the approaches of data interpretation 
(Cheung and Stephanopoulos, 1990a,b; Praaad and Davis, 
1991; Rengaswamy and Venkatasubramanian, 1992) which 
received quite a bit attention recently. The data inter- 
pretation approaches devise a mechanism to map from 
quantitative data to qualitative interpretations which can 
then be used by some appropriate qualitative (or semi- 
quantitative) models. However, these two approaches 
differ significantly in defining the boundary between the 
model and input to the model. In data interpretation, 
quantitative data are transformed to qualitative (or sem- 
iquantitative) interpretations for corresponding models. 
As for the approach of Yu and Lee (1991), the quantitative 
data are plugged directly into the semiquantitative model 
to check the consistency. Regardless of the approaches 
employed, the semiquantitative knowledge has to be 
modified as the operating condition changes. This can lead 
to a knowledge-acquisition bottleneck in any realistic ap- 
plication. Therefore, an efficient method to acquire aem- 
iquantitative knowledge is necessary for fault diagnosis in 
the chemical process industries. 

An ideal diagnostic system should have at least the 
following properties: 

Soundness (Kuipers, 1988): Regardless of the number 
of the spurious solutions, it cannot have any erroneous 
solution (i.e., the true fault origin is not included in the 
solution set) at different operating conditions. 

Transparency: The model should be easy to understand 
and the knowledge base, e.g., semiquantitative information, 
should be easy to maintain. 

Self-learning: The system should be able to learn (or 
modify) from the process data to cope with frequently 
changed operating conditions. 

Under any circumstance, the fiist property is the min- 
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Figure 1. Multilayered feedforward neural network. 

imal requirement of a diagnostic system for any practical 
application. 

The purpose of this work is to provide a self-learning 
feature to the qualitative/quantitative model-based diag- 
nostic system. The self-learning procedure is based on 
reinforcement learning of the neural network (Barto et al., 
1983). Comparisons will be made between the qualita- 
tive/quantitative model-based system from reinforcement 
learning and the well-celebrated quantitative model-based 
system, artificial neural network using backpropagation 
learning. A CSTR example will be used to illustrate the 
model building, self-learning, and performance of these two 
systems. This paper is organized as follows. ANN with 
backpropagation learning and reinforcement learning is 
introduced in section 2. Section 3 describes how to add 
the self-learning feature to the qualitative/quantitative 
model. Model-based diagnostic systems are given in sec- 
tion 4. A CSTR example is used to illustrate the charac- 
teristics of these two systems in section 5, followed by the 
Conclusion in section 6. 

2. Artificial Neural Network 
An artificial neural network (ANN) is trained to produce 

a desired output by adjusting the weights on the connec- 
tions between nodes according to some prespecified 
criteria. Generally, three types of learning procedures 
exist: (1) supervised learning, (2) unsupervised learning, 
and (3) reinforcement learning. The relevant two, the 
supervised and reinforcement learning, are described here. 

2.1. Supervised Learning. ANN with backpropaga- 
tion learning is a typical example of supervised learning. 
In the supervised learning, an external target output vector 
is required for each input vector. A common procedure 
is to adjust the values of the weights such that the sum 
of the squares of the deviations between the target value 
and each actual output is minimized (Rumelhart and 
McClelland, 1986; Lippmann, 1987). Figure 1 shows a 
multilayer feedforward neural network architecture. The 
circles (nodes) represent the processing elements in dif- 
ferent layers: input, hidden, and output layers. Each input 
unit is connected to each hidden unit and each hidden unit 
is also connected to each output unit. Each hidden and 
output unit is also connected to a bias. The bias with the 
value of 1 is used in this work. Each connection has a 
weight associated with it. For the input layer, an input 
value is straightly forwarded to the next layer. The hidden 
and output units carry out two calculations. Firstly, a 
weighted sum of the inputs is taken (e.g., ajj), and then the 
output is calculated using a nondecreasing and differen- 
tiable transfer function f(aj) (Figure 2). Usually the 

Figure 2. Processing element (neuron). 
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Figure 3. Processing element output transfer function. 

transfer function f (a j )  is a sigmoid logistic function as 
shown in Figure 3. 

(1) 
Typically, the learning rule for adjusting the weights is 

the generalized delta rule (GDR) (Rumelhart and 
McClelland, 1986). It uses the gradient-descent method 
to minimize the objective function E (or the mean square 
error): 

(2) 

where M is the number of training patterns presented to 
the input layer and N is the number of units in the output 
layer, dr represents the target output value of the ith 
output element given the mth pattern, while yr is the 
actual output of the ith unit. 

For a given pattern, the weight is adjusted according to 
GDR as the following: 

(3) 

where wij(t+l) denotes the weight of the connection be- 
tween the ith element of the lower layer and the j th ele- 
ment of the upper layer in the (t + 11th learning iteration. 
The weight change Awij(t) in eq 3 is calculated according 
to 

(4) 

where t and /3 are the learning rate and momentum con- 
stant; xi  is the output value of the ith element in the lower 
layer. The momentum term B prevents divergent oscilla- 
tion and makes the convergence more rapidly. The error 
term of the jth element Sj in eq 4 is determined as follows. 
If the subscript j denotes the output layer, then 

(5) 

f(aj) = 1/(1 + e-")) 

l M N  
2 m = l  i = l  

E = -  c E(dY - YT)2 

wij(t+l) = wij(t) + Awij(t) 

Awij(t) = $ j ~ i  + /3Awij(t-1) 

sj  = (dj - Yj)fj'z(wijxi + ej) 
1 

and if j denotes the hidden layer, we have 

6 j  = fj'c(wijxi + 8 j ) E 6 k W j k  (6) 

where fj' is the derivative of the j th transfer function as 
described previously, 0, is the bias of the connection in the 
j th element, and k is the upper layer element of the j th 
element. 

1 k 
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Figure 4. “Boxed’ system. 

network has the following training steps: 

patterns. 

According to the generalized delta rule (GDR), the 

1. Initialize the weights randomly and specify the bias. 
2. Specify the input patterns and the target output 

3. Calculate the actual output pattern. 
4. Adjust the weights by GDR. 
5. Check the convergence criterion; if it is satisfied then 

go to step 6, otherwise go back to step 3. 
6. Stop. 
2.2. Reinforcement Learning. Another learning al- 

gorithm of ANN is the reinforcement learning (Barto et 
al., 1983). Typical applications of reinforcement learning 
are in control problems (e.g., fuzzy control of a cart-pole 
system; Lee, 1991). It uses a neuronlike element to solve 
the specified problem. Usually this element is called as- 
sociative search element (ASE). One important difference 
between the supervised learning and the reinforcement 
learning is that the supervised learning must have a target 
value to correct (e.g., minimizing) the error between the 
actual output value and the target value. If the environ- 
ment is unable to provide the appropriate response for a 
desired performance, then the ASE must discover what 
response can lead to an improvement in the performance. 
It employs a trial and error procedure to search for ap- 
propriate action and f i d e  an indication of the perform- 
ance. The appropriateness of such action can be judged 
from the performance, measure. If the value of output 
units action is bad (does not lead to improvement), then 
it adjusts the weight by some strategy to keep getting good 
results. This is similar to a child learning to taste candy 
by trial and error until he fiids what he likes. 

In the “Boxes” system (Barto et al., 1983), the ASE is 
employed in a self-learning controller to control a &-pole 
system. The element has a reinforcement input pathway, 
n pathways for nonreinforcement input signals, and a 
single output pathway as shown in Figure 4. The decoder 
divides the continuous output signal into discrete states. 
The element’s output y ( t )  is determined from the input 
vedor X(t) = [ q ( t ) ,  x&), ..., x,(t)]  as follows: 

(7) 

where f is the following threshold function (a step func- 
tion): 

y ( t )  = flCwi(t)xi(t) + noise] 
i-1 

A x ) =  +1 i f x z 0  I -1 i f x c O  

The weights wi)s are changed according to 
wi(t+l) = wi(t) + ar(t) ei(t) (9) 

ei(t+l) = 6eiW + (1 - 6)y(t) x i ( t )  (10) 
where a = learning rate, 6 = trace decay ratio, r(t) = re- 
inforcement signal at time t, ei(t) = eligibility at time t of 
input pathway i, and x i ( t )  = input vector at time t. Spe- 

A + B  

7‘1 
‘ I  

Y 

A 9 B  
Figure 5. Membership functions for (A) qualitative model and (B) 
qualitative/quantitative model. 

cifically, the Boxes system divides the system inputs into 
many substrates (input pathways) by the decoder. The 
system performance is judged according to the inputs. If 
the performance is bad, then the system gives a rein- 
forcement signal r. Whenever certain conditions hold for 
the ith input xi, then this pathway becomes eligible to have 
its weight modified. In the Boxes system, the input x i  
triggers the eligibility trace whenever the box i is entered. 
According to r and the eligibility, a better performance is 
sought by changing the output (action) via the adjustment 
of the corresponding weight. 

3. A Self-Learning Qualitative/Quantitative 
Model 

3.1. Qualitative/Quantitative Model. In qualitative 
reasoning, the diagnostic resolution is limited by the 
strictly qualitative knowledge. Yu and Lee (1991) inte- 
grated the semiquantitative knowledge into a qualitative 
model using fuzzy set theory. The shape of the mem- 
bership function represents the semiquantitative infor- 
mation between process variables. Consider a simple 
qualitative model: the signed directed graph (SDG), e.g., 
A L B .  The binary relation between A and B can be de- 
scribed by the ratio m/AA taking the value from O+ to 
infiiity. In terms of the qualitative/quantitative model, 
the membership function ~lg~(hB/bA)  takes the value of 
1 for all positive M/&4 as shown in Figure 5A. If some 
semiquantitative information is known, e.g., the steady- 
state gain between A and B falls between 2 and 4, we can 
modify the membership function accordingly (Figure 5B). 
However, the construction of the semiquantitative 
knowledge requires a great deal of engineering effort, even 
when all process data are available. Furthermore, the 
semiquantitative knowledge needs to be modified as we 
change the operating conditions. One important advantage 
of the quaiitative/quantitative model is that the qualitative 
part of the model (the structure) remains the same under 
almost all possible operating conditions. Therefore, when 
the operating condition changes, all one has to do is to 
modify the semiquantitative part of the proce-sa knowledge. 

3.2. Self-Learning Feature via ASE. Reinforcement 
learning is employed to acquire the semiquantitative 
knowledge automatically. The basic idea is shown is Figure 
6. For a given fault origin, we can find measurement 
patterns from process simulation or past events. The 
measurement patterns are fed into the qualitative/quan- 
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Figure 7. Schematic representation of reinforcement learning via 
information on qualitative/quantitative model. 

titative model. If the fault is not correctly identified, the 
reinforcement learning is activated and the measurements 
and the diagnostic results are fed to the corresponding 
ASE. Subsequently, the shape and location of the mem- 
bership function is changed until a satisfadory diagnostic 
result is found ( F i e  6). That is, the model learns from 
the measurement pattern repeatedly until good perform- 
ance (correct diagnosis) is achieved. In the meantime, the 
membership function in the model (the semiquantitative 
knowledge) is adjusted to ensure good performance. Let 
us take a single branch between nodes A and B and ita 
corresponding ASE as an example (Figure 7). Initially, 
the membership function is located according to the 
measurement AB/AA. This value corresponds to the full 
membership, i.e., p B A ( A B / A A )  = 1, and the membership 
decreases linearly to zero for 120% deviations in ABIAA. 
If another set of measurement pattern is available and the 
result of the fuzzy operation is not satisfactory, e.g., 
p B A ( A B / A A )  # 1, then the system responds with a rein- 
forcement signal r = 1. This indicates the location and 
shape of the membership function is incorrect (Figure 7). 
Therefore, the ASE reshapes the membership function 

1 s t  learning 

A B  / A A  
A z 

Figure 8. Learning steps for the ASE. 

according to hB/AA and p s ~ ( u / A A )  until a good per- 
formance p g A ( A B / A A )  = 1 is achieved. The membership 
function is relocated according to the weight change Aw 
(Aw = w(t+ l )  - w(t)). In this work, the weight w is 
changed according to 

w(t+ l )  = w(t) + ar(t )  e( t )  (11) 

e(t+l) = 6e(t) + (1 - 6)(1 - y( t ) )x ( t )  (12) 
where CY = learning rate, 6 = trace decay ratio, r( t )  = re- 
inforcement signal at time t, e(t)  = eligibility at time t, and 
y ( t )  = the result of fuzzy operation at time t. The ASE 
adjusts the location and shape of the membership function 
in the following way: 

I b l  i f x > b f  I -IAwl i f b i > x  
A x ) =  0 i f b i < x  < b f  (13) 

where bi and bf are the initial and final valuea of the process 
measurements satisfying y = 1. That is, bi and bf corre- 
spond to the upper left and right comers of the trapezoid 
shaped membership function. 
As shown in Figure 7, the following information (1) 

proms measurement xi  (or ABIAA), (2) the result of fuzzy 
operation y (or p B A ( A B / A A ) ) ,  and (3) reinforcement signal 
r are utilized to change the weight of ASE. Then, the 
correct location and shape of the membership function is 
determined by the weight change. The triangular mem- 
bership function (Figure 7) is initialized as the process 
information is available. As additiod proms information 
is available, the self-learning process does the following. 

1. It gives appropriate output Cy = p B A ( A B / A A ) )  ac- 
cording to the membership function. 

2. When a failure signal (Le., y # 1) is received, it 
adjusts the weight according to eqs 11 and 12. The mem- 
bership function is reshaped according to eq 13 when Aw 
is available. 

3. Repeat steps 1 and 2 until the correct diagnosis Cy 
= 1) is achieved. 

Therefore, the membership function is modified itera- 
tively until the correct diagnosis, p ( A B / A A )  = 1, is 
achieved m shown in Figure 8. Typically, it takes less then 
10 iterations to converge. 

It is clear that the ability of the ASE goes beyond this 
type of application. In the Boxes system (Barto et al., 
1983), it searches for appropriate control action as the state 
feedback becornea available. The control system emits the 
control action and the performance is evaluated. When 
a failure occurs, the reinforcement learning is made and 
another action is taken. Since the result of each learning 
step is checked on-line, the speed of convergence (to a 
successful leaming) is critical for the control applications. 
In diagnosis, the performance after each learning step can 
easily be evaluated (to check whether y = 1 or not). 
Therefore, the speed of convergence is less critical. How- 
ever, it differs from the box system in that the ASE rec- 
ognizes that the reinforcement learning is to include ad- 
ditional process information as another valid set of input. 

2 n d  learning , , , I h h  learning 
A b i  b i  A b i  bf 

* E  
AB / A A  B A r B  A 

A B  / A A  
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Table I. Fault Origins for the CSTR Example 
SWllbol fault origin 

Fo 
C, 
KO 
U 
Tp 

changes in the feed flow rate 
changes in the feed concentration 
changes in the preexponential factor of rate constant 
changes in the overall heattransfer coefficient 
changes in the cooling water inlet temperature 

r0 CAO TO D 1s 
I 

I 
J 
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I A y C F.CA.T I 
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L I 

Figure 9. CSTR example. 

Therefore, the staircase-like transfer function ( f ( x )  in eq 
13) is used instead of the step function (Barto et al., 1983). 
Following this procedure, the self-learning qualitative/ 
quantitative model remembers semiquantiative informa- 
tion at different operating conditions. 

In the qualitative/quantitative fault model, there is an 
ASE associated with each branch for every fault origin. It 
provides the self-learning feature to the fault model such 
that the appropriate membership function is constructed 
to give correct the diagnosis (response) at different oper- 
ating conditions. 

4. Fault Diagnosis Systems 
Two on-line diagnosis systems are investigated in this 

work. Both systems are associated with an artificial neural 
network (ANN), in some sense, e.g., either in the model 
structure or in the self-learning step. One system is the 
ANN with backpropagation learning which currently is the 
prototype of quantitative model-based diagnosis system 
(Watanabe et al., 1989; Venkatasubramanian et al., 1990, 
Ungar et al., 1990). This system can be viewed as a 
quantitative model which has the model structure of ANN. 
The other system utilizes the learning ability of the neural 
network to find the semiquantitative information. Spe- 
cifically, it is a qualitative/quantitative model-based sys- 
tem with self-learning capability. A CSTR example 
(Figure 9) is employed to show the similarity and difference 
between these two systems. Before building any diagnosis 
system, the fault origins and process measurements have 
to be identifed. For the CSTR example, the fault origins 
are listed in Table I. These faults include load changes 
(Fo, Ca0, and Tj0) and performance deterioration (U and 
KO). The process measurements are temperatures, flow 
rates, and control signals as shown in Table 11. 

4.1. ANN with Backpropagation Learning. The 
inpub and outputs of the ANN with backpropagation 
learning are process measurements and fault origins, re- 
spectively. Once the process measurementa are determined 
(Table 11), the inputs to the ANN are obtained from the 
plant data or the results of computer simulations. In this 

0 .24  0.015 1.W 

Table 11. On-Line Measurements for the CSTR 
Symbol measured variable 

T reactor temperature 
cooling water outlet temperature 
cooling water flow rate 

Tj 

temperature controller output 
Fj 
Tc 
Fje cooling water flow controller output 
Lc reactor level controller output 

Table 111. ANN Target Output Pattern 
fault 

F0- 1.0 
FO+ 0.0 
Go- 0.0 
c,+ 0.0 
KO- 0.0 

F0- 0.0 

0.0 2; 0.0 

normal 0.0 

target output pattern 
0.0 0.0 0.0 0.0 0.0 0.0 
1.0 0.0 0.0 0.0 0.0 0.0 
0.0 1.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 0.0 
0.0 0.0 0.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 0.0 1.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0 
0.0 

work the quasi-steady-state results of the process simulator 
are employed to train the network. Typically, these var- 
iables are expressed in a dimensionless form. 

(14) 

The target output patterns are determined from the fault 
origins with positive and/or negative deviations (Table m). 
In this work, there are five inputs and eight outputs in the 
ANN. In Table 111, the value of "1" stands for a faulty 
state and "0" stands for normal operation. With input and 
output patterns available, the GDR is employed to su- 
pervise the learning of the network until the actual output 
patterns are close to the target output patterns within a 
threshold value. 

Before the training procedure begins, several importance 
parameters, such as the number of elements in each layer 
and learning constants, have to be determined. As noted 
earlier, the number of elements in the input and output 
layers is chosen according to the measured variables and 
fault origins. However, there is no exact method to de- 
termine the number of elements in the hidden layer and 
learning constants. Generally, adquate values of these 
parameters are determined by trial and error (Watanabe 
et al., 1989; Venkatasubramanian et al., 1990). 

4.2. Qualitative/Quantitative Model with Rein- 
forcement Learning. The qualitative part of the model 
has the structure of a signed directed graph (SDG) which 
describes the causal effect between process variables. All 
the nodes, except the initial node (the fault origin), in a 
SDG are process measurements (Figure 10). The quan- 
titative part of the model is formed using the membership 
function of fuzzy set theory as described in detail by Yu 
and Lee (1991). In this work, the semiquantitative 
knowledge is constructed via reinforcement learning. For 
the diagnostic system, the qualitative/quantitative models 
are constructed for both the steady state and the transient 
state. The dynamic responses of a faulty state are used 
to train the model for the diagnosis during the transient. 
When the changes of the process variables are leas than 

measured x - nominal x 
nominal x 

x =  

A T C  A F I C / A T C  A F I / A F I C  A T j I A F j  C A O  - TC - F j c  - F j  T j  
Figure 10. Qualitative/quantitative model from self-learning for the fault origin: a negative deviation in Cap 
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Figure 11. Qualitative models (SDG) for all the fault origins. 

5% between sampling instances, the steady state (or quasi 
steady state) is recognized and the corresponding process 
measurements are employed to train the model for the 
diagnosis at steady state. Therefore, these two qualita- 
tive/quantitative models handle the transient and 
steady-state responses separately. 

The rule writing for the qualitative/quantitative model 
is similar to that of the qualitative model (Chang and Yu, 
1990). That is, the degree of consistency for each fault 
propagation pathway is checked (Yu and Lee, 1991). For 
the CSTR example (Figure 91, the self-learned system 
results in the qualitative/quantitative model (Figure 10) 
for a negative deviation in Cap The membership functions 
in Figure 10 are obtained via reinforcement learning using 
several sets of quasi-steady-state information (-10, -30 and 
-60% deviations in Cap The rule can be written as 

P C ~ -  = min [cLT,(ATC), pF,,T,(Ujc/ATc), 

where pc - is the truth value for Cao going through a 
negative %ange, the “min” operator taking the smallest 
value in the bracket. Here, ~T,(AT,J, ~ F ~ , ( M ~ , / A T , J ,  etc. 
are the degree of consistency for each branch in Figure 10. 
Similarly, rules can also be written for the positive devi- 
ations in Cao and other fault origins. 

5. Applications 
A CSTR example (Chang and Yu, 1990; Yu and Lee, 

1991) is used to illustrate the performance of the quali- 
tative/quantitative model with reinforcement learning. 
The proposed approach is compared to the ANN diag- 
nostic system with backpropagation learning. 

5.1. Process. In this example, an irreversible and 
exothermic reaction is carried out in a perfectly mixed 
CSTR as shown Figure 9. Parameter values are taken from 
Luyben (1990). Eight faulty states with both the negative 
and positive deviations (Table I) are to be diagnosed. 
Table I1 shows the measured variables in this study. 
Basically, these measurements can be obtained with little 
difficulty. Notice that the concentration of the reactant 
A in the reactor, C,, is not included. The consideration 
is a practical one: on-line composition measurements often 
are not available in reaction units. This example poses a 
difficult diagnosis problem. If only qualitative process 
measurements are available, the faults Cao, KO, and U (the 
changes in feed concentration, rate constant, and overall 
heat-transfer coefficient) are indistinguishable as shown 
in the SDG’s of the fault origins (Figure 11). However, 
if quantitative process measurements are available, only 
two faults Cao and KO are not distinguishable (Figure 12). 
Figure 12 shows that the steady-state gains between 
measured variables which are derived from the linearized 

p F S ; , ( U j  / Mjc) c(T,F, (ATj/ Uj) 1 (15) 

C l o  - 4 4122 Tc - I 0000 F , c  - 4 0000 F i  - -0 0083 T i  

-3 ZOZZ I 0000 4 0000 -0 0083 
K o  -----e- Tc - F J c  - F i  - T i  

4 13QP 1 0000 4 0000 T i a  ----+ T c  - F i c  _jl F i  
Figure 12. Steady-state gains for all fault origins on branch from 
a linearized model. 
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Figure 13. Steady-state gains for the branch *Fj - T,” for different 
degrees of negative deviations in CaO and KO. 
process model. Therefore, from the linear analysis, fault 
in Cao and KO cannot be separated. However, for a range 
of deviations in C, and KO, the steady-state gains between 
the nodes Fj-Tj are not quite the same as shown in Figure 
13. That is, it is possible to distinguish these two faults 
from a nonlinear analysis. It should be pointed out that 
the magnitudes of the faults of interest are between 10% 
and 60%. In this work, the sampling time for the diag- 
nostic system is 3 min. That is, the process measurements 
are sampled every 3 min and the diagnosis is made right 
after. Therefore, the diagnosis results can be shown on 
the CRT of the process control computer as the “diagnosis” 
trend. 

5.2. ANN Diagnostic Systems. Two ANN’s with 
backpropagation learning are constructed and tested for 
this CSTR example. These two ANN’s differ in the 
numbers of input patterns and the structure (the numbers 
of hidden layers). 

In the first ANN, two input patterns, 10% and 30% 
deviations in the fault origins, are employed for each fault 
origin. The process measurements are obtained from 
process simulation when the responses approach steady- 
state (e.g., at 3.5 h after the fault initiates). The fault 
origins and target output patterns are shown in Table 111. 
The input variables are the on-line measurements in- 
cluding L,, T,, T, F,, and Tj (Table 11). After a period of 
trial and error, a three-layered neural network is chosen. 
The numbers of the elements in the input, hidden, and 
output layers are 5, 10, and 8, respectively (Figure 14). 
This neural network is called ANN(1) hereafter. The 
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Figure 14. ANN diagnostic system (A"(1)). 
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Figure 15. Convergence of the objective function for ANN(1). 

learning rate 9 = 0.6 and momentum term /3 = 0.9 are used 
in ANN(1). It takes approximately 13000 iterations to 
converge to the criterion E C 0.08. The response of 
learning is shown in Figure 15. 

Once the ANN(1) is constructed and the training is 
successful (satisfying the convergence criterion), the di- 
agnostic system is tested on-line. For the trained patterns, 
e.g., -30% deviation in Cao, A"(1) gives a perfect result. 
Figure 16 shows that ANN(1) identifies the fault origin 
(Cao-) correctly 1 h after the fault starts. Furthermore, 
there is no spurious solution in this case. That is, ANN(1) 
does a superb job in identifying the fault origin for the 
trained pattern. Note that only steady-state information 
is used in the training step. Unfortunately, ANN(I) gives 
an erroneous solution (fails to identify the true fault origin) 
as interpolation and/or extrapolation between input 
patterns is required (Figures 17 and 18). Figure 17 shows 
that when Cao goes through a range of negative deviation 
(-10% to 4%), A " ( D  miseee the true fault origin (Ca-) 
for ACao between -12% and -25%. In this case, ANN(1) 
finds the fault origin KO- instead (Hau, 1991). The results 
shown here reveal a serious problem associated with 
A"(1): the only solution given by A"(1) is erroneous. 
Similar results can also be found for a range of deviations 
in KO (Figure 18). Again, ANN(I) gives erroneous solutions 
(finds Cao- instead) for two ranges of AKo as shown in 
Figure 18. 

In order to improve the performance of ANN(I), an 
attempt is made by including another input pattern (60% 
deviation in the fault origin) to train the ANN model. 

.............. .................. * .... ......e .............. ... KO- 

0.0 1 - 

0.0 t 1 

Figure 16. Diagnosis results of ANN(1) for a 30% negative devia- 
tion in Ca0 (a trained input pattern). 

Figure 17. Diagnosis results of ANN(1) for a range of negative 
deviations in C,, (-10% to -60%). 

However, the three-layered neural network (Figure 14) fails 
to converge. A four-layered neural network is teated. After 
some trials and errors, the ANN with the numbers of 
elements of 5,15,15, and 8 in the input layer, hidden layer 
1, hidden layer 2, and the output layer is chosen. The 
learning rate q and momentum term are 0.1 and 0.9, 
respectively. This neural network is called A"(I1) her- 
eafter. The differences between A"(1) and A"(I1) are 
ANN(I1) is a four-layered neural network and three input 
patterns for each fault origin are employed in ANN(I1). 

Upon diagnwis, ANN(II) elso performs perfectly for the 
trained patterns (lo%, 30%, and 60% deviation (Hsu, 
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, r  

Figure 20. Diagnosis results of ANN(I1) for a range of negative 
deviations in KO (-10% to -60%). 

steady-state qualitative/quantitative model can be found 
via reinforcement learning. The proceas measurements (Tc, 
F,,, F,, and T,) at quasi steady state (1.5 and 4 h after the 
occurrence of the fault) are recorded and converted to 
steady-state gains for the training of the corresponding 
branches. Therefore, there are six data points for a single 
branch. For the branch between F, and TI (Figure lo), the 
gains range from -0.0067 to -0.0087. Initially, one has no 
a priori knowledge about the location of the membership 
function. When the information comes in (ATJAF, = 
-0.0067), a triangular-shaped membership function is 
formed with the apex located at -0.0067 and it decreases 
linearly to zero for &30% deviations from the apex (p 
becomes 0 at -0.0045 and -0.0089). When the second set 
of data comes in (AT,/AF, = -0.0087), an unsatisfactory 
diagnosis result is obtained, Le., p T , ~  (ATJAF,) - 0, and 
the reinforcement signal is activated ( r  = 1). The ASE 
adjusts the membership function in the following way 
(Figure 7): (1) calculating e(t+l) from eq 12, (2) finding 
Aw using eq 11, and (3) changing the membership function 
according to eq 13 (initially b, = bf = -0.0067). These three 
steps are repeated until a satisfactory diagnosis results (i.e., 
pTF,(-0.0087) = 1). In this example, it takes two iterations 
to converge and the resulting semiquantitative model is 
shown in Figure 10 (the F,-TI branch). Since the other 
four gains falls between -0.0067 and -0.0087, satisfactory 
diagnostic results are produced and the ASE is not acti- 
vated. This procedure is repeated for all branches with 
all fault origins. In this work, the learning rate of 1 and 
the trace decay ratio of 0.9 are used throughout. A typical 
qualitative/quantitative model constructed from rein- 
forcement learning is similar to the one shown in Figure 
10. 

In the diagnosis phase, the diagnostic system is tested 
against each fault origin with a range of deviations. The 
procedure for fault diagnosis is exactly the same as that 
of Yu and Lee (1991). Unlike the ANN diagnostic systems, 
e.g., ANN(1) and ANN(It), the proposed diagnostic system 
does not give erroneous solutions (Figure 21). Figure 21 
shows that the qualitative/quantitative model-based di- 
agnostic finds the true fault origin for a range of negative 
deviation (-10% to -60%) in Cap However, it results in 
spurious solutions as shown in a -20% deviation of CaO 
(Figure 22) or a -20% deviation of KO (Figure 23). In both 
cases, it finds Cao- and KO- as the fault origins. Despite 

Figure 18. Diagnosis results of ANN(1) for a range of negative 
deviations in KO (-10% to -60%). 

Figure 19. Diagnosis results of ANN(I1) for a range of negative 
deviations in Cd (-10% to -60%). 

1991)). Unfortunately, ANN(I1) also gives erroneous so- 
lutions for the ranges of deviations in Ca0 and KO (Figures 
19 and 20). Furthermore, for the fault origin CaO-, diag- 
nostic results simply deteriorate as shown in Figures 17 
and 19. Apparently, little improvement is achieved by 
including one more input pattern and one more hidden 
layer. The characteristics of A"(1) or ANN(I1) shown 
here certainly limits the applicability of ANN in any 
practical situation for this type of process. Note that the 
results shown here do not imply that backpropagation 
ANN is not suitable for fault diagnosis in all cases. The 
CSTR example poses a very difficult diagnosis problem 
as pointed out earlier. 

5.3. Qualitative/Quantitative Diagnostic Systems. 
The qualitative part of the fault model is constructed fmt 
followed by the self-learning of the semiquantitative 
knowledge. In the self-learning phase, lo%, 30%, and 
60% deviations in each fault origin are used to shape the 
semiquantitative process knowledge using ASE. Let us 
consider the case of Cao going through negative changes 
as an example to illustrate the learning process. The 



Ind. Eng. Chem. Res., Vol. 31, No. 8,1992 1946 

Tja* ''O 1 I 

0.0 

Tjo- 

- 
U' 

0.0 

Figure 21. Diagnosis results for the qualitative/quantitative model 
for a range of negative deviations in C, (-10% to -60%). 
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Figure 22. Diagnosis results for the qualitative/quantitive model 
for a 20% negative deviation in Caw 

the possibility of giving spurious solutions, the qualita- 
tive/quantitative diagnostic system shows a very desirable 
characteristic: it does not give erroneous interpretations. 
The reason is that the membership function-based qual- 
itative/quantitative model adapts to new (additional) in- 
formation by including it (instead of changing to a new 
crisp point as quantitative models do). This clearly shows 
the flexibility of the qualitative/quantitative model (as 
opposed to the rigidity of quantitative models). In sum- 
mary, the qualitative/quantitative model-based diagnosis 
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Figure 23. Diagnosis results for the qualitative/quantitative model 
for a 20% negative deviation in KO. 

system has the advantage over the strictly quantitative 
model-based system (e.g., ANN(1) and ANN(II)), since it 
did not produce erroneous solutions. It also has the ad- 
vantage over the strictly qualitative model-based system 
(e.g., SDG) for producing less spurious solutions. Fur- 
thermore, the semiquantitative information is self-learned 
via the ASE which requires little engineering effort. 

5.4. Discussion. Despite the fact that both diagnostic 
systems have the "learning" feature, the performance be- 
tween the two is quite different. The ANN'S (ANN(1) and 
ANN(I1)) try to learn to reproduce the trained input, 
patterns. However, the backpropagation learning of ANN 
ignores an engineering fact that the gains between T,-Fj 
are almost the same for the fault origins Cao and KO. 
Without taking this fact into consideration, GDR simply 
tries to converge to the target output patterns by assigning 
one range of ATj/Mj to Cao and another range of ATj/AFj 
to KO (e.g., Figure 13) according to the input patterns 
supplied. Therefore, the ANN diagnostic system does not 
catch the global view; e.g., ATj/AFj for both fault origins 
can take any possible value between 4.0083 and 4.0088. 
This, subsequently, leads to erroneous solutions as shown 
in the diagnostic results. 

The self-learning feature of the qualitative/quantitative 
model, on the other hand, is confined to the semiquanti- 
tative part of the process knowledge. That is, we keep the 
structure of the model unchanged and modify the more 
rigid quantitative information when needed. Furthermore, 
the reinforcement learning modifies the membership 
function by including the new process data instead of 
adapting to the new information. "Learning" under theae 
guidelines is not likely to give erroneous solutions when 
we interpolate between the trained patterns. The diag- 
nostic results also confirm this. 
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It should be emphasized that the CSTR example studied 
poses a quite difficult diagnosis problem. This difficulty 
results from the selection of the process measurements and 
faults to be diagnosed. For example, if C, is measurable, 
all the fault origins can be correctly identified with only 
qualitative values of process measurements (Hsu, 1991). 
This implies that, in many occasions, the difficulty in 
diagnosis arises from the selected measurements, not from 
the process itself. Therefore, selection of the appropriate 
measurements for fault diagnosis can simplify the effort 
in fault diagnosis. 

6. Conclusion 
A self-learning feature is proposed for the qualita- 

tive/quantitative model-based diagnostic system. Based 
on the reinforcement learning of neural network, a single 
neuron (ASE) is used to shape the semiquantitative part 
of the process knowledge. This provides the self-learning 
ability to a diagnostic system in a transparent manner. 
Comparisons are made between the qualitative/quanti- 
tative model with reinforcement learning and the ANN 
with backpropagation learning. Simulation resulta show 
that the proposed self-learning diagnostic system is not 
only transparent in analyses but superior in performance 
(as far as the completeness is concerned). More impor- 
tantly, the self-learning feature makes the qualitative/ 
quantitative model-based diagnostic system attractive in 
practical applications, since i t  requires much less engi- 
neering effort. 
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Nomenclature 
ANN = artificial neural network 
ASE = associative search element 
bi = initial value in the membership function (the upper left 

corner of the trapezoid) 
bf = fiial value in the membership function (the upper right 

corner of the trapezoid) 
C, = concentration of reactant A 
Ca0 = feed concentration of reactant A 
di = desired output value 
e = eligibility 
E = objective function 
f ( - )  = transfer function in the neural network 
f’(.) = derivative off(.) 
Fo = feed flow rate 
Fj = cooling water flow rate 
Fj, = cooling water flow controller output 
GDR = generalized delta rule 
KO = preexponential factor of the rate constant 
L, = reactor level control output 
min (.) = minimum value of (-) 
r = reinforcement 
SDG = signed directed graph 
T = reactor temperature 
T, = temperature controller output 
Tjo = cooling water inlet temperature 
t + 1 = ( t  + 1)th iteration 
U = overall heat-transfer coefficient 
w = weight in ASE 
wi = weight of input pathway in the Boxes system 
wi, = weight between the ith element of the input layer and 

Aw = weight change in ASE 
Awi, = change of weight between iterations 
x = input to ASE 

the j th element of the upper layer 

zi  = ith input of backpropagation ANN 
y = output of ASE 
yi = ith output of backpropagation ANN 

Greek Symbols 
a = learning rate in ASE 
@ = momentum term in backpropagation ANN 
6 = trace decay rate in ASE 
6j = error term in backpropagation ANN 
tl = learning rate in backpropagation ANN 
0, = bias in backpropagation ANN 
pA = membership function of A 
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