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Model-Based Approach for Fault Diagnosis. 1. Principles of Deep 
Model Algorithm 

I-Cheng Chang, Cheng-Ching Yu,'J and Ching-Tien Liou' 
Department of Chemical Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10672, R.O.C. 

Equation types of deep models are often employed in fault diagnosis. Upon diagnosis this quantitative 
process knowledge is utilized as a criterion for satisfaction/violation in a Boolean or non-Boolean 
manner. Therefore, the resolution of equation-oriented fault diagnosis systems is often limited to, 
a t  most, fault isolation a t  a qualitative level. A deep model algorithm (DMA) is proposed to  improve 
diagnostic resolution. First, tolerances of model equations are defined for each model equation with 
respect to  each fault origin. Following the new definition of tolerance, degree of fault is defined 
to  detect the level of fault and a consistency factor is used to  evaluate the consistency given by 
different model equations. A CSTR example is used to  illustrate the resolution of DMA. Results 
show that  the proposed method is effective in identifying fault origins. 

1. Introduction 

Fault diagnosis has received a great deal of attention 
recently (Willsky, 1976; Himmeblau, 1978; Venkatasubra- 
manian and Rich, 1979; Mah and Tamhane, 1982; her- 
mann, 1984; Iri et d., 1985; Kramer and Palowitch, 1987; 
Ramesh et al., 1988; Davis, 1988; Ulerich and Powers, 1988; 
Petti et al.,  1990; Hoskins et al., 1991; Yu and Lee, 1992; 
Gertler and Anderson, 1992; Ungar and Psichogios, 1992; 
Chang et al., 1993). The reason for this is obvious, since 
chemical plants are operated, if not optimally, a t  least 
safely from an operating point of view. Furthermore, most 
modern chemical plants are controlled with distributed 
control systems (DCS). This implies that the availability 
of process data poses little technical problems for online 
fault diagnosis. The only problem remaining is an 
appropriate methodology for utilizing these process data 
in a real-time environment. Quantrille and Liu (1991) 
give a good review on process fault diagnosis. 

From the rigorousness of the process model employed, 
the diagnostic systems can be classified into quantitative 
model-based approach. The Kalman filter approaches 
(Mah and Tamhane, 1982; Himmeblau, 1978; Fathi et al.,  
1992), the neutral network approaches (Ungar and Psi- 
chogios, 1992; Himmeblau, 1989; Hoskins et al., 1991; Fan 
et al., 1993), expert systems (Dhurjati et al., 1987; Davis 
et al., 1988), and equation-oriented model-based ap- 
proaches (Reiter, 1987; Kramer, 1987; Petti et al.,  1990; 
Frank, 1990; Isermann, 1991a and 1991b; Gertler and 
Anderson, 1992) fall into this category. The signed directed 
graph (SDG) methods (Kramer and Palowitch, 1987; 
Chang and Yu, 1990), qualitative simulation (QSIM) 
approaches (de Kleer and Brown, 1984; Kuipers, 1986; 
Kramer and Oyeleye, 1988), order-of-magnitude (O[Ml) 
approach (Mavrovouniotis and Stephanopoulos, 1988), and 
qualitative process theory (QPT) approaches (Forbus, 
1984; Grantham and Ungar, 1991) belong to the qualitative 
model- based diagnosis. Hybrid systems (semiquantitative 
model-based) are also proposed (Ulerich and Powers, 1988; 
Yu and Lee, 1992; Chang et al.,  1993). 

However, from the resolution point of view, the resolu- 
tion of a diagnostic system can be up to the quantitative 
level or the qualitative level. By quantitative level, we 
mean that the diagnostic system can isolate the fault from 
the quantitative differences. In other words, if the patterns 
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of two faults are exactly the same on the basis of the analysis 
of the signs (e.g., the directions (sign) of the deviations are 
exactly the same) and differ in magnitude (e.g., the sizes 
of the deviations are different), then we call the resolution 
of the system up to the quantitative level. For example, 
the SDG approach of Kramer and Palowitch (1987) and 
Chang and Yu (19901, the qualitative physics approach of 
Kuipers (1986), and the equation-oriented model-based 
approach of Kramer (1987) and Petti et al. (1990) are 
diagnostic systems with the resolution up to the qualitative 
level. On the other hand, the parameter estimation method 
of Park and Himmeblau (1983), the Kalman filter method 
of Fathi et al. (1992), and the fault detection, isolation, 
and accommodation (FDIA) method of Frank (1990), 
Willsky (1976), and Gertler and Anderson (1992) are the 
diagnostic systems of the quantitative level. 

As far as the knowledge representation is concerned, 
the model-based diagnostic system can be further classified 
into equation-oriented (Himmelblau, 1978; Willsky, 1984; 
Himmelblau et al., 1989; Kramer, 1987; Petti et al.,  1990) 
and graphics-oriented approaches (SDG; Kramer and 
Palowitch, 1987; Ulerich and Powers, 1988; Chang and 
Yu, 1990; Yu and Lee, 1992). The advantage of the 
graphics-oriented approach, e.g., SDG approach, is that 
the user can visualize the process knowledge. However, 
at present stage, most process engineers are more familiar 
with equation-oriented approaches. That is, most process 
engineers utilize (or were taught) equations to solve 
engineering problems. Therefore, from the familiarity and 
maintenance point of view, the equation-oriented approach 
is an attractive alternative for online fault diagnosis. 

The purpose of this series of papers is to investigate and 
extend the equation-oriented approaches for online fault 
diagnosis. In part 1, the potential problems for equation- 
oriented approaches, specifically DMP of Petti et al. 
(19901, are explored and appropriate remedial actions are 
also proposed. This paper is organized as follows. Section 
2 discusses previous works on model-based diagnosis and 
illustrates the current problems of equation-oriented 
diagnostic systems. DMA is proposed in section 3. In 
section 4, a CSTR example is used to illustrate the 
consecutive and diagnosis of DMA and a procedure is 
summarized. A conclusion is given in section 5. 

2. Model-Based Diagnosis 

Model-based diagnosis systems are fundamentally dif- 
ferent from heuristic knowledge-based (rule based) systems 
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Figure 1. Structure of model-based diagnosis system. 

because they rely on the structured knowledge which comes 
directly from the first principle. Figure 1 illustrates the 
general concept of model-based diagnosis systems. A fault 
diagnosis system consists of two major components: a deep 
model and a reasoning mechanism. In the deep model, 
the knowledge, either quantitative or semiquantitative, is 
represented in the form of model equations or in a graphical 
form (e.g., in the form of SDG). In this stage, any 
inconsistencies between process model and process mea- 
surements are generated. For example, residuals are 
generated from model equations (Gertler and Anderson, 
1992; Petti et al.,  1990) or consistencies of specific branches 
are generated in terms of membership function of the fuzzy 
set (Yu and Lee, 1992). Typically, the inconsistency 
measures can be represented in a Boolean (yes or no 
answer) or non-Boolean (degree of inconsistency) form. 
The non-Boolean representation receives a great deal 
of attention. These include the probability assignment 
(Gertler and Luo, 1989; Gertler and Anderson, 19921, the 
belief function (Kramer, 1987; Petti et al., 19901, and the 
fuzzy measure of Yu and Lee (1992). Once an inconsistency 
is observed, a reasoning mechanism is activated to find 
the possible fault. In this stage, generally, statistical testing 
(Gertler and Luo, 1989), evidential reasoning (Dampster- 
Shafer reasoning, Bogler, 1987; Gertler and Anderson, 1992; 
Fathi et al., 1993), constraint satisfaction (Kramer, 1987; 
Petti et al.,  1990), and fuzzy reasoning (Yu and Lee, 1992) 
are employed. 

2.1. Equation-Oriented Fault Diagnosis. A fault is 
understood as any kind of malfunction in the actual 
dynamic system, the plant, that leads to an unacceptably 
anomaly in the overall system performance. Such mal- 
functions may occur either in the sensors, actuators, and 
process variables or in the components of the process. Fault 
diagnosis based on static quantitatiue model equations 
was introduced in the 1970s in the chemical (Himmelblau, 
1978) and aerospace (Deckert et al.,  1977) industries. 
Generally, the equation-oriented diagnosis system is 
formulated in such a way that, initially, the quantitative 
mathematical model (equations) is abstracted from the 
first principle. In normal operation, this set of model 
equations gives zeros for the right-hand-side of the 
equations’ “parity equation”. In other words, this set of 
equations is satisfied with normal conditions. Residuals 
are generated when a process fault occurs. A predeter- 
mined tolerance is used to indicate possible faulty condi- 
tions. Generally, a set of satisfaction factors is generated 
to give an indication of the violation of model equations 
(Kramer, 1987; Petti et al.,  1990). Following the satisfac- 
tion checking, fault discrimination and consistency cri- 
terion are applied to isolate the fault. Figure 2 illustrates 
the general concept of equation-oriented fault diagnosis. 

I 
L------ c i  -----A 

Diagnosis Results 

Figure 2. Structure of equation-oriented fault diagnosis system. 

Each component of the diagnostic system is discussed in 
detail, and resolution and potential problems in this type 
of diagnostic system are discussed. The development and 
notations of the system follow the work of DMP (Petti et 
al.,  1990). 

2.1.1. Parity Equations. Parity equations constitute 
the core of the equation-oriented fault diagnosis system. 
They are generally derived from the material balances 
and energy balances describing the physical system. Prior 
to the formulation of the parity equations two sets of 
parameters have to be specified. One is the “fault” to be 
diagnosed which is denoted as a vector a = [a l ,  UZ,  ..., a,lT. 
The fault set a include sensor failure, actuator failure, 
external disturbances, degradation of equipment, etc. The 
other is the set of process measurements available which 
is denoted as m = [ml,  m2, ..., mklT. Notice that if the 
failure of a particular process measurement, e.g., sensor 
failure, is to be diagnosed, that process measurement is 
included in the a vector. Following the definition of a and 
m, a set of parity equations can be expressed as 

or, in a more compact form, 

c(a, m) = e (2) 

Typically, this is a nonlinear set of equations, and at  
nominal operating conditions the RHS of eq 1 is zero, i.e., 
el = e2 = ... = e ,  = 0 for as = [a i ,  a i ,  ..., aLIT, where the 
superscript s denotes the nominal steady-state and a set 
of linear algebraic equations can be derived: 

plla, + plza2 + ... + pli ai + ... + p l n  a, + k ,  = e ,  

p j l  a, + p j 2  a2 + ... + p j i  ai + ... + ~ j ,  a ,  + kj = ej 

+ prni ai + + Pmn an + k m  - - em pml a ,  + pmz a2 + 
(3) 

or in a matrix form 
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P a + k = e  (4) 

where P is an m X n matrix with the entry pj; and k = [ k ~ ,  
122, ..., k , ] T .  Notice that pi;, kj, and ai are functions of 
process measurements and system parameters. Here pji 
can be viewed as the sensitivity of the ith fault (a;) with 
respect to thejth parity equation at  nominal steady-state. 
Mathematically, this is 

(5 )  

It should be emphasized that a t  nominal operation, the 
residuals of the parity equations (eq 1 or 3) are zero (el 
- e2 = ... = e, = 0). That is, when nominal steady-state 
values are substituted for the fault set (ai = a:) and 
process measurements (mi = m;), the equations yield zero 
residuals. 

- 

P(m')a' + k(m') = 0 (6) 

2.1.2. Residual Generation. When a fault occurs (e.g., 
a; = a: + 6ai), this leads to a new set of process 
measurements (m). Obviously, a t  this point we do not 
have any knowledge about which ai's constitute the fault 
(deviate from its nominal value a:). All we can do is 
substitute as and m into the parity equations. That leads 
to inconsistency in the parity equations, and residuals are 
generated. 

P(m)as + k(m) = e # 0 (7) 

The reason is that a t  this new (faulty) steady-state, a 
consistent set of process variables are m and a*, (a* = as + 6a). That is, 

P(m)a* + k(m) = 0 (8) 

Without any knowledge about the fault (a* or 6a), residuals 
are, thus, generated as shown in eq 7. As for the case of 
sensor failure, ai itself is a process measurement; the 
explanation is a little different. The correct process 
measurement, a;, is 

a,: = ai,meas + 6Ui 

where ai,meas is the measurement reading and 6a; is the 
bias. Again, the substitution of ai,meas into eq 7 generates 
residual. 

Notice that faulty conditions, e.g., u; = a; + 6ai, are not 
the only source of the residuals. Measurement noises, 
modeling error, e.g., P = Pa + 6P, where 6P stands for 
modeling error, etc. all can contribute to the residuals of 
the parity equations. In order to achieve robustness in 
fault diagnosis, some type of checking for satisfaction/ 
violation in parity equations is necessary. 

2.1.3. Satisfaction Factor. Since the residuals arise 
from not only the fault itself but also from noise effect or 
modeling error, tolerances (7;s) are used to evaluate the 
violation of corresponding parity equation cj in a Boolean 
manner (Venkatasurramanian and Chan, 1989). Kramer 
(1987) proposes a non-Boolean measure, sf (satisfaction 
factor), to evaluate the degree of satisfaction to each parity 
equation. The belief function of Kramer (1987), sf, is 
defined as 

where sgn(e/r) is the sign of e/? which takes the value of 

( A )  Pji# 0 

I . ,  

50 
-Tau Tau -1 

-50 - 0  Error  
(B) Pji=O 

-1  
-50 0 50 

Erro r  
Figure 3. Non-Boolean type of satisfaction factor for (A) pji # 0 
and (B) Pji = 0. 

+1 when e/? > 0 and becomes -1 when e/? < 0. Therefore, 
the value of sf falls between -1 and 1 (Figure 3). The 
non-Boolean type of sf (solid line of Figure 3) avoids abrupt 
changes from satisfaction to violation of parity equations 
(compared to Boolean type of sf as shown in Figure 3, 
dashed line) which, in turn, is more robust to noise effects 
as well as modeling errors. In the work of Kramer (1987) 
and Petti et al. (1990), the tolerances (7;s) are defined for 
each parity equation. Therefore, for a system with parity 
equations, m tolerances (71, 72, ..., rm) are defined for 
satisfaction checking. Little emphasis is placed on the 
selection of 7j's. The selection of ?j's is by no means a 
trivial matter for fault isolation, as will be discussed in 
detail later. As pointed out by Kramer (1987) and Petti 
et al. (1991), the tolerances for the upper bound (77) and 
lower bound (7;) violations do not have to be symmetric, 
i.e., 7: # 7L This is helpful for nonlinear chemical 
processes. The formal definition of sf s is given as follows. 

Definition. The vector of satisfaction factor sf = [sfj] 
= [sfl, sf2, ..., sf,] is the collection of satisfaction factors 
for each parity equation defined by a belief function 
(Kramer, 1987) as (a) for high violation 

and (b) for low violation 

Figure 3 shows the sf for the case of 7: = 7). The shape 
of the belief function is smooth for one to one mapping 
to prevent an unstable diagnostic situation. 

2.1.4. Fault Isolation. As shown in Figure 2, in the 
fault isolation stage, an ideal equation-oriented fault 
diagnosis system consists of two step: fault discrimination 
(to find the most likely fault) and consistency checking 
(to check whether the isolated fault is determined 
consistently from each parity equation). Most of the works 
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following set of parity equations: 

e, = 2a, + 2a2 + Oa3 - 4 

e2 = 2a, - 2a2 + 2a3 - 2 

(19) 

(20) 

(Kramer, 1987; Petti et al., 1990) isolate the fault solely 
on the basis of the first step, fault discrimination. The 
consistency checking is considered, a t  most, in an indirect 
manner (Petti et al., 1990). 

Consider a set of m parity equations with n faults to be 
isolated (eq 1 or 3). Once the satisfaction factors, sf, are 
available (from the previous stage in Figure 2), the fault 
can be isolated in the following way. The supportability 
of Kramer (1987) for the ith fault (ai) is defined as 

r m - r  

where qi is the supportability for the ith fault, r is the 
number of equations that depends on ai, and (m - r )  is the 
number of equations that are independent on ai. When 
qi approaches unity, the result of the reasoning supports 
the fault assumption. That implies 

Pli, ~ 2 i ,  ~ 3 i ,  ~ r i  + 0 (14) 

and 

Pr+l,i,  ~ r + 2 , i 9  ~ r + 3 , i 9  * * * ,  P m i  = 0 (15) 

In other words, the only way to discriminate a fault depends 
on the zerotnon-zero configuration in the P matrix. Petti 
et al. (1990) go a step further, using the concept of 
weighting to improve the diagnostic resolution. The most 
likely fault is isolated using the failure likelihood (Petti 
et al., 1990). For the ith fault (ai), the failure likelihood 
3i is defined as 

PliSf, + PZiSf2 + ... + PmiSfm 

lrjlil + B2il + * * e  + lrjmil 
3i = (16) 

where $,i is the normalized parameter with respect to the 
tolerance 7,, i.e., Pji = p,i/7,. Equation 16 implies that 3i 
is the normalized weighted sum of sfj’s from all the parity 
equations. When 3 i  approaches +1 (or -11, the reasoning 
concludes that ai is the most likely fault with a positive 
(or negative) deviation. Despite the fact that the concept 
of weighting is more appropriate than the fault isolation 
using zero/non-zero configuration, it may have difficulties 
in discriminating the fault even when the faults are 
qualitatively isolable. 

2.2. Resolution. The resolution of equation-oriented 
diagnostic systems (Kramer, 1987; Petti et al., 1990) is 
investigated. Let us take a simple set parity equation as 
an example. Consider a system with two parity equations 
and three possible faults: 

(17) 

For the sake of clarity in the illustration, all three faults 
(a,, a2, and a3) are assumed to be sensor failure. That 
implies pji’s and Kts are constants in eq 17. In order to 
evaluate DMP in a consistent manner, the tolerances are 
defined as 

7: = = 7j = min(p. J 1  .lo%,pj2.10%,pj3.10%) (18) 

Here ai’s are assumed to be unity for all t ’s .  This means 
that 10% deviation in ai from its nominal value is 
considered as a fault. Three numerical examples are used 
to illustrate the resolutions for supportability and failure 
likelihood. 

Example 1. Qualitatively Isolable Faults with 
Competitive Model Coefficients (pji’s). Consider the 

cl(a, m) = ~ , , a ,  + p12a2 + + t c2(a, m) = ~~~a~ + ~~~a~ + P23a3 + k 2  

From the parity equations (eqs 19 and 20), it is obvious 
that the faults a,, a2, and a3 are isolable in a qualitative 
manner, since the sign pattern for example 1 is 

a1 a2 a3 

e1 + + 0 
e2 + + (21) 

For example, if both eqs 19 and 20 deviate positively (or 
negatively) then, on the basis of this qualitative observa- 
tion, we can say that a1 is the fault origin. If el and e2 in 
the parity equation deviate toward different directions, 
then a2 is the fault. A similar argument can be applied 
to the fault a3. Therefore, in our classification the 
resolution of this system is to the qualitative isolable level. 
The supportability of Kramer (1987) and the failure 
likelihood of DMP (Petti et al., 1990) are tested on this 
example. Table 1A shows the diagnostic results using 
supportability and failure likelihood with 20 % positive 
deviation in the fault origins a,, a2, and a3, respectively. 
Results show that the supportability (qi’s) is not able to 
distinguished the faults a1 and a2 even when the sign 
patterns (eq 21) of these two faults are different. The 
supportability can, however, isolate the fault a3 since the 
zero, non-zero configuration for a3 is different from that 
of a1 or a2. The failure likelihood of DMP, on the other 
hand, cannot distinguish the faults between a1 and a3 (or 
a2 and a3) when the failure occurs in a1 (or a2) as shown 
in Table 1A. This simple example shows that despite the 
fault that quantitative parity equations are employed in 
the fault diagnosis, the fault isolation approaches using 
supportability and/or failure likelihood are not able to 
isolate the fault even when the fault can be isolated from 
a purely qualitative argument, e.g., eq 21. 

Example 2. Qualitatively Isolable Faults with 
Drastically Different Model Coefficients. 

(22) 

(23) 

- 

e, = la,  + loa, + Oa, - 11 

e2 = loa, - la, + loa, - 19 

The sign pattern of this system is exactly the same as that 
of example 1 (eq 21). That is, the faults a,, a2, and a3 can 
be isolated simply on the basis of qualitative observation 
of el and e2. Again, the diagnostic results for 20% positive 
deviation in a,, a2, and a3, respectively, are shown in Table 
1B. A similar interpretation of faults is found using the 
supportability. That is, the supportability is exactly the 
same for the faults a1 and a2. The ability to discriminate 
faults using failure likelihood deteriorates for example 2 
as shown in Table 1B. For example, when the fault a1 
occurs, the most likely fault interpreted by 3i’s is a3. That 
means the ability of the approach of failure likelihood to 
isolate faults for systems with different orders of magnitude 
in the coefficients decreases. More importantly, it pro- 
duces erroneous interpretation, e.g., fault origin al or a2 
in Table 1B. It should be emphasized that the faults in 
example 2 can be isolated simply on the basis of qualitative 
observation. 

Example 3. Qualitatively Nonisolable System. 
Consider another system with two parity equations and 
three faults: 

e, = la,  + loa, + loa, - 21 (24) 
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Table 1. Resolutions for Different Model-Based Diagnostic Algorithms 
errors statisf. sup p o rta b i 1 it y DMP likelihood this approach 

fault origin el e2 sf1 sfz q1 qz 43 F1 Fz F3 ( d h  (dz)cn ( d a h  

Fault  in a1 

x. 
0 3  

0 10 20 10 40 50 

'7 error- in a 1  

I O  

- F7 
'?A 

0 5  2. 

0 0 '  
0 .0 20 30 40 50 
r er ror  in a1 

(A) el = 2al+ 2az + Oa3 - 4 
0.4 0.94 0.94 0.88 0.88 0.5 

-0.4 0.94 -0.94 0.88 0.88 0.05 
0.4 0 0.94 0 0 0.94 

(B) el = la1 + lOaz + Oa3 - 11 
2 0.94 0.99 0.94 0.94 0.05 

2 0  -0.99 0 0 0.99 
(C) el = la1 + loa2 + loa3 - 21 

0.2 0.94 0.94 0.88 0.88 0.88 
2.2 1 1 1.0 1.0 1.0 
2 1  0.94 0.94 0.94 0.94 

-0.2 0.99 0.94 0.94 0.94 0 

Fault in a2 Fault in a3 
1 0  

~ 

051 i 0 7 1 ' 1  05:: 3 F I  1 
0 0  

a 
0 10 20 30 40 50 

0 0  

n 
0 I0 20 30 40 50 
Cr error in a2 e r ror  in a3  

0 10 20 30 40 50 0 10 20 30 40 50 
0 error in a 3  n 

's er ror  in a2 

31 0 0  1 L& 0 0  
0 10 20 30 40 50 0 IO 20 30 40 50 0 10 20 30 40 50 
Z error in a 1 7, e r ro r  in a2 7 error in a:3 

Figure 4. Diagnosis results using supportability (pi) and likelihood 
(Fi) for example 3. 

e2 = la ,  + l l a ,  + la, - 13 (25) 

The sign pattern for this example is 

This means that the propagations of the fault based simply 
on qualitative observations are exactly the same. Obvi- 
ously, we do not accept that the approaches of support- 
ability and failure likelihood can discriminate the faults 
in this example. The results (Table 1C) show that all 
three faults are indistinguishable for 20% deviation in 
the fault origin ai. Figure 4 shows the diagnosis results 
using qi's and 9;s for a range of deviations in al, a2, and 
a3, respectively. As expected, the supportability and 
failure likelihood are not able to discriminate the fault for 
a range of faults. 

All three examples show the resolution problems as- 
sociated with the supportability or failure likelihood. More 
importantly, the knowledge level of the diagnostic system 
is up to the quantitative level. Therefore, some modifica- 
tions have to be made to improve the resolution in the 
equation-oriented approach. 

3. Deep Model Algorithm (DMA) 

An algorithm for fault diagnosis, the deep model 
algorithm (DMA), is proposed to overcome the problems 
of diagnostic resolution associated with an equation- 
oriented diagnosis system. 

3.1. The Structure. The structure of DMA is shown 
in Figure 2. The core of the knowledge base for DMA 

e2 = 2al-2a2+ 2a3- 2 
0.94 0 0.94 (0.94)1 
0 0.94 -0.94 (0)-1 
0.47 -0.5 0.94 (0.47)o 

e2 = loa1 - la2 + loa3 - 19 
0.82 0.95 0.99 (0.94)1 
0.94 0.82 0.94 (0.5)o 
0.9 0.09 0.99 (0.47)o 
e2 = la1 + llaz + la3 - 13 
0.94 0.94 0.94 (0.94)1 
0.99 0.99 0.99 (1)1 
0.97 0.97 0.97 (0.97)o.w 

consists of a set of parity equations (e.g., eq 1 or 3). The 
parity equations can be either linear or nonlinear. As the 
process measurements become available, the residuals (ej's) 
are generated and satisfaction factors (sf s) are computed. 
The fault can be isolated on the basis of the fault 
discrimination and consistency checking once sf s are 
available (Figure 2). 

3.2. Tolerance. Despite the fact that most works in 
equation-oriented diagnosis systems define the tolerance 
(threshold) for each individual equation (Gertler and 
Anderson, 1992; Kramer, 1987; Petti et al., 19901, part of 
the problem in diagnostic resolution comes from the 
threshold selection; it was clearly shown in example 2. For 
example, in an equation with imbalance coefficients, the 
selected tolerance can be too large for one fault and too 
small for the other. Therefore, a fundamental approach 
to improve the diagnostic resolution is to define the 
tolerance on individual equation as well as individual fault 
basis. For a system with m parity equations and n faults 
to be diagnosed, m X n tolerance rji (i = 1, 2, ..., m and 
i = 1, 2, ..., n) is defined. For example, for a fault origin 
ai, the upper bound violation (1 + &)a: and a lower bound 
violation (1 - 'yi)aq are the recognized fault, and the upper 
and lower bound tolerances for the j th  parity equation 
become 

(a) violation high 

r: = cj(a;, a;, ..., (1 + &)a:, a;+l, ..., a:, m) - 0 (27) 

(b) violation low 

rL = o - cj(at, ai, ..., (1 - ai)a!, ..., a i ,  m) (28) 

If the linearized version of the parity equations (eq 3) is 
employed, then the tolerance becomes 

- 11 

(a) violation high 

(b) violation low 

(30) rji L = a,pjiaq 
- 

Since the linearized parity equations are used and the 
upper and lower bound violations are assumed to be the 
same for clarity, we have 



Nonetheless, it should be clear that, in this work, the 
tolerance (rji) is defined for each fault in each parity 
equation. 

3.3. Satisfaction Factor. With the tolerance (sjj) 
defined, the satisfaction factor (sfjj) can he calculated once 
theresidualineachparityequation (ej) isgenerated.Unlike 
the previous approaches, DMA finds a vector of satisfaction 
factors for a fault origin. For example, for the fault ai. the 
vector of satisfaction factor is 

T sf, = [sf,, sfze sfse ..., Sfmil 

Since the zero/non-zero configuration can be identified 
by a Kramer approach (Kramer, 1987), a distinction is 
made between the system with zero and non-zero coef- 
ficients. The satisfaction factor is defined for zero @ji = 
0 )  coefficients. A new belief function is also defined for 
the sf with zero coefficient. 

The belieffunction for the faultwithnon-zerocoefficient 
is defined as follows: 

(a) for pji # 0 

where sfjj is the satisfaction factor of the ith fault on j th 
parity equation, ej is the residual value of the j th  parity 
equation, rji.is the tolerance of the ith fault on the j th 
parity equation, and sgn(ejlrji) takes the value of +1,0, 
or -1 for positive, zero, or negative elements, respectively. 
Thisdefinitionisexactlythesameas thatofKramer(l987) 
except that m sfs are computed for a fault. For the case 
of zero coefficient, the belief function is modified to 

(b) for pji = 0 

with 

T ~ , ~ ~ ~  = min(lrj,l) for all r with pi, # 0 (35) 

where 7j,.,,,in is the smallest (in the absolute sense), non- 
zero tolerance in the j th parity equation and sgn* define 
the sign of sfji, which can be found from 

where SC is the largest sf (in absolute sense) for the ith 
fault in different parity equations with non-zero coef- 
ficients. The reason for going through eqs 35 and 36 to 
find sfjj (when pji = 0)  is that process measurement noises 
can be misleading to the sign of the sfji when pjj = 0. This 
is typically true when ai is not the fault origin. Therefore, 
a positive sign is assigned to sfjj when the largest sf for 
that particular fault (sfc) does not exceed the threshold 
(0.1 in eq 36). The belief function with a positive sign is 
shown in Figure 5. Notice that when sgn* = -1, the belief 
function is simply the mirror image of that in Figure 5. 
With this definition, we are able to distinguish the zero/ 
non-zero configuration. 

The characteristicof the proposed method is illustrated 
in the following example. Consider the set of parity 
equations in eq 3 with all non-zero pji's. For a given ai, 
the tolerance (~ji's) can be calculated. That is, 

Ind. Eng. Chem. Res., Vol. 33, No. 6, 1994 1547 

( 'o i i s i s t ( ' i i t  1. Faa.lc~1. 

r . f L  I 

<.I.= I - 1  . 

Figure 5. Relationship between ranges of sfj; (sf;- - sf,-) and 
consistency. 

7..  J' = (37) 

Now,considerthatfaultaioccurs, withapositivedeviation 
of ai; the residual in each parity equation is 

ej = alpjl.: for j = 1,2, ..., m (38) 

With ej's available, we can find the vector of sfi = [sfil, 
SfZl, ... ( Sf,llT. 

.~ ,. . 
We have sf, = [0.5,0.5, ..., O.5lT. This implies that we are 
not only able to find the degree of the fault (e.g., 0.5) hut 
also to measure the consistency for the fault. By consis- 
tency we mean that the indication of the fault arises from 
each parity equation, based on sfi. In theory, the vector 
of sf s can be utilized to give better diagnostic resolution. 

3.4. Fault  Isolation. As shown in Figure 2, the fault 
isolation stage consists of two steps: to find the degree of 
the fault and to check the consistency of the assumed 
fault from each parity equation. Two measures are 
computed for a specific fault, ai: one is the degree of fault 
di, and the other is the consistency factor cfi once that 
vector of satisfaction factor, sfi, is available. 

3.4.1. Degree of Fault. Since the evidence of fault is 
generated from the residuals, the method of combination 
of evidences (e.g., certainty factor in MYCIN, Shortliffe, 
1976) is useful in finding the likelihood of the failure ai 
once the sfjj's are available. Because the residuals are 
generated from independent parity equations and are 
further transformed into sfs, a rule for the combinations 
sfj;s can be helpful in discriminating the fault. 

Pettiet al. (1990) utilize the weighted sum of sfstofind 
the likelihood of failure. This is quite similar to the 
mechanism of combining evidence in the expert system 
MYCIN (Shortliffe, 1976; Cendrowskaand Kramer, 1984). 
Before the degree of fault is defined, it should be 
emphasized that the sfj(s defined in this work are already 
weighted by its coefficient @ji) (eqs 29,30,33,34). The 
degree of fault in ai is 

rn 

di = ( E f j i ) / m  
J = 1  

di ranges from -1 to 1 and di approaching 1 (or -1) implies 
that the errors in the parity equations are significant 
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enough to support the hypothesis, failure in ai with a 
positive (or negative) deviation. This definition is very 
similar to the failure likelihood of Petti et al. (1990) except 
that the weighting is not necessary in this work since sf s 
are defined differently. Notice that this index di only 
indicates the degree of the fault (ai), e.g., how close to the 
threshold the errors are. 

3.4.2. Consistency Factor. Since the sfs are defined 
for the fault in every parity equation, we can utilize this 
to improve the diagnostic resolution. That is, for a fault 
ai and a vector of sf, i.e., sfli, sfzi, ..., sfmi, one can use Sfji’S 
(j = 1, 2, ,.., rn) to further discriminate the fault. A 
consistency factor cfi is employed to check the consistency 
in sfji (j = 1,2,  .,., rn) generated from the parity equations. 
Ideally, a complete measure of the likelihood of failure ai 
is 
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where di is the degree of fault for ai and cfi is the consistency 
factor (similar to the certainty factor in MYCIN, Shortliffe, 
1976) for di. 

The consistency factor is defined as 

where sfmax,i and sfmin,i are the largest and the smallest 
satisfaction factors, respectively. Sfmax,i and Sfmin,i are 
defined as 

(43) 

(44) 

Appendix A gives the derivation of cfi. Notice that Cfi 
ranges from -1 to 1. A positive cfi of unity indicates that 
the sfji’s = 1, 2, ..., rn) are consistent, and a cfi of -1 
reveals that the results from sfji (j = 1, 2, ..., rn) are 
completely inconsistent. cfi decreases as the consistency 
between sfji’s decreases. More importantly, qualitatively 
inconsistent sfji’s (e.g., sfli > 0 and sf2i < 0) lead to a 
negative value in cfi. Figure 5 shows the characteristic of 
the consistency factor (cfi). cfi’s are positive for Sfji’S with 
the same sign, and a Sfma, i  > 0 and Sfmin,i = 0 (or Sfm,,i = 
0 and sfmin,i < 0) gives a zero cfi. When the range covered 
by Sfmax,i and Sfmin,min crosses zero, the cfi becomes negative 
and equal strength Sfji’s (i.e., Isfma,il = IsfmhJ) with opposite 
sign give cfi = -1, as shown in Figure 5. 

With the introduction (diIcfi one can use it to isolate the 
failure. It should be emphasized that since sf s are defined 
differently from that of Petti et al. (1990) or Kramer (19871, 
we are now able to utilize cfi to give a better diagnostic 
resolution. 
3.5. Example Revisited. The resolution of the pro- 

posed DMA is examined using the three examples studied. 
Consider the system in eq 17; the tolerances ~ji’s are defined 
for each parity equation with respect to different faults. 
For pji # 0, we have 

sfm,,i = max(sfli, sfZi, ..., sfmi) 

sfmin,i = min(sfli, sfZi, ..., sfmi) 

7ji = Pji.l0% (45) 

For the cases with pji = 0, ~ j , ~ i ~  is found using eq 35. With 
the definition of Tj;lS, Sfji’S can be calculated according to 
eqs 33 and 34. Once sfji’s are available, one can proceed 
to calculate di and cfi from eqs 40 and 42, according to the 
procedure in Figure 2. 

Consider the example with qualitatively isolable faults 
in example 1. The satisfaction factors for a +20% 
deviation in a1 are 

1 0  Fault  in a 1 

0 0  
0 10 20 30 40 50 

Z error in a 1 

L O r  

1- 
0 5  

0 I O  20 30 40 50 
0 0  

7 er ror  in a1  

I O  

0 5  

0 0  
0 IO 20 30 40 50 
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- ”  
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? er ror  in a3  

Figure 6. Diagnosis results using degree of fault (di) and consistency 
factor (cfi). 

The sfji’s indicate inconsistency when a2 (or a3) is the 
assumed fault (e.g., e1 indicating a positive deviation in 
a2 and e2 indicating a negative deviation in ad. The degrees 
of fault (di’s) are 0.94, 0, and 0.47 for al, a2, and a3 with 
this perturbation (Table 1A). The consistency factors cfi’s 
also indicate the inconsistency for the fault assumptions 
a2 and a3 (cf2 = -1 and cf3 = 0) as shown in Table 1A. 
Clearly, DMA is able to isolate the fault (as opposed to the 
spurious solutions generated from supportability and 
failure likelihood). Similar results can also be found for 
the fault originated from a2 and a3 (Table 1A). 

For example 2, an example with qualitatively isolable 
fault, DMA clearly discriminates the fault using (&fi for 
all three possible fault origins, as shown in Table 1B. The 
results from the second example show the advantages of 
the DMA over the failure likelihood of DMP and the 
supportability (Table 1B) without incorporating additional 
process knowledge. 

The limitation of the proposed method is illustrated by 
example 3. Consider the qualitatively indistinguishable 
example, example 3. That is, the faults give exactly the 
same pattern qualitatively (e.g., eqs 24 and 25). Obviously, 
for given fault, all three fault assumptions (al, a2, and a3) 
are possible fault origins (e.g., spurious solutions) from 
the supportability and failure likelihood analysis (Table 
1C). The DMA also gives spurious solutions, as shown in 
Table 1C (e.g., fault occurring in a2). Despite the fact that 
spurious interpretation is minimized to a certain degree 
(e.g., by comparing the cases for failures in a1 and a3 with 
these three methods in Table lC), the results clearly 
indicate the limitation of the proposed method. Figure 
6 shows the resolution of DMA for different degrees of 
faults. 
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The heat generated from the reaction is removed using a 
cooling water jacket. Reactor temperature (2') is controlled 
by changing the set point of a cooling water flow controller 
(Fjc), and the reactor level (L )  is controlled by changing 
the outlet flow rate (F). Tuning constants for these two 
PI  controllers are k,l = 32 and 711 = 0.9 h for the 
temperature loop and kcz = 10 and 712 = 0.6 h for the 
level loop, respectively. In modeling negligible heat losses, 
constant densities and perfect cooling water flow control 
are assumed. Equations describing the system are 

Table 2. Steady-State Operating Conditions for CSTR 
F = 40 ftYh 
V = 48 ft3 

CA = 0.245 mol/ft3 
2' = 600 O R  

T, = 594.6 "R 
F, = 49.9 ft3/h 
VI = 3.85 ft3 
ko = 7.08 X 1O"h-' 
E = 30 000 BTUimol 
LBet = 0.192 f t  
k,l = 32 
711 = 0.9 h 

U = 150 BTU/h ft3 O R  

A = 250 ft2 

AH = -30 000 BTU/mol 
cp = 0.75 BTU/lb, O R  

cp, = 1.0 BTU/lb, O R  

p = 50 lbJft3 
p ,  = 62.3 lb,/ft3 
R = 1.987 BTU/mol O R  

Ah = 19.6 f t2  
Pet = 600 O R  

ke2 = 10 
112 = 0.6 h 

CA, = 0.50 mol/ft3 T,o = 530 O R  

Fmax = 96 ft3/h 
bias2 = 9 psi 

bias1 = 12 psi 

Table 3. Process Measurements for Fault Diagnosis 
symbol measured variables 

T reactor temp 
To reactor inlet temp 
L reactor level 

2 reactor outlet flow rate 

cooling water outlet temp 
cooling water flow rate in the jacket 

TI 

T, 'de 4. Fault Origins 
svmbol fault orinin 

Fo 
C& 
ko 

U 
Ti 

changes in the feed flow rate 
changes in the feed concentration 
changes in the preexponential factor 

changes in the overall heat transfer coefficient 
sensor failure in cooling water outlet temp 

of the rate constant 

4. DMA and Diagnosis Results 
A CSTR example (Luyben, 1973; Chang and Yu, 1990; 

Yu and Lee, 1992) is used to illustrate the formulation 
and diagnosis of DMA. Comparisons are made between 
the DMA and the deep model processor (DMP) of Petti 
et al. (1990). 

4.1. Process Description. An irreversible, exothermic 
reaction is carried out in a perfectly mixed CSTR, as shown 
in Figure 7. The reaction is first order in reactant A. 

k 
A-B (47) 

- dVT- - FoTo - FT - gkoe-E/RTCAV - -(T UA - Ti) (50) 
dt P C P  P C P  

(51) dV.T. UA 
dt p j c p j  

-- ' ' - Fj(Tjo - Tj) + -(T - Tj) 

Table 2 gives the steady-state operating conditions. 
Process variables employed for diagnosis include (1) 
process measurements and (2) process parameters inferred 
from control outputs, as shown in Table 3. Faults to be 
diagnosed include external disturbance (changes in FO or 
Cb) ,  equipment degradation (changes in ko or U), and 
sensor failure (measurement failure in Tj), as shown in 
Table 4. 

4.2. Formulation of Parity Equations. The formu- 
lation of parity equations is one of the most important 
steps in the construction of DMA. For a given system, a 
straightforward way to formulate the parity equations is 
to include all governing equations. However, in any 
realistic situation, not all process variables are measured 
(or measured online). Therefore, unmeasured variables 
have to be removed from governing equations. 

4.2.1. Elimination of Unmeasured Variables. Fre- 
quent composition measurements, e.g., measuring CA, is 
generally not available in an operating environment. 
Unfortunately, CA plays an important role in the system 

sf13 sf14 l:r sfl5 

r:; s f ? '  ~ ;;F, sf92 ~ ;;F yft3,  , yf?4,  ;;I I :f95* 
90 
-0 5 -0 5 - 3  5 -0 5 -a 5 

.I 0 L - i o  - I  0 - 1  0 - I  0 

Tirne(hr ) Tirne(hr j Time(hr ) Time(hr ) Tirne(hr ) 

Figure 8. Satisfaction factors (sf,,'s) of CSTR example for fault in FO failure with perfect measurements. 
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Fault  Origin: FO 
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Figure 9. Diagnostic results of CSTR example for fault in Fo failure with perfect measurements. 
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Figure 10. Satisfaction factors of DMP approach with (A) perfect 
measurements and (B) measurement corrupted with noises. 

equations (eqs 49 and 50). Therefore, CA has to be 
eliminated from the parity equation. Since only a static 
diagnostic system is considered, a simple way to remove 
CA is to express CA in terms of measured variables. From 
eq 49, CA becomes 

Substituting eq 52 into eq 50 gives the complete set of 
nonlinear equations describing the CSTR with known 
variables: 

Fo-F=O (53) 

-- 
F VC k e-EJRT 

FoTo - F T  - A H 0  4 7 0  uA(T - Ti) = 0 (54) 
PCp (F + koe-E/RTV) PCp 

UA 
Pi% 

F,(Tj0 - Tj) + -(T - Tj) = 0 (55) 

Obviously, one can utilize eqs 53-55 to generate residuals 
once the tolerances (eq 5) are available, as mentioned in 
section 2. For the sake of clarity, in this work, eqs 53-55 
are linearized and formulated as a set of linear algebraic 
equations. 

4.2.2. Linearization. The set of nonlinear parity 
equations are linearized with respect to the fault origins 
and the known process variables. Appendix B gives the 
derivation. The resultant linear parity equations are 

e, = Fo-F (56) 

e2 = 729.68F0 + 40T0 - 871.62T - 699.58F + 1000Tj - 
35.7011 + 16OOOCpb - 5.57 X 1O4k0 + 166.67V- 108578 

(57) 

e3 = 49.90Tj0 + 21.50U + 601.87T - 64.63Fj - 651.78Tj 

(58) 

4.2.3. Normalization. It can be seen that the coef- 
ficients in the parity equations differ by several orders of 
magnitude. This can lead to problems in online computing. 
Therefore, a simple way to overcome this is to normalize 
the fault origins and process measurements such that 
deviations in these variables are expressed in terms of 
percent deviation. In other words, the variable ai is 
normalized with respect to its nominal steady-state 
values: 

Qi 
Therefore, the linear parity equations become 

e, = 40P0 - 40P (60) 

e2 = 29187.25p0 + 21182.9T0 - 523002.4T - 27979.5P + 
594600Tj + 8000.3P - 5355.930 + 8000.3Cpb + 

3946.9h0 - 108578 (61) 

e3 = -3225Pj + 26445TjO + 32250 + 361122p- 
3875482;. (62) 

To simplify these equations, a further normalization with 
respect to the smallest coefficient of each parity equation 
is carried out. 

e, = Po - P (63) 

e2 = 7.395P0 + 5.36713 - 132.51p- 7.089P + 150.65Tj + 
2.027P - 1.3570 + 2.027Cb + A, - 27.51 (64) 

e3 = -Pj + 8.20pj0 + O S  111.97?'- 120.171;. (65) 

where the caron ("1 indicates the normalized variables. In 
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Figure 11. Diagnostic results of DMP with (A) perfect measurements and (B) measurement corrupted with noises. 

Fault Origin: FO 

no 0 
-0 5 -0 6 -0 5 -0 L -0 s 

- L O  ’ - I  0 - 1  0 -, 0 - 1  0 
Time(hr ) Time(hr ) Time(hr ) Time(hr ) Time(hr ) 

FO , ““Q g:\i ~ :03 , c, - 21: Tj 
0 1 2 3 .  

P O  00 , 

-0 5 -0 5 -0 5 -05 ’ 1 2 3 4  

,. i, y f ? l ,  yf?2 * ~ yf?3, s f f 4 ,  ::j I, yf?5, 00 

-0 5 -0 5 -0  5 -0 5 -0 I 

- I O  - - 1 0  - I O  - I  0 - 1  0 

Time(hr ) Time(hr ) Time(hr ) Time(hr ) Time(hr ) 

-0 5 -0 5 -0  5 

L - 1 0  -10 
Time(hr ) Time(hr ) Time(hr ) Time(hr ) Time(hr ) 

Figure 12. Satisfaction factors (sf,,’s) of CSTR example for fault in Fo failure with measurement noises. 

a matrix form, the parity equations become 

PO 
1 0 0 0  0 

0 0 0 1.0 -120.17 
[ 7.395 2.03 1.0 -1.357 150.65 ] $ + 

’j 

-132.51T 4- 5.36723 - 7.089F -k 2.03V- 27.51 
111.97T- Pj + 8.20Tj0 

4.3. Diagnosis Procedure. Following the methodol- 
ogy of DMA, discussed in section 3, the procedure is 
outlined as follows. 

S1. Define the Tolerances for Each Fault Origin 
with Respect to Each Parity Equation. In the CSTR 
example, the tolerances are defined as *lo% deviations 
from nominal steady-state. 

0.739 0.2 0.1 -0.135 15.06 (67) 

Here rj,,in’s are used for the tolerances with zero coef- 
ficients. 

52. Generate Residuals. The residuals (ej’s) can be 
generated in a straightforward manner using eq 66 once 
process measurements (P, T,  To, Tj, Pj, and V) are available. 
Notice that the fault origins, PO, E&, LO, 0, and Tj, take 
the values of unity in generating residuals. 

53. Calculate the Satisfaction Factors, sfji’s. Once 
the residuals (el, e 2 ,  and e 3 )  are available, the sfji’s can be 
found. Since the zero exists in the parity equations (eq 
661, 7 j , m i n ’ ~  are used to find the sf s according to eq 36. The 
values of 7j,,in’s are defined as the smallest 7j i  (in an 
absolute sense). Therefore, we have 71,min = 0.1 and 73,min 
= 0.1. Notice that rj,,in is employed for the calculation 
of sfji by using eqs 33 and 34 for the non-zerolzero 
configuration. 

1 0.1 ‘1,min ‘1,min ‘1,min ‘1,min 

73,min ‘3,min ‘3,min 0.1 -12.02 
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Fault Origin: FO 
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Figure 13. Diagnostic results of CSTR example for fault in FO failure with measurement noises. 
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Figure 14. Diagnostic resolutions of DMA for (A) C b  failure and (B) ko failure. 

54. Calculate Degree of Fault  ( 4 )  andconsistency 
Factor (cfi). Once sfjis are available, di and cfi can be 
computed according to eqs 40 and 42. The diagnostic 
results can be interpreted by using the index (diIcfi that 
di indicates the fault degree and cfi supports the certainty. 

4.4. Results and Discussion. Two diagnostic systems, 
the DMP of Petti et al. (1990) (e.g., the likelihoods 9;'s 
of eq 13) and the proposed DMA (e.g., fault degrees and 
consistency factors (di)cfi of eqs 40 and 42) are tested on 
the CSTR studied by Hsu and Yu (1992). The diagnosis 
is performed online with a sampling period of 3 min. 

Consider the case of a fault being introduced at t = 1 
h for a -20 5% decrease in Fo. The sfji's of DMA are shown 
in Figure 8, and di and cfi of (di),fi are given in Figure 9. 
The results show that DMA can correctly identify the 
fault origin FO using (di)cfia Figure 9 reveals that despite 
the fact that some of the di's are non-zero (even before for 

the occurrence of fault, t < 1 h), the combination of di and 
cfi serves as a useful measure for the fault diagnosis. The 
DMP, on the other hand, produces spurious solutions as 
shown in Figures 10A and 11A. It finds Fo, Ch,  and Izo are 
possible fault origins. Notice that, from the SDG-based 
analyses (Hsu and Yu, 19921, this fault is qualitatively 
isolable. Unfortunately, the DMP fails to isolate the fault 
origin. In an operating environment, the measurements 
are often corrupted with noise. Therefore, the diagnostic 
systems are tested against process with measurement 
noises. The temperature (7') and level (L)  measurements 
are corrupted with white measurement noises with vari- 
ances of 1 O C  and 1 5% , respectively. Again, for the fault 
in Fo, DMA can find the fault origin correctly (Figures 12 
and 13) and DMP fails to isolate FO (Figures 10B and 
11B). 
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(A) Fault Origin:  CAO 
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Figure 15. Diagnostic resolutions of DMP for (A) C b  failure and (B) ko failure. 
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Figure 16. Diagnostic resolutions of DMA for sensor T, failure. 

Next, consider a fault in C b  (-20% decrease in Cb). 
Notice that the SDG-based analyses (Yu and Lee, 1991; 
Hsu and Yu, 1992) show that the patterns from the fault 
in C b ,  ko, and U are not qualitatively distinguishable. 
However, the equation-based approach (eq 66) shows that 
C b  and ko are not qualitatively isolable (the zero-nonzero 
configuration and the coefficient are nearly the same for 
these two faults). Simulation results show that DMA 
produces spurious solution for this fault. It finds C b  and 
ko as possible faults (Figure 14). Obviously, this result is 
expected from the analyses of the parity equations (eq 
66). The DMP also gives spurious solutions (faults in Fo, 
C b ,  and ko, as shown in Figure 15). Similarly, for the 
situation of sensor Tj failure, the proposed method can 
correctly find the fault origin, as shown in Figure 16. 

Simulation results show that the proposed DMA gives 
better resolution in fault diagnosis than the DMP. As 
expected, the resolution of DMA is up to the qualitative 
isolable level. However, for a given system, the qualitative 
behaviors from the quantitative parity equations and from 
the SDG-based model are obviously not the same. The 
qualitatively indistinguishable faults C b ,  ko, and U from 
the SDG model are now reduced to Ch and ko from the 
parity equations. This can be understood since the 
quantitative process model is employed in the parity 
equations and its qualitative behavior depends on the 
structure of the parity equations. 

5. Conclusion 

Equation-oriented process models are often used for 
fault diagnosis. However, the resolution of equation- 
oriented diagnosis systems is often limited to, at most, the 

qualitative level. That is, the extent of quantitative process 
model is utilized only up to its qualitative level. In order 
to improve diagnostic resolution, the deep model algorithm 
(DMA) is proposed for process fault diagnosis using parity 
equations. The framework of DMA includes a renewed 
definition of satisfaction factors and the use of di (degree 
of fault) and cfi (consistency factor) in isolating the fault 
origin. A procedure is also given for the construction of 
DMA. A CSTR example is used to illustrate the resolution 
of DMA. Results show that the proposed DMA is effective 
in isolating fault origins. 

Nomenclature 
A = heat transfer area of CSTR, ft2 
a = vector of fault assumption 
ai = ith fault 
c,(.) = j th confluence of system model 
cp = heat capacity of process liquid, BTU/lb, O R  

cpj = heat capacity of cooling water, BTU/lb, "C 
CA = concentration of reactant A, mol/ft3 
Cb = feed concentration of reactant A, mol/ft3 
cfi = consistency factor for ith fault 
di = fault degree of ith fault 
E = activation energy, BTU/mol 
e = residual vector 
e, = residual value of jth parity equation 
F = reactor outlet flow rate, ft3/h 
F, = cooling water flow rate, ft3/h 
Fo = reactor inlet flow rate, ft3/h 
3 = failure likelihood vector 
3i = failure likelihood of ith fault 
k = constant vector term of parity equations 
k, = constant term of jth parity equation 
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ko = Arrhenius constant, h-l 
m = vector of process measurements 
m = number of parity equations 
n = number of fault origins 
P = matrix of pJr 
pll  = coefficient for ith fault on jth parity equation 
q1 = fault supportability of ith fault 
r = number of equations with non-zero coefficient in parity 

sgn* = sign of sfJr, defined by eq 36 
sfJ = satisfaction factor of jth confluence, defined by DMP 

sfJl = satisfaction factor for ith fault of jth parity equation 
T = reactor temperature, OR 
TJ = cooling water temperature, O R  

TJo = cooling water inlet temperature, OR 
To = reactor inlet temperature, OR 
U = overall heat transfer coefficient, BTU/h ft3 OR 
V = reactor volume, ft3 
VI = heat transfer area of jacket, ft2 

Greek letters 
C Y ,  = percent of deviation in a, 
AH = heat of reaction, BTU/mol 
7II = reset time for ith loop of PI controller 
T , ~  = tolerance for ith fault of jth parity equation 
T, = tolerance for jth confluence of DMP method 
p = density of process liquid, lbm/ft3 
pJ = density of cooling water, lb,/ft3 
Subscripts 
- = lower bound 
meas = measured data 
max = maximum value 
min = minimum value 
Superscripts 
- = upper bound 
" = normalized fault with respect to steady-state value 
s = steady-state value 
set = set point 
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equations 

method 

Appendix 
Appendix A. Derivation of Consistency Factor, cfi. 

In a decision-making process, most heuristic methods have 
sought to justify exhausting information by some qua- 
siprobabilistic interpretations. The certainty factor CF 
is the most common representation of heuristic weights 
that indicates the certainty with which each evidence is 
believed (Shortliffe, 1976). The value of CF falls between 
-1 and +1 for the indications of disbelief and belief, 
respectively. The concept of CF is extended to find the 
consistency of sfji's for fault isolation. 

For a system with m parity equations and a given fault 
ai, the satisfaction factors sfli, sfzi, ..., sfmi are randomly 
distributed between the bounds of Sfi,min and Sfi,m=. From 
the definition of sf;i (eqs 33 and 341, i t  is clear that sf;i is 
the indication of the direction as well as degree of fault. 
Therefore, sf;i's have to be normalized before it can be 
processed further. A simple way to do this is to make the 
largest 1sf;il 0' = 1, 2, ..., m) equal to 1. Therefore, the 
normalized sf;i becomes (Figure 17) 

Sfji 
si'.. = (Al) 

Jr max(lsflil, lsfipl, ..., Isf,,l) 
Since we have m evidences (sfli, sfzit ..., sfmi) supporting 
the fault ai, the consistency between these eviqences is a 
measure of belief or disbelief. For example, if sfji's are all 
positive and distributed over a small range, then these 
evidences are consistent (Figure 17A). On the other hand, 

Figure 17. Conceptual diagram of consistency factor with decreasing 
consistency (from A to D). 

if sf;i ranges from positive to negative, then these parity 
equations give conflicting evidence (Figure 17C and DJ. 
Therefore, the width between the largest and smallest sf;i 
is an indication of consistency. The consistency factor for 
the ith fault cfi can be defined as 

Cf i  = 1 - (sfmmax,i - si'min,i) 

Figure 17 shows four cases with decreasing consistency. 
Appendix B. Linearized Pari ty  Equations for 

CSTR. The steady-state equations for the CSTR (eqs 
53-55) can be linearized with respect to fault origins and 
process measurements as 

O=F,-F (B1) 

A A 
P A ;  PIC,; 

0 = qT;, = -(F - q) U + -UT - (q - Tj:)F; - 

Substituting the steady-state values (Table 2) into eqs 
Bl-B3, we have 

O=F,-F 034) 

0 = 729.68F0 + 40T0 - 871.62T - 699.58F + lOOOTj - 
35.70U + 16000C4 - 5.57 X k ,  + 166.67V- 108578 

(B5) 



0 = 49.90Tj, + 21.50U + 601.87T - 64.63Fj - 651.78Tj 

(B6) 
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