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Model-Based Approach for Fault Diagnosis. 2. Extension to 
Interval Systems 

I-Cheng Chang, Cheng-Ching Yu,*J and ChingTien Liou* 
Department of Chemical Engineering, National Taiwan Institute of Technology, Taipei, Taiwan 10672, R.O.C. 

Since chemical processes are often operated over a range of operating conditions and some of 
the system parameters are only known to a certain degree, uncertainties exist in the process 
model. Interval types of process models offer an attractive alternative for process description 
in an operating environment. In terms of fault diagnosis, an  interval process model based 
diagnostic system is robust as compared to conventional quantitative model-based systems. In 
this work, an  interval model is incorporated into the deep model algorithm (DMA) for fault 
diagnosis. A design procedure is given, and characteristics of interval DMA are also discussed. 
One unique property is that the interval parity equations generally give better diagnostic 
resolution than the crisp ones under the DMA framework. A CSTR example with interval 
coefficients is used t o  illustrate the design and effectiveness of the interval DMA. Results show 
that the proposed method is not only successful in handling wide range of operating conditions 
but also capable of identifying correct fault origins accurately. 

1. Introduction 

The proliferation of process control computer makes 
on-line fault diagnosis a reality from the hardware point 
of view. Over the past decade, many attempts have 
been made for automatic fault diagnosis using models 
(Himmelblau, 1978; Watanane, and Himmelblau, 1982; 
Mah and Tamhane, 1982; Willsky, 1984; Iri et al., 1985; 
Kramer, 1987; Petti et al., 1990; Gertler and Anderson, 
1992; Yu and Lee, 1992). The models employed for 
diagnosis ranging from qualitative, semiquantitative, to 
quantitative model. Qualitative models include the 
signed directed graph of Iri et al. (1985), Kramer and 
Palowitch (19871, and Chang and Yu (1990); linguistic 
variables of Eshraph and Mamdani (19791, Kichert 
(19791, and Forbus (1984); qualitative simulation of de 
Kleer and Brown (19841, Rich and Venkatasubramanian 
(1987), and Kuipers (1989); SR1 algebra of Williams 
(1991); and dimensional analysis of Bhaskar and Nigam 
(1990). Semiquantatitive models include the follow- 
ing: digraph + fault tree of Ulerich and Powers (1988); 
order-of-magnitude (O[Ml) analysis of Mavrovouniotis 
and Stephanopoulos (1988); fuzzy set modeling of Zadeh 
(1983), Yu and Lee (19921, Petti et al. (19921, and 
Sugeno and Yasukawa (1993); interval analysis of 
Moore (19791, Struss (19881, Parsons (19931, and Chang 
et al. (1993). Quantitative models are also utilized for 
fault diagnosis. These include the following: certainty 
factors of Kramer (1987); non-Boolean analysis diag- 
nostic model processor (DMP) of Petti et al. (1990); deep 
model algorithm (DMA) of Chang et al. (1994); statistical 
analysis of Gertler and Singer (1985); Kalman filter 
approach of Isermann (1984) and Fathi et al. (1993). 

As pointed out in part 1 (Chang et al., 19941, despite 
the fact that a quantitative process model is employed 
in DMP or DMA for fault diagnosis, the resolution of 
this type of non-Boolean reasoning is limited t o  the 
qualitative level. Furthermore, since uncertainties 
always exist, it is extremely difficult to obtain a precise 
qualitative model over a range of operating conditions. 
Therefore, a more likely solution is to find a somewhat 
relaxed quantitative model: a semiquantitative model. 
A systematic methodology using qualitativelquantitative 
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process knowledge based on fuzzy set has been proposed 
by Yu and Lee (1992). However the fuzzy operations 
make the computation complicated. The simplest way 
to describe uncertainties is the “interval number” 
(Moore, 1979). For example, the statement “the heat 
transfer coefficient ranges from 7 to 10” can easily be 
described using an interval number, e.g., U = [7, 101. 
The interval arithmetics are discussed by Moore (19791, 
Krawczyk (1986), and Fichtner et al. (1990) in detail. 
Interval numbers are also employed in process design, 
operation, and analysis (Friedman and Reklaitis, 1975; 
Himmelblau, 1987; Grossmann and Floudas, 1987; 
Fichtner et al., 1990) by chemical engineers. Chang et 
al. (1993) use interval mathematics to model uncertain 
process sytems. The purpose of this work is to extend 
the deep model algorithm (Chang et al., 1994) to handle 
uncertain systems involving modeling errors, measure- 
ment noises, and different operating ranges. Interval 
arithmetic is employed for uncertainty description. 

This paper has the following structure. The defini- 
tions and basic operations of interval numbers are out- 
lined in the next section. The architectural features, 
z.e., the formation of interval models, knowledge repre- 
sentation schemes, and parity equations, are also 
described in this section. In section 3, the DMA- 
definitions and algorithms-is extended t o  the interval 
systems and characteristics of interval DMA are also 
explored. Comparisons are also made between interval 
and fuzzy DMA. A CSTR example is used to illustrate 
the effectiveness of the purposed method in section 4, 
followed by the conclusions. 

2. Interval Systems 

It is well-known that uncertainties exist invariably 
in describing physical systems. Fuzzy set theory is one 
of the most celebrated tools in describing systems with 
uncertainties (Zedeh, 1965,1983; Kaufmann, 1984; Yu 
and Lee, 1992; Sugeno and Yasukawa, 1993). Despite 
the apparent successes of fuzzy set theory in control 
applications, specialized hardware and complex soft- 
ware are often required to carry out complicated fuzzy 
operations. More importantly, bell-shaped (or trapezoid- 
shaped) membership functions of fuzzy set system are 
less straightforward to process engineers. For example, 
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where max(la1, (;I) and min(lal, lal) are denoted the 
maximum and minimum values of la1 and \;I, respec- 
tively. 
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Figure 1. Description of heat transfer coefficient close to 6 
(dashed line) and between 5 and 7 (solid line) using fuzzy set. 

the description of “the heat transfer coefficient (v) is 
close to 6” is shown in Figure 1. The bell-shaped 
membership function shows that fuzziness of U which 
in many occasions are difficult to construct. Interval 
system is an attractive alternative in describing uncer- 
tain systems. As shown by Chang et al. (19931, the 
interval model is equivalent to the quantitative (crisp) 
model at one extreme and can be relaxed to the 
qualitative model a t  the other extreme. By interval 
model we mean a mathematical model with interval 
numbers as coefficients. Conceptually, an interval 
model is easier to  formulate and much more familiar to 
process engineers. Here, the same description for “the 
heat transfer coefficient falls between 5 and 7” is quite 
familiar to most engineers. Figure 1 shows this de- 
scription in terms of membership function. In this 
example, no discrimination is made between 5 and 7 
(an interval number). In addition to the familarity to 
most engineers, the interval system is computationally 
less extensive than the fuzzy system. Therefore, inter- 
val models are employed in this work. 
2.1. Definitions. A detailed treatment of interval 

numbers is given in our previous paper (Chang et al., 
1993). Some important definitions are given here for 
subsequent development. An interval number a is 
defined as 

- - 
a = [a, a] = {xla I x I a ,  x E R} (1) 

where and are the lower and upper bounds of the 
interval, respectively, and R is the field of real number. 
For a crisp number a of the value 3, it can be expressed 
as 

a = [3,31 (2) 

For a qualitative description of a positive number a ,  it 
becomes 

a = (0, -1 (3) 

Therefore, it becomes obvious that the interval number 
is a generalization of qualitativelquantitative algebra. 
Several relevant definitions are 

(1) width 
- 

w(a)  = a-a (4) 

The width is an indication of the fuzziness of the 
quantity, and it ranges from 0 to 03. 

(2) absolute value 
- - 

( 5 )  

I- i f g  < O, ; > O 

The sign function poses little problem for a crisp 
number. Unfortunately, an interval number can cross 
over zero, e.g., a = [-1, 21. In this case, a is neither 
positive nor negative; therefore, “-” is defined for the 
case of interval number crossing zero. 

(4) negation 
- 

-a = [-a, -4 (7) 

2.2. Operations. Following the definitions of inter- 
val numbers, several basic operations of interval num- 
bers are defined. Segment interval arithmetic (SIA) of 
Chang et al. (1993) is employed in interval operations. 
It should be emphasized that SIA differs from the 
familiar interval arithmetic (IA) (Moore, 1979) for the 
following reasons. From a physical point of view, any 
real system is governed by strict quantitative laws of 
conservation ( eg . ,  conservations of energy and mass) 
regardless of the ambiguities of the system parameters. 
This implies that, to the end, the equations (qualitative, 
semiquantitative, or quantitative) are constrained by 
the physical laws of conservation, a crisp relationship. 
A crisp zero on the right-hand side of an equation is 
thus obtained. The arithmetic SIA can achieve this goal 
with any degree of ambiguity in system parameters. - 
Considering two interval numbers a = [a, a ]  and b = 
[b, bl, the basic operations are 

(1) addition 
- -  

a + b = [g+b, a+bl (8) 

(2) multiplication 
-- 

a*b = [min(a*b, -- Z), max(g-b, a*b)l (9) 

(3) subtraction 
- -  

a - b = minmax(a_-b, a-b) - -  - -  
= [min(a-6, a-b), max(g-b, a-b)l (10) 

where minmaxh, y )  is an operator that rearranges the 
crisp quantities x and y into the lower and upper bounds 
of an interval. 

(4) division 

alb = minmax(g/b, alb) 
= [min(a/b, -- i lb),  max(g/b, &/;)I 0 e b (11) 

In addition to these four operations, the following 
definitions are relevant for the development of interval 
type of DMA. 
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( 5 )  ranking two intervals 
- 

Let a - b = c = [c, cl (12) 

(a) a > b 

if sgn(c)  = 1 then a > b (13a) 

if sgn(c) = - and IC1 > I C _ \  then a > b (13b) 

(13~) 
if sgn(c)  = -, IC1 = I C [ ,  and a 2 b then a > b 

(b) a < b 

if sgn(c) = -1 then a < b (134 

and IC1 < I C [  then a < b (13e) if sgn(c) = 

if sgn(c) = -, IC1 = I C \ ,  and a c b then a < b 

(c) a = b 

(130 

if sgn(c) = 0 then a = b (13g) 

(6) maximum of two intervals 

i f a  > b 
MAX(a,b) = a o r b  ifa = b (14) I: i f a  < b 

(7) minimum of two intervals 

i f a  > b 
MIN(a,b) = a o r b  i f a  = b (15) I: i f a  < b 

where MAX(a,b) and MIN(a,b) are denoted as the 
maximum and minimum values of two intervals. Fol- 
lowing these definitions one is ready to perform interval 
operations on system equations. 

Notice that, similar to fuzzy set systems, basic 
properties of the interval system are quite different from 
those of crisp systems. Therefore, several precautions 
in the sequence of operations should be taken. From 
the definitions of negation, it is clear that 

- -  
= minmax[g - a, a - a1 
SO for g ~ i  (16) 

However, from the definition of subtraction, we have 

a - u = O  (17) 

for a = [a, a]. This example clearly illustrates the 
difference-between crisp and interval operations. The 
reason is obvious that “negation” is different from 
“subtraction” in SIA arithmetic (e.g., interval operation 
is lack of an additive inverse, as discussed in Chang et 
al. (1993)). In other words, generally, 

[a, a1 - (-A)@, 61 # [a, a1 + Xb,61 (18) 

except for the case of crisp a or b. Therefore, one should 
always perform the multiplication or division between 

Inlet Y 
I 

Figure 2. Chemical reactor example. 

the crisp and interval numbers first and, furthermore, 
the negation and subtraction are not interchangeable. 

2.3. Interval Models. Following the introduction 
of interval arithmetic, the derivation of interval models 
can be carried out in a straightforward manner. In 
terms of model structure, the interval model is exactly 
the same as the “crisp” model. In other words, the 
model structure of an interval model is no different from 
the conventional one. Consider the reaction system in 
Figure 2. The mass balance for the species A is 

where 9 0  and q are inlet and outlet flow rate, C h  and 
CA are inlet and outlet concentration of A, V is the 
volume of the reactor, and k is reaction rate, with 
nominal condition q: = 3, C i  = 0.5, qs = 2.5, C i  = 0.2, 
V = 2, and k = 2.5. This model structure is the same 
for both the crisp and interval models. The difference, 
however, lies in the fact that for the interval model, if 
the rate constant k, for example, is known to a certain 
degree (Le., k is an interval number), we can still utilized 
this model to find the unknowns (eg . ,  outlet concentra- 
tion of A). Therefore, the only difference between these 
two models is that the coefficients of the interval model 
can be interval numbers. Obviously, this is a very 
useful relaxation, since, in practice, the accuracy of the 
model parameters is only known to a certain degree. 
More importantly, one is able to utilize such information 
for fault diagnosis using the interval model. 

3. IntervalDMA 

3.1. Structure. The structure of interval deep model 
algorithm (DMA) for fault diagnosis is exactly the same 
as that of DMA in part 1 (Chang et al., 1994). Firstly, 
the residuals are generated once the measurements are 
available and the satisfaction factors (sf‘s) are computed 
for different parity equations with respect to each fault 
assumption. With sf s available, fault discimination is 
processed with the indication of degree of fault provided 
with consistency factor. Therefore, it is important to 
point out that the model equations involved can be 
fizzier than the crisp parity equations. That is, interval 
types of parity equations are allowed. Obviously, this 
may lead to very different characteristics in comparison 
with crisp DMA. 

3.2. Interval Parity Equations. Similar to parity 
equations for crisp DMA, the interval parity equations 
come directly from material and energy balances of the 
system. The parity equations can be formulated with 
respect to fault of interest. Consider a system described 
by parity equations and n faults a = [al, a2, ..., anlT to 
be diagnosed with k process measurements m = [ m ~ ,  
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-2, and k = -1, the residual eS, is exactly zero. This is 
the DMA discussed in part 1. 

eS, = 3a1 + (-2)a, + (-1) = 0 (25) 

However, if the abstraction ofpll is only to f10% of the 
exact value, (Le., p11 = 12.7, 3.311, then we have 

e; = [2.7, 3.31~; + ( - 2 ) ~ ;  + (-1) 
= [-0.3, 0.31 (26) 

mz, ..., mkP. In a vector form, it becomes 

c(a, m) = e (20) 

where e is the vector of residuals. Here, interval 
coefficients are allowed in this set of non-linear equa- 
tions. Obviously, we can utilize eq 20 to generate 
residuals. For the sake of clarity, this set of model 
equation is linearized at nominal operating condition 
(eg., as = [ai,  ui, ..., a:lT and ma = [mi, mi, ..., milT, 
where the superscript s denotes the steady-state condi- 
tion) and the linear interval parity equations become 

p l l a l  + p12a ,  + ... + pl ia i  + ... + plnan + k ,  = e, 

p z l a l  + p z 2 a ,  + ... + p a p i  + ... + p z n a n  + k ,  = e, 

pmlal  + pm2a2 + ... + p m i a i  + ... + pmnan + k ,  = e ,  
(21) 

where pji is the parameter which can be an interval 
number. The width of that interval number depends a 
great deal on the degree of the understanding of system 
by engineers. If the parameters of the system are 
known precisely, then pji’s are simply crisp numbers. 
In a more realistic case, very often the parameters are 
only known to a certain degree (or the plant is operated 
in a given range) and the Pji’s are interval numbers. 
Under these circumstances, the residuals of the parity 
equations cannot be zero even at nominal operating 
condition. That is, 

ef =p,,aS, + p 2 + ;  + ... + p z i a ;  + ... +pzna i  + k ,  

eJ” = pjlaS, + p j 2 4  + ... + pjia;  + ... + pjnui + kj 

e& = p m l a ;  +p ,& + ... + p , p i  + ... +pmna:  + k ,  
(22) 

or, 

es = Pa8 + k (23) 

where e; is the residual for thejth parity equation at 
the nominal condition. Recall that, for a crisp system, 
the residual should be zero at  the nominal condition. 
Unfortunately, this is no longer the case for the interval 
system. The approximated zero ejS can be an interval 
number. The width of this approximated zero, e;, 
depends on the width of interval coefficients. The 
following example illustrates the relationship between 
e; and the fuzziness of the interval coefficients. Con- 
sider the parity equation with ai = a$ = 1. 

e1 = Pl l%+ P l z a ,  + k (24) 

For an exactly known (crisp) system withpll= 3,p12 = 

Here, the interval number el = [-0.3, 0.31 is an 
approximated zero, since the nonzero residual is the 
result of the fuzzy information involved in the parity 
equation. Ifpll is only known to f50% of its true value 
(i.e., p11 = D.5, 4.51) then the approximated zero 
becomes 

e; = [1.5,4.51a; + (-214 + (-1) = [-1.5, 1.51 (27) 

If the abstraction of the process knowledge is to an even 
fuzzier degree, (eg.,pll is known to be a positive number 
between 0 and 6), then e; becomes 

eS, = [O’, 6laS, + ( - 2 ) ~ ;  + (-1) 
= [-3.0, 3.01 (28) 

where O+ denotes a small positive number with the 
value of used for this example. From these four 
different degrees of abstraction, it can be seen clearly 
that the width of the approximated zero (e;) becomes 
wider as the process knowledge becomes fuzzier. How- 
ever, all these different levels of abstraction can all be 
utilized for the purpose of diagnosis. 

3.3. Tolerances. Similar to the crisp DMA in part 
1, the tolerances rji = [$, e1 are defined for each 
parity equation (j = 1, 2, ..., m) with respect to each 
defined fault origin (i = 1,2, ..., n). The upper and lower 
bounds of the tolerance (e and $1 are defined via the 
introduction of upper and lower bounds of tolerable 
perturbations (< and 9). For the set of nonlinear 
parity equations, the tolerances are defined as 

(a) violation high 
- 

= cj(aS,, af, ..., (1 + a&;, ..., ai, m) - 0 (29a) 

(b) violation low 

8 Jl = 0 - cj(a;, uf, ..., (1 - %)a;, a;+,, ..., ai, m) (29b) 

For the linearized version of parity equations, the 
tolerance becomes 

(a) violation high 

(b) violation low 

Notice that since the coefficients pi  can be an interval 
numbers, the tolerances (e and $1 can also be inter- 
val numbers. For the sake of clarity, let us assume that 
the upper and lower tolerance bounds are the same 
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(4 = ai). Under this circumstance, we have 
- 

and zji can take the form of an interval number 
- 

t.. JZ = [t,. 4” z..] JZ (32) 

where 3i and ;ji are the lower bound and upper bound 
of the interval. 

3.4. Satisfaction Factor. When a fault occurs ( e g . ,  
a: = ur + dai), the DMA generates residuals from 
interval parity equations followed by the computing of 
the satisfaction factors (from residuals). Under faulty 
conditions, the process measurements (m*) and the 
assumed nominal conditions (as) are substituted into the 
interval parity equations and the interval residuals are 
generated. 

(33) 

As pointed out earlier, for interval systems, the residu- 
als are not exactly zero even at the nominal condition 
(e; t 0). The errors (e) generated here are the contri- 
bution of the nominal residuals (e;) and the faulty 
situation. Therefore, the net residual as the result of 
process fault is 

e = [e, - e1 = P(m*)as + k(m*) 

(34) 

Notice that this is an extra step in obtaining the net 
residual for interval systems. Since for conventional 
crisp systems the nominal residual es is zero, the 
subtraction in eq 34 is not necessary (e; = 0). 

Since the net residual enetj comes from the subtraction 
of two interval numbers (eq 341, in theory, the resulting 
enetj may take any possible form, e g . ,  with the sign of 
+, -, or -. Here, the net residual comes from the 
repeated applications of the same parity equations, in 
general, it has a definite sign, e g . ,  + or -. The following 
example illustrates this property. Consider the parity 
equation in eq 26. Nominally, the approximated error 
is (with ui = 1) 

e; = [-0.3, 0.31 (35) 

which has the sign of “-”. If a positive deviation of 10% 
occurs in a l ,  then we have 

e ,  = L2.7, 3.311.1 + (-211 + (-1) = 
[-0.03, 0.631 (36) 

and, again, with the sign of “N”. However the net 
residual becomes 

enet,l = e ,  - e: = [-0.03, 0.631 - [-0.3, 0.31 = 
L0.27, 0.331 (37) 

which has a sign of “+”. Actually, the net residual is 
simply 

enet,l =pll(l . l  - 1.0) = L2.7, 3.310.1 = 
r0.27, 0.331 (38) 

Therefore, as long as p l l  has a definite sign, the net 
residual also has a definite sign. 

Once the net residual is calculated, one can proceed 
to  compute satisfaction factors s&. The residuals arise 

Figure 3. Interval satisfaction factor with different ranges of 
errors. 

not only from the fault itself but also from process noise 
and modeling errors. A non-Boolean measure is em- 
ployed to evaluate the degree of satisfaction to each 
parity equation with respect to a different fault (Kram- 
er, 1987; Chang et al., 1994). It should be noticed that 
since the net residual enetj and the tolerance (zji) can 
take the form of interval number, the satisfaction factor 
(s4i) is also an interval number. Similar to the crisp 
DMA, two cases are considered. 

(1)Pj i  f 0 

After some algebraic manipulation, eq 39 becomes 

Provided with enetJ and z,,, eq 40 gives the basis for the 
computation of the interval sf,,. 

As pointed out in part 1, sf,, measures the validity of 
ith fault assumption based on the j t h  parity equation. 
For the crisp DMA, the crisp sf,, gives a clearer indica- 
tion for the degree of satisfaction. The solid line in the 
diagonal of Figure 3 is the belief function for crisp 
systems. For interval systems, sf,, is an interval number 
and the width of sf,, depends on the width of the error 
(enetJ/rJz to be exact) as shown in Figure 3. The width 
(of sf,,) is an indication of the ambiguity in the resultant 
belief function. For example, if the error is [-50, 501, 
then sf is an interval number with extremely ambiguous 
interpretation (ranging from possible negative deviation 
sf = [-1,1]) (Figure 3). If, however, the error is a crisp 
number [50,501, the resultant sf gives a clear indication 
of positive deviation sf = [l, 11. Since fault isolation 
will be discussed in the next section, more of the 
ambiguous nature in interval sf will be discussed. 

The resultant interval sfs may not be as troublesome 
as it looks (Figure 3). Let us take the example in eqs 
25-28 to illustrate this fact. Equations 25-28 describe 
a parity equation with different degrees of abstraction. 
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the same fault assumption, s() if its (absolute) value 
exceeds 0.1 and it has a definite sign. If the sign of 
s( is undetermined ("4, then sgn* takes the sign of 
centroid of s(. Despite the fact that the definition of 
sgn* appears complicated, the computing procedure is 
rather straightforward. 
3.6. Fault Isolation. Two measures di, degree of 

fault, and cfi, consistency factor, are utilized to discrimi- 
nate faults once sfs are available. di's indicate the 
direction and degree of the deviations in the parity 
equations as the result of a fault, and cfi represents the 
consistency among the parity equations as a fault 
occurs. For the interval systems, similar approach can 
be taken. 

The degree of fault (di) for the ith fault assumption 
is 

' 

-. *...----- 
-1 

0 20 40 60 0 20 40 BO 

sf12 sf12 -1 0 
- I  5 ' - 1 5  

% of Faul t  'Z of Fault  

sgn($) if sgn(s f )  = - and Is(l L 0.1 and 131 1 IsCl 4 

sgn(se) 4 if s g n ( s 0  = - and Is(l 2 0.1 and $1 < Isel J 

+I ifls(1 0.1 
i 

-1.5 l  - -151 
0 20 40 60 0 20 40 60 

'Z of Fault  % of Faul t  

Figure 4. Satisfaction factor for a range of ambiguities in pi1. 
(Alp11 exact (pll= 31, (B) &lo% error inpll@11= [2.7,3.381), (C) 
350% error inpll (p11 = L1.5, 4.511, (D) 4~100% error inpll (pll = 
[io-4, 10101). 

The knowledge about the parameter p11 starts from 
exactly known (eq 25) to known to 350% (eq 27) and 
f100% (eq 28). Consider that faults occur in a1 and a 
range of faults are considered (0% to +loo% deviations). 
Figure 4 shows that, regardless of the degree of abstrac- 
tion, the satisfaction factors for the true fault origin 
( s f d  are always a crisp number and sf11 increases as 
the fault becomes more severe. However, the degree of 
abstraction has significant impact in the sf for the other 
fault assumption a2 ( s f d  The more ambiguous the 
knowledge about p11 is the wider sflz will be, as shown 
in Figure 4. Furthermore, as the degree of fault 
increases, the width of sflz decreases. Obviously, this 
is a reasonable result, since significant deviation (larger 
error) reduces the ambiguity in the belief function (sflz). 

Since the coefficient of parity equations with a value 
of zero (i.e., pji, = 0) is also utilized for fault isolation in 
DMA, the satifaction factor for this case is defined as 

(2)PjZ = 0 

where sf = I&, $1 is the maximum sf (in the absolute 
sense) for the ith fault in different parity equations with 
nonzero coefficient. This definition indicates the sign 
of sf with pji = 0 follows the sign of the largest sf (for 

(44) 

From the definition, it is clear that di is simply the 
arithmetic mean of s& in the ith column. However, 
unlike crisp DMA, di can be an interval number (since 
s${s can be interval numbers) with the lower and upper 
bounds falling between -1 and 1. A positive (or 
negative) di indicates that ai deviates from its nominal 
value in a positive (or negative) direction. In theory, 
the true fault origin (ai) under perfect modeling and 
noise-free conditions gives a zero width (crisp) di as 
implied by the example in Figure 4 (crisp sfs give crisp 

In the crisp DMA, cfi measures the similarity between 
the sf;.i)s (j = 1, 2, ..., m). The range where crisp S$i 
distributed is normalized and cfi can be calculated 
subsequently (Chang et al., 1994). For the interval 
systems, comparison has to be made between interval 
s$'s, and the distribution of these intervals can, then, 
be utilized for finding cfi. A simple way for the 
consistency checking is to use the center point (centroid) 
of an interval, instead of the interval itself, for com- 
parison. Therefore, the computation of cfi for the 
interval systems is exactly the same as the crisp one 
except that centroid of s$i is employed. The center 
point, ac, of an interval a is uc = (1/2) (a + a). 
Following this modification the computation of cfi is 
exactly the same as the crisp DMA. 

4). 

in which 

 SF,,,^ = max(sci, sf&, ..., sf",,) (46) 
i 

 SF-,^ = min(sfC,,, sGi, ..., sFmi) (47) 

Notice that cfi is a crisp number and ranges from +1 to  
- 1 (consistency to inconsistency). Once the consistency 
factor cfi and degree of fault di are calculated, the 
complete measure of fault in ai is 

(di)cg (48) 

This is a combined index where di indicates the degree 
and direction of the assumed fault and Cfi measures the 
consistency of the assumption from the system (the set 
of the parity equations) point of view. 

i 
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3.6. Results. Based on different knowledge abstrac- 
tion, process information can be expressed in terms of 
crisp, interval, or fuzzy numbers. Examples of Chang 
et al. (1994) are used to illustrate the similarities and 
differences between the crisp, interval, and fuzzy infor- 
mation employed. 
3.6.1. Crisp vs Interval. Assume that system 

parameters are known to 110% of the exact value for 
the diagnostic procedure. Consider the examples of part 
1 (Chang et al., 1994). For the crisp information 
employed, we have 

e ,  = 2a1 + 2a2 + Oa, - 4 (49) 

e2 = 2a1 - 2a2 + 2a, - 2 (50) 

For the interval information employed, if p11 and p21 
are known to 110% of the exact values, then the parity 
equations becomes 

e ,  = L1.8, 2 . 2 1 ~ ~  + 2a2 + Oa, - 4 

e2 = [1.8,2.21a1 - 2a2 + 2a, - 2 (51) 

The difference between these two systems lies in the 
fact that the system is known to different degrees. 
Figure 5A shows the parameterpll(2 in eq 50 and 11.8, 
2.21 in eq 51) with different levels of abstraction. 
Assume that the tolerances are taken as 10% of the 
nominal system parameters as 

zji = Pji*l0% (52) 

Following the design procedure, the DMA is constructed 
and the diagnostic results for 20% error in a1 for the 
crisp and interval are 

(dl)CfI (d2)cf2 (d3)cf3 

crisp (0.94, ( O L 1  (0.46)o 
interval (0.94), ([-0.02, 0.021)-0,95 (L0.45, 0.471), 

(53) 
Figure 5B illustrates the degree of fault (dl, d2, and d3) 
for these two systems. The results clearly indicate that, 
despite the fact that fuzzier information is employed in 
the DMA, the diagnostic resolution of DMA is as good 
as that of the crisp DMA (the one requires more precise 
process information). Similar results can be obtained 
for the other two examples as shown in Table 1. One 
important point from these examples (Table 1) is that, 
contrary to  one’s intuition, fuzzier information of an 
interval (or fuzzy) parity equation does not deteriorate 
diagnostic resolution. Actually, relatively speaking, the 
diagnostic resolution is improved since the true fault 
origin gives noninterval (crisp) di. The reason for that 
is 2-fold. The “SIA” arithmetics are involved in DMA, 
and this algorithm tends to produce crisp di in the true 
fault origin for a system with an interval model under 
“perfect” process conditions (the process parameters 
remain the same under nominal and faulty conditions). 
3.6.2. Interval vs Fuzzy. The interval DMA is 

compared to a fuzzy set modeled DMA. The bell-shaped 
fuzzy number (Dubois and Prade, 1978) is used to  
describe uncertain process information. Here the fuzzy 
number is characterized by two numbers p and y which 
indicate the peak point and bandwidth of the fuzzy set, 
respectively (Figure 15). In terms of equations we have 
{p, y } .  Therefore, in the case of fuzzy system, the parity 

Table 1. Examples (Chang et al., 1994) and Diagnostic 
Results by Using DMA 

example 1 

example 2 

example 3 

(A) Crisp Information 

el = 2a1+ 2az + Oa3 - 4 
e2 = 2a1 - 2a2 + 2a3 - 2 

el = la1 + loa2 + Oa3 - 11 
e2 = loa1 - la2 + loa3 - 19 

el = la1 + loa2 + loa3 - 21 
e2 = la1 - l la2 + la3 - 13 

(B) Interval Information 

el = D.8, 2.21~1 + 2az + Oa3 - 4 
e2 = i1.8, 2.21~1 - 2 a ~  + 2a3 - 2 

el = LO.9, l.lb1 + loa2 + Oa3 - 11 
e2 = [9, l l l a ~  - la2 + loa3 - 19 

el = L0.9, l.lb1 + loa2 + loa3 - 21 
e2 = LO.9, 1.11~1 - llaz + la3 - 13 

(C) Fuzzy Information 

example 1 

example 2 

example 3 

example 1 

example 2 

example 3 

0 = (2,0.2}al+ 2az + Oa3 - 4 
E2 = (2,0.2)Ul - 2az + 2a3 - 2 

& =  (1,O.l)a~ + loa2 + Oa3 - 11 
02 = (10, 1)ai - la2 + loa3 - 19 

81 = (1,O.l)ai + loa2 + loa3 - 21 
t?z = (1, O.l}al - llaz + la3 - 13 

(D) Diagnostic Results (20% Faults in al) 

(dl)cf, (ddcf, (d3)cf3 

example 1 
Crisp (0.94)i.o (o)-i.o (0.46)o 
interval (0.94)l.o [-0.02, 0.021-0.95 f0.45, 0.4710 
fuzzy {0.94, (0, 0.231-0.96 I0.46, 0.2310 

0.35ho 
example 2 

Crisp (0.94)1,0 (-0.5)o (0.5)0.062 
interval (0.94)l.o (-0.5)o L0.477, 0.52310.0676 
fuzzy (0.94, (-0.5, 0.510 ~0.5,0.01210.06 

0.38611.0 
example 3 

Crisp (O.94)l.O (0.0005)0.68 (0.4710 
interval (0.94)1.0 [0.0002, 0.000910,68 i0.457, 0.4810.0013 
fuzzy (0.94, (0.0005, 0.001}0.69 (0.48, 0.121}0,001 

0.36411.0 

equations are defined as 

e ,  = (2,0.2}a1 + 2a2 + Oa, - 4 

e2 = {2,0.2}a1 - 2a2 + 2a, - 2 (54) 

Figure 5A compares the fuzziness of the process infor- 
mation employed. The Appendix gives the computation 
procedure for the fuzzy set, and its corresponding 
arithmetic is only an approximation t o  the true fuzzy 
operation. The diagnostic results are 

(dl)Cfl ( d J C f *  (d,)Cf3 

interval (0.94, ([-0.02, 0.021)-0,s5 ([0.45, 0.4711, 
fuzzy ((0.94, 0.35}), ((0, o.23})-0,s5 ((0.46, 0.23}), 

(55) 

Figure 5B shows the degree of faults for these two 
systems. The results indicate that the interval DMA 
gives better diagnostic resolution than the fuzzy DMA 
despite the fact that more involved process information 
is employed (Figure 5A). One reason for that is different 
arithmetics are used in the fuzzy operation (Chang et 
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al., 1993). Nonetheless, the results clearly indicate that 
the proposed interval DMA is very effective in fault 
diagnosis as compared to the crisp or fuzzy DMA. 
3.7. Characteristics. As mentioned earlier, am- 

biguous information does not necessarily deteriorate 
diagnostic resolution in interval DMA. A system (ex- 
ample of Table 1A) with three different levels of 
abstraction (ranging from crisp to purely qualitative 
systems) is used to illustrate the relationship between 
ambiguity and resolution. In all the systems investi- 

gated tolerances ( t j i )  are taken as 10% of the nominal 
value of coefficients (pji). 
(1) All coefficients are crisp: 

e ,  = l a ,  + loa, + Oa, - 11 
e2 = 10a, - l a ,  + loa, - 19 (56)  

A range of faults in ai is used to test the resolution of 
interval DMA. The results (Figure 6) show that DMA 
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Figure 6. Diagnosis results of example 2 

Fault in a2 
l 7  
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- 1  
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i! e r r o r  in a2 
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-1 
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1 e r r o r  in a2 

11 I 
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-1 
0 10 20 30 40 50 

i! e r r o r  in a2 
56) with crisp ( 0 8  uncertainty) p11 and 

can correctly identify the fault origin with the crisp pair 
of (di),fi and as the magnitude of the fault increases 
clearer indication of fault results. 

(2) The coefficients p11 and p21 are known to f50% of 
exact values: 

e ,  = C0.5, 2 . 0 1 ~ ~  + loa, + Oa, - 11 

e ,  = [5 ,  20]a, - la, + loa, - 19 (57) 

In this case, p11 is known to fall in [0.5,21 andpzl is [5 ,  
201. Again, faults in a, (ranging from 0 to 50%) are used 
to test DMA with interval parity equations. Figure 7 
shows that, similar to  the results of the crisp system 
(Figure 6), interval DMA, (di),f, can correctly find the 
fault origin. The results of (di),f, for faults in ai are 
exactly the same as that of the crisp system (graphs in 
the diagonal of Figures 6 and 7 ) .  However, interval d l s  
result when a fault occurs in aj 0' # i) as shown in Figure 
7. The results clearly show that, as opposed to perfor- 
mance deterioration using ambiguous information, in- 
terval DMA differentiates the true fault origin from 
others utilizing the fuzzy and nonfuzzy (crisp) nature 
of process knowledge. That is in part due to the 
employed SL4 (Chang et al., 1993) as will be explained 
in greater detail later. 

(3) The coeficients p11 and p12 approach pure qualita- 
tive values: 

e ,  = 

e ,  = 101Ola, - la, + loa, - 19 (58) 

10'~1a, + loa2 + OU, - 11 

PZl 

Fault in a3 
l 7  

0 

- 1  
0 10 20 30 40 50 

Z e r r o r  in a3 

-1' I 
0 10 20 30 40 50 

% e r r o r  in a3 

-1' 
0 10 20 30 40 50 

i! e r r o r  in a3 
under different degree of fault. 

Since numerical values are needed for interval DMA, 
qualitative values are represented using exactly small 
(e&., low4) and large ( e g . ,  1O1O) values. Again, interval 
DMA using eq 58 is tested for a range of failure in a,. 
Similar to the results of 50% uncertainties in pl l  and 
pzl (Figure 7), (di),f, for a fault in ai are exactly the same 
as that of the previous two cases. However, the width 
of the interval of dj grows for incorrect interpretation 
(Figure 8). 

The results of these three different levels of abstrac- 
tion show the advantages of interval DMA when fuzzier 
information is employed. The reason for that is actually 
quite simple. Consider the set of two parity equations 
(crisp or interval type); if a1 is fault (a1 = (1 + al)a", a2 
= a;, and a3 = a!) the residuals are 

enet,l = e ,  - eS, = pll(l + a,>aS, + p l za i  + ~ 1 3 ~ ;  + k ,  - 

(plla! + Plza; + P13a: + k l )  

= Plzala; (59b) 

and the tolerances are taken as 10% of their nominal 
values. 

tji = 0. lp j ,  (60) 
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Figure 7. Diagnosis results of example 2 (eq 57) with 50% uncertainty in p11 and pzl  under different degree of fault. 
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Figure 8. Diagnosis results of example 2 (eq 58) with 100% uncertainty in p l l  and pzl  under different degree of fault. 
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Table 2. Steady-State Operating Conditions for CSTR Table 3. Cases of Different Uncertainty 
F = 40 ft3h 
V=48f t3  
C b  = 0.50 moVR3 
CA = 0.245 moVfi3 

Tj = 594.6 "R 
Fj = 49.9 ft3h 
V, = 3.85 R3 
ko = 7.08 x 10" h-' 
E = 30 000 BTU/mol 
R = 1.987 BTU/(mol "R) 

Fmax = 96 f t3h  
bias1 = 12 psi 
bias2 = 9 psi 

T = 600 "R 

Ah = 19.6 fi2 

U = 150 BTU/(h.ft2*"R) 
A = 250 ft2 

AH = -30 000 BTU/mol 
cp = 0.75 BTU/(lbm "R) 
cj = 1.0 BTU/(lbm "R) 

gj = 62.3 lbm/ft3 
Pet = 600 "R 
k,l = 32 
k,z = 10 
tp = 0.9 h 
512 = 0.6 h 
Lset = 0.192 ft 

Tjo = 530 "R 

= 50 1bm/ft3 

Therefore, based on the definition of Sf;i  (eq 391, sf11 and 
sfzl are 

In general, both the numerator enet,i and denominator 
zji can be interval numbers. However, according to SIA 
(Chang et al., 19931, the ratio of these two interval 
number is simply a crisp number. Therefore, we have 

+ \mI 
1-1 

\ 0.1 I 
Sfil = 

1 + (g)l (62b) 

The degree of fault di, then, becomes 

which is again a crisp number. Generally, the ratio of 
two different interval coefficients, e.g., ~ 1 1 1 ~ 2 1 ,  will not 
result in crisp sf and d. The unique property shown 
here is the result of interval DMA and the employment 
of SIA in interval arithmetics. 

4. Application 
A CSTR example (Chang et al., 1994) is used to 

illustrate the design and diagnosis of the interval DMA. 
It should be noticed that at a given instance any 
physical system is always described by a "crisp" process 
model. In this example, a set of interval parity equa- 
tions is used to describe the "crisp" physical system. 
Following the linearization procedure with respect to 

case 1 case 2 case 3 
U ,  BTU/(h.Ra"R) [135, 1651 [135, 1651 [120, 1801 
AH, BTU/mol -30 000 [-33 000, [-57 000, 

-27 0001 -30001 

Table 4. Fault Origins of CSTR Example 
symbol fault origin 

FO 
C b  
ko 
U 
Tj 

changes in the feed flow rate 
changes in the feed concentration 
changes in the preexponential factor of the rate constant 
changes in the overall heat transfer coefficient 
sensor failure in cooling water outlet temperature 

the fault origins and the known process measurements, 
the linearized parity equations become 

O = F o - F  (64) 

V + F o T o  + I. C i k '  

ecp F + k s T  

Steady-state conditions are listed in Table 2. Up to this 
point, the interval DMA design procedure is exactly the 
same as the crisp one. In any real system, such as this 
CSTR process, some parameters are only known to a 
certain degree. For example, the heat of reaction AH 
or activation energy E is generally not exactly known. 
Even if the parameter is exactly known at a given 
instance, it may change or degrade over time. The 
overall heat transfer coefficient U is a typical example. 
Therefore, an interval process model is an ideal choice 
for realistic process description over a range of operating 
conditions. In this example, AH and U are assumed to 
be known in a given range and three cases with different 
levels of abstraction are studied (Table 3). Five possible 
fault origins are to be diagnosed which include load 
changes, performance degradation, and sensor failure 
as shown in Table 4. 

4.1. Case 1: Heat transfer coefficient is an 
interval number (&lo%). If the overall heat transfer 
coefficient (U) is known to be within the range U = [135, 
1651, the parity equations can be obtained by substitut- 
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Here, tj,min)s indicate the positions where the coefficients 
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Figure 10. The diagnostic resolutions (d,),f, of case 1 in CSTR example. 

ing steady-state values of Table 2 into eqs 63-65. The 
vector form of the parity equations is 

Following the interval D U  procedure (section 3), the 
tolerances are 

1 0  0 0  
7.395 2.03 1.0 -1.357 [lii = [ 0 0 0 1.0 

L135.5, 165.61 x 
0 

-[109.1, 131.31 I 
1 

‘11 ‘12 ‘13 ‘14 ‘15 

‘31 ‘32 ‘33 ‘34 ‘35 
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result from the fault, the diagnosis results (sf j 's  and di's) 
remain rather crisp as the results of relatively small 
residuals as compared to  the tolerances. 

4.2. Case 2: Heat transfer coefficient and heat 
of reaction are interval numbers (both &lo%). In 
this case, both the heat transfer coefficient and heat of 
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Figure 12. The diagnostic resolutions (di),f, of case 2 in CSTR example. 
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Figure 13. Satisfaction factors of case 3 in CSTR example. 

Again a 20% increase in FO (at t = 1 h) is used to 
evaluate interval DMA. Here, the ambiguities (in U and 
AH) lead to satisfaction factors with more significant 
interval nature as shown in Figure 11. However, the 
sfs still give a consistent indication of the fault origin 
(Fo) as shown in Figure 12 using (d& Notice that the 
consistency factor (cfi) gives a clear indication of fault 
regardless of the ambiguities involved in the parity 
equations. 

4.3. Case 3: Heat transfer coefficient and the 
heat of reaction are interval numbers (f20% and 
f90%, respectively). In this case, a still more am- 
biguous knowledge is employed with U = [120, 1801 
and AH = [-57000, -30001. The parity equations 
become 

E;] = 

0 0 0  0 
55.71 2.03 1.0 -1.357 [120.44, 180.661 

0 0 1.0 -[97.98, 142.571 

[-139.9, -125.051F + 5.367p0 + [-8.05, -6.17P + 
[2.03,38.51V + [-52.27, -2.751 

[89.58, 134.371F - (l)Pj + 8.201pjO 

Again, a 20% increase in FO is used to test the interval 

DMA. Similar to  the results of case 2, a wider interval 
coefficient leads to sfs with wider intervals, as shown 
in Figure 13. However, (d&, still gives a clear indica- 
tion of the fault origin (Fo) as shown in Figure 14. 
Similar results can be obtained for all five different fault 
origins (Chang, 1994). 

The results from different levels of abstraction (cases 
1-3) clearly show that the interval DMA is able to 
utilize ambiguous information in isolating fault origin. 
More importantly, diagnostic resolution is maintained 
while a wide range of operating conditions is included. 

5. Conclusions 

Uncertainties arise naturally in chemical processes 
as a result of different operating conditions or lack of 
precise knowledge about system phenomena. In this 
work an interval model based diagnosis system was 
proposed. The interval DMA is a direct extension of 
DMA to handle a wider range of operating conditions. 
Following the development of DMA, the design proce- 
dure of interval DMA was given and the characteristics 
were also discussed. Different levels of abstraction in 
an interval model were investigated, and results showed 
that the increased ambiguity in the parity equations 
does not degrade the diagnostic resolution. A CSTR 
example was used to illustrate the design and imple- 
mentation of the interval DMA. Results showed that 
the proposed method is not only handling a wider of 
operating condition but also showing a good diagnostic 
resolution. Furthermore, it reduces to crisp DMA (part 
1) when all the system parameters are known exactly. 

Nomenclature 

A = heat transfer area of CSTR, f t 2  
a = vector of fault assumption 
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Fault Origin: FO (Case 3 )  

I .o CAO 
0.5 

4 
6 0 . 0  

-0.5 -0.5 -0.5 -0.5 

-1.0 -1.0 -1.0 -1.0 

Time (hr . ) Time( hr  .) Time(hr .) Time(hr.) Time (hr. ) 

4 -0.0 0 ~ 5 p + ; p i ; p i : + : : ~ -  1 .o 

0 
-0.5 -0.5 -0.5 -0.5 -0.5 

-1.0 -1.0 -1.0 -1.0 -1.0 

Time(hr.) Time( hr . )  Time(hr.) Time(hr.) Time( hr.) 

Figure 14. Diagnostic resolutions (d& of case 3 in CSTR example. 

ai = ith fault 
cj(.) =j th  confluence of system model 
cp = heat capacity of process liquid, BTU/(lbm OR) 
cpj = heat capacity of cooling water, BTU/(lbm OR) 
CA = concentration of reactant A, mol/ft3 
Cb = feed concentration of reactant A, mol/ft3 
cfi = consistency factor for ith fault 
di = fault degree of ith fault 
E = activation energy, BTU/mol 
e = residual vector 
ej = residual value ofjth parity equation 
e: = approximated zero ofjth parity equation 
enetj = net residual value ofjth parity equation 
F = reactor outlet flow rate, R 3 k  
Fj = cooling water flow rate, ft3/h 
Fo = reactor inlet flow rate, ft3k 
A H  = heat of reaction, BTU/mol 
k = constant vector term of parity equations 
kj = constant term ofjth parity equation 
ko = Arrhenius constant, h-l 
m = vector of process measurements 
m = number of parity equations 
n = number of fault origins 
P = matrix ofpji 
pji = coefficient for ith fault onjth parity equation 
sfji = satisfaction factor for ith fault ofjth parity equa- 

sfi* = the maximum sf (in absolute sense) for the ith fault 
sgn* = sign of s$i7 defined by eq 43 
T = reactor temperature, OR 
Tj = cooling water temperature, OR 
Tjo = cooling water inlet temperature, O R  

TO = reactor inlet temperature, O R  

U = overall heat transfer coefficient, BTU/(h*ft2*"R) 
V = reactor volume, ft3 

Greek Letters 
ai = percent of deviation in ai 
/3 = peak point of bell-shaped fuzzy number 
y = bandwidth of bell-shaped fuzzy number 
p = membership of fuzzy set 
Q = density of process liquid, lbm/ft3 
Qj = density of cooling water, lbm/ft3 

tion 

= heat transfer area of jacket, ft2 

Z I ~  = reset time of ith loop of PI controller 
z~ = tolerance for ith fault ofjth parity equation 
Subscripts 
- = lower bound 
max = maximum value 
min = minimum value 
Superscripts 
- = upper bound 

" = normalized fault with respect to  steady-state value 
c = centroid of interval value 
s = steady-state value 
set = set point 

= fuzzy set 

Appendix. Fuzzy DMA 
As the fuzzy information is used to represent system 

parameter 2, fuzzy number 2 = {p, y }  can be defined by 
a bell-shaped membership function (Figure 15). 

where x is in the universe R, Le., x E (-m, m). The 
membership function is characterized by two param- 
eters: (a) the peak point, ,8, Le., the point at whichp = 
1, and (b) the bandwidth, y ,  which is defined as the 
distance between the crossover points, i.e., the point at 
which p = 0.5. Thus, the fuzzy information, x, is 
expressed as {p, y } ,  where p is the peak point and y is 
the bandwidth. This short exposition of the properties 
of fuzzy numbers follows the presentation of Dubois and 
Prade (1978). 



Fuzzy number 
Tu M I P ,  Y l  

a 
C 

n 

I -  

u) 

0.5 

0.0 

PdY p P+hY 
universe x 

Figure 16. Bell-shaped fuzzy number = {b, y } .  

The operations of fuzzy numbers {/?I, yl} and 1 8 2 ,  y 2 1  

(A2) 

643) 

In the case of multiplication and division, the approxi- 
mations become 

can readily be established by extension principle: 

{Pl, Yl1 + C P Z ,  7 2 1  = {PI  + P 2 , Y 1 +  Y 2 1  

{Pl, Y l 1  - 1 P 2 ,  Y 2 1  = 1/31 - B 2 ,  Y 1 +  Y 2 1  

B1 f 0 andP2 f 0 (A5) 

Assume that the fuzzy residual and tolerance are 
formed as Z j  = {Be, Ye} and Tji = {fit, rt}, respectively. 
For DMA diagnostic procedure, the satisfaction factors, 
s&, degree of fault, di, and consistency factor, c4, are 
redefined as 

where s g n ( i )  is the signature function of i, given the 
value of +1, 0, -1. The signature function is taking 
the sign of peak point that is defined as 
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+1 forp > 0 1 -1 fora  < 0 
sgn(2) = sgn(P) = 0 forb= 0 (A7) 

For the case ofjijj = 0, the satisfaction factor is rewritten 
as 

d -  

where Tj ,dn  = {&-, yt,-} is fuzzy expression and sgn* 
is defined similarly as eq 43. Therefore, the degree of 
fault and consistency factor become 

and 

in which 

~ f c , ~ ~ , ~  = midsf",,, sGi, ..., sf",,) = min(Bli, P2i, ..., P,J 
(A121 

where s$ is the center point of ~ $ 1  = {pji, Yji}. 
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