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Abstract--Despite the success of the relay-feedback system in autotune identification, it is well known that 
an ideal (on-off) relay-based identification can lead to significant error in the ultimate gain and ultimate 
frequency. Instead of taking remedial action after relay-feedback experiments, an approach is taken to 
re-design the experiment such that a better estimate of K u and co w can be achieved throughout the 
experiment. In this work, the saturation relay is employed instead of the conventional ideal relay. The 
analyses show that the saturation relay gives significant improvement in the identification of K u and ~,. 
However, too small a slope in the saturation-relay may also fail to generate sustained oscillation. 
A procedure is tested on linear and nonlinear systems for system identification and multivariable autotun- 
ing. Using the proposed method significant improvement can be achieved while maintaining the simplicity 
of the relay feedback test. 

1. INTRODUCTION 

Autotuning of PID controllers based on relay-feed- 
back tests has received a great deal of attention re- 
cently (Luyben, 1987; H/igglund and ,~str~m, 1991). It 
identifies the important dynamic information, ulti- 
mate gain (K,) and ultimate frequency (cou), in 
a straightforward manner. The success of this type of 
autotuners lies on the fact that it is simple and reliable. 
The appealing feature of the relay-feedback autotun- 
ing has lead to a number of commercial autotuners 
(H~igglund and ,AstriSm, 1991) and industrial applica- 
tions (Papastathopoulou and Luyben, 1990). Exten- 
sions of relay-feedback systems to monitoring 
(Chiang and Yu, 1993) and nonlinear control (Lin and 
Yu, 1993; Luyben and Eskinat, 1994) has been made. 
Moreover, the autotuning multiloop PI controllers 
has also been proposed (Shen and Yu, 1994; Loh and 
Vasnani, 1994). 

Luyben (1987) pioneered the use of relay-feedback 
tests for system identification. The ultimate gain and 
ultimate frequency from the relay-feedback test are 
used to fit a typical transfer function (e.g. first-, sec- 
ond- or third-order plus time-delay system). This 
identification procedure is called ATV method. It was 
applied successfully to a highly nonlinear process, e.g. 
high-purity distillation column. Despite the apparent 
success of autotune identification, it can lead to signi- 
ficant errors in the ultimate gain and ultimate fre- 
quency approximation (e.g. 5-20% error in K,, see 
Chiang et al. (1992)) for typical transfer functions in 
process control system. The errors arise because of the 
use of linear approximation (describing function anal- 
ysis) to a nonlinear element. The square type of output 
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from the relay is approximated with the principal 
harmonic form of the Fourier transform (Antherton, 
1982; Chiang et al., 1992) and the ultimate gain is 
estimated accordingly. Therefore, several attempts 
have been proposed to overcome this inaccuracy. Li 
et al. (1991) use two relay tests to improve the estima- 
tion of Ku and ~ou. Chiang et al. (1992) employ the 
concept of a discrete-time system to give a better 
estimation of cou. Notice that, in these attempts, ideal 
(on-off) relay is employed in these experiments and 
modifications are made after the experiments are 
completed. Since the major source of the error comes 
from sine-wave approximation of a square type of 
oscillation, a straightforward approach to overcome 
this inaccuracy is to modify the experiment itself(not 
to make remedial action afterward), i.e. to produce 
a more sine-wave-like output by re-designing the 
relay. 

The purpose of this work is to devise an experi- 
mental design in relay-feedback system such that 
more accurate estimate of ultimate gain and ultimate 
frequency can be achieved. In this work, saturation 
relay is employed. This paper is organized as follows. 
Section 2 describes the theory of saturation-relay 
feedback system. Section 3 derives the autotune iden- 
tification procedures. A linear system and a nonlinear 
distillation column are used to test the effectiveness of 
the proposed method and the proposed autotune 
identification is also applied to MIMO autotuning in 
Section 4 and is followed by the conclusion. 

2. ANALYSIS 

2.1. Conventional approach: ideal (on-off) relay 
Autotuning based on relay feedback can be ana- 

lyzed via block diagram. Consider a feedback system 
(Fig. 1) where G(s) is a linear transfer function and 
N is a nonlinear element. If the input signal (e(t)) to 
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Fig. 1. Nonlinear feedback system. 
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(A) Ideal Relay 

oul 

h 

the nonlinear element is a sinusoidal wave: 

e(t) = a sin cot (1) 

where a is the magnitude of sinusoidal wave, the 
output  signal (u(t)) of the nonlinear element is 
a square wave (Fig. 2). Since most control  system 
analyses are based on linear theory, Fourier  trans- 
formation is useful in this regard. The output  of the 
nonlinear element can be expressed as 

u(t) = Ao + ~ A ,  cos ncot + B ,  sin ncot (2) 
n = l  

where 

= u(t)  d(cot) (3) Ao ~ o 

I t "2'~ 
A ,  = - u(t)  cos ncot d(cot) (4) 

7r o 

1 f2. B,  = - u(t)  sin ncot d(cot). (5) 
g 0 

Because the output,  u(t), is an odd-symmetric  function 
(i.e. N(a)  is unbiased and symmetric to the origin), the 
coefficients Ao and A, are equal to zero (i.e. Ao = 0 
and A, = 0, Vn). Therefore, eq. (2) becomes 

u(t) = ~ B ,  sin ncot. (6) 
n = l  

Furthermore,  if an ideal relay is employed (Fig. 2), 
then the coefficients B, become 

I 14-h, n-- -1 ,3 ,5 ,  ... 
B, = ~ n  rc (7) 

L 0, n = 2,4,6, ... 

The describing function analysis provides a tool  for 
frequency domain analysis for this nonlinear system. 
Only the principal harmonic is employed for the lin- 
ear equivalence, i.e. only the first Fourier  coefficient is 
used for frequency domain analysis. Therefore, the 
describing function is 

N(a)  = (BI + j a l ) / a .  (8) 

For  the ideal relay, since Ax = 0 and B1 = 4h/~,  we 
have 

N (a) = 4h/lra. (9) 

Since sustained oscillation is generated from a relay- 
feedback test (e.g. Fig. 2), this frequency corresponds 
to the limit of stability, i.e. 

1 + G( jco . )N(a)  = 0 (10) 

)ut 

, input 

(B) Input-Output responses 

u 

Input 

I \ /     ,  l armonio 
/ ~ approximation 

Output . . . . .  / 

o t  

Fig. 2. Input output relationship for ideal (on~fl') relay. 

or the ultimate gain (K,) becomes 

K .  = - 1 /G(jo) . )  

= X(a)  

= 4h/Tra. (11) 

Part  of the success of the autotune identification 
comes from the fact that K,  and co~ can be read 
directly from the experimental results [e.g. Fig. 2(B)]. 

The results of eq. (11) clearly indicate that  the 
ultimate gain (Ku) is estimated from the ampli tude 
ratio of two sinusoidal waves at a given frequency (cou) 
(i.e. u(t) = (4h/Tra) sin ~ot over e(t) = a sin cot). Obvi- 
ously, the output  of the relay is a square wave instead 
of a sinusoidal wave. This leads to erroneous result in 
the estimated ultimate gain. Figure 2 shows the cor- 
responding inpu t -ou tpu t  relationship for an ideal re- 
lay. Here, the principal harmonic is used to approxim- 
ate a square wave [Fig. 2(B)]. Chiang et al. (1992) 
point  out that  the truncation of the higher-order 
terms (i.e. n = 3, 5, 7 . . . .  ) affects the ult imate gain and 
ultimate frequency estimation. Mathematically,  it is 
difficult to include the high-order terms in a linear 
analysis. Instead of including higher-order terms, 
a straightforward approach is to redesign the relay- 
feedback experiment. In other words, it is helpful to 
devise an experiment such that  the output  response of 
the relay is more sine-wave-like (less square-wave- 
like). 

2.2. Alternative:  sa turat ion-re lay  f e edback  
Since the square-wave output  [e.g. Fig. 2(B)] 

comes from the abrupt  change at the zero point  [i.e. 
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e(t) = 0 in Fig. 2-1 of an ideal relay, the saturation 
relay provides an attractive alternative for a smooth 
transition around the zero point as shown in 
Fig. 3(A). The saturation relay is characterized by two 
parameters: relay height (h) and a slope (k) 
[Fig. 3 (A)-1. Therefore, the input of the relay is limited 
by ~i where 

d = h/k (12) 

i.e. if the input to the relay is less than ~i (1 el ~< fi), then 
the output is proportional to the input with a factor k: 

u = k . e .  (13) 

However, if the input to the relay is greater than 
~i (I el > fi), then the output of the relay is limited by h 

o r  

u = h  (14) 

u = - h. (15) 

With the saturation relay inserted in the feedback 
loop, the output of the relay is less square-wave-like 
response for a sine-wave, with an upper (or a lower) 
limit and the height of the output response is limited 
by h (h = kti). 

The output of the saturation relay can be character- 
ized analytically. Consider a saturation-relay feed- 
back system to the nonlinear element to be 
a sinusoidal wave with an amplitude a [Fig. 3(B)], i.e. 

e(t) = a sin cot. (16) 

The output to the nonlinear element, u(t), looks like 
a truncated sinusoidal wave and the closeness of this 
output response to a sine wave depends a great deal 
on the slope k chosen. The angle 7 (Fig. 4) gives 
a simple measure to characterize the relay output. 

7 = sin-1 (a/a). (17) 

Since the relay output is a periodic function, consider- 
ing half period, if the phases lie between ~ and n - 7, 
the output is equal to h and the sine-wave-like re- 
sponses remain, for cot < 7 and cot > n - 7, as shown 
in Fig. 4. Obviously, the 7 values depend on the slope 
k. If k ~ oo, we have 

(A) Saturation Relay 

output 

(B) Input-Output responses 

, input 
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Fig. 3. Input-output relationship for saturation relay. 
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Fig. 4. Graphical interpretation of the angle ?. 

7 = lim sin- 1 ((h/k)/a) = 0. (18) 
k~o0  

Then, the output becomes a square wave. With this 
measure, the relay output can be expressed as 

u(t) = 

h 
sm 7 

sin cot 0~<o~t< 7 and n - 7 < c o t ~ < n  

7 <-.. ogt ...< n - ~. 

(19) 

Since the principal harmonic is employed for linear 
approximation, the Fourier transformation of u(t) is 
useful for the purpose analysis: 

u(t) = ~, B ,  sin ncot (20) 
n = l  

where 

Bn = -~ u(t) sin n ~ t  d(cot). (21) 

Since the term y plays an important role in the fre- 
quency domain analysis, the relationship between 
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7 and frequency responses is studied. Consider the et al., 1992) and the even coefficients remain zero. 
following cases: Thus, the describing function becomes 

(A) 0 < 7 < iz/2 (oo > k > h/a). For this general 
2h (1 sin- '  ( ~ ) a  ~ ~-ti2 ) case,have substituting u(t) [eq. (19)1 into eq. (21), we N(a) =--~ \ -  + - -  . (23) 

2hE 1 (sin(1--n)~ 
T si--~-gt, i-_z-~ B , =  

0, 

sin(1 +n)7 ~ 1 ] 
l + n  ) - n ( C ° s n ( r c - 7 ) - c ° s T )  , n = 1,3,5 . . . .  

n = 2,4,6 . . . .  

(22) 

The expression for the odd coefficients (e.g. Bi, Since the higher-order terms [eq. (22)] are neglected, 
n3, B5 . . . .  ) differs from that of an ideal relay (Chiang Fig. 5 clearly shows that the principal harmonic 

(A) 7=o (a=o.,,) 
- -  uCt) 
. . . . . .  B , s i n ~ t  

u(t) 

~Llll i,, If III i 
I , I ,':"1 

u(t) 

uCt) 
. . . . . .  B r S i n ~ t  + B s s i n 2 ~ t  

f, 

u(t) 

(B) 7=~/4 ( a = 2 ' / 1 / 2  - a)  

~ t )  
. . . . . .  B , s i r l~ t  

u(t) 

uCt) 
. . . . . .  B ,~ ' i r~ t  + B s s i n 3 ~ t  

v.(t) 

(c) 7== /2  (a= 1. ,..,~t) 
. . . . . .  B , s i r ~ t  

- -  ,~(t) 
...... 8,sin~t +Bssin3nt 

i l l /  
Fig. 5. The wave shape of output to the nonlinear element for different slope. 
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approximation cannot exactly describe the output 
response [e.g. Fig. 5(B)]. 

(B) ~ = 0 (k ~ m). Let us first consider an asymp- 
totic case when the slope of saturation relay ap- 
proaches infinity (i.e. k --* ~ )  [Fig. 3(A)]. In this case, 
~i becomes zero [eq. (12)],), becomes zero [eq. (16)], 
and, subsequently, the saturation relay is reduced to 
an ideal relay (Fig. 2). The coefficients (Bn) of Fourier 
expansion can be derived from eq. (22). After some 
algebraic manipulation, we have 

Bn = lim 2h~o-ff {si-~7 L 1  [sin(1--n)~l_n sin(1-+--n)Tll+n J 

1 
[cos n(rc - 7) cos ~,]~ 

n ) 

1 4h 
= - - - ,  n = 1 , 3 , 5  . . . .  (24) 

n 7~ 

and 

B n = 0 ,  n = 2 , 4 , 6  . . . .  (25) 

Since the principal harmonic (B1) is employed for the 
describing function analysis, 

N(a) = _lim - -  sin- 1 _~ __ 
a ~ 0  

4h 
= - -  (26) 

na 

Again, the principal harmonic approximation cannot 
exactly describe the output response [e.g. Fig. 5(A)]. 

(C) ~ = ~/2 (k = h/a). Let us consider another 
asymptotic case, i.e. the slope is carefully chosen such 
that ti = a (or k = h/a). In this case, the output of the 
relay is exactly a sine-wave [e.g. Fig. 5(C)-I. Therefore, 
the Fourier coefficients can be found by substituting 
7 = n/2 into eq. (22). Here, we have 

{h0 n = l  (27) 
B. = otherwise. 

For  this case, only primary harmonic term exists 
(B1 = h and Bn = 0 for n/> 2), the principal harmonic 
approximation gives exact solution. Thus, the output 
of the saturation relay is 

u(t) = h sin cot. (28) 

Equation (28) shows that, the saturation relay gives 
a pure sinusoidal wave and output lags behind the 
input by - 1 8 0  °. Obviously, this is exactly the con- 
ventional sine-wave test and from the definition, the 
ultimate gain 

K~ = h/a. (29) 

From the describing function analysis, N(a) can be 
found by substituting y = n/2 into eq. (23): 
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Comparing eq. (30) with eq. (29), it is clear that no 
approximation is involved in this estimation. 

The analyses of these three cases show that the 
saturation relay is a generalization of the ideal relay. 
More importantly, better estimates of Ku and ~o, can 
be achieved by adjusting the slope of the relay. For 
example, when 7 = 0, we have an ideal relay and as 
~, increases to n/2 the experiment becomes a conven- 
tional sine-wave test. Therefore, it provides the flexib- 
ility in finding more accurate K,  and o~u. 

2.3. Potential problem 
The improvement of the estimates of K~ and ogu 

does not come without any potential problem. One 
possible case is that if the slope is chosen too small (or 
a is smaller than a), then a limit cycle may not exist. 
This can be analyzed from frequency responses. No- 
tice that the condition for the existence of sustained 
oscillation is 

1 + G(flo)N(a) = 0 (31) 

o r  

G(jog) = - 1/N(a). (32) 

Equation (32) can be solved by plotting and the inter- 
section corresponds to the crossover point (Ku and 
~o~). For  an ideal relay, the - 1/N loci starts from the 
origin and goes toward - o o  as N increases (e.g. 
starting from the point a toward left in Fig. 6). In 
terms of a saturation relay, the starting point of the 
- 1 / N  loci corresponds to - 1 / k  (Fig. 6). As we de- 

crease the slope, the starting point moves to the left 
accordingly. If the starting point moves to b, we still 
have an intersection and a limit still exists. However, if 
the slope is decreased further and the starting point is 
moved over the point c, then - 1/N does not intersect 
G(j~)  any longer and we do not have a limit cycle. 
Therefore, there exist a critical slope (kmln) such that 
when the slope of the saturation relay is smaller than 
this value, the feedback system cannot generate sus- 
tained oscillation. On the other hand, if the slope is 
chosen too large, the relay approaches an ideal relay 
and the improvement in the estimate of Ku and ogu 
disappears. Therefore, a trade-off has to be made in 

Im  

d f \  -fir 
Gqoa/ c'(i~') 

g--~ 

/ 
; R e  

N(a) -- h/a. (30) Fig. 6. Loci of G(jto) and -1/N(a). 
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the selection of the slope. Furthermore, this critical 
slope (kmi.) is related to IG(jco)l: 

k.,i~ = 1/IG(jco.)l. 

The following example illustrates the trade-off. 

Example 1: WB column (Wood and Berry, 1973). 

xD 12.8e -" 
- - -  

R 16.8s + I 

This first-order plus dead time system has the follow- 
ing ultimate properties: K. = 2. l and co. = 1.608. If an 
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ideal relay is used (k ~ oo), the test gives/~.  = 1.71 
and cb. = 1.615. This test shows an almost - 2 0 %  
error in the estimate of K..  Furthermore, neither the 

(33) input (xo) nor the output (R) of the relay shows 
sine-wave-like responses [Fig. 7(A)]. If the slope k de- 
creases to five (this gives 7 = 18), then the system 
responses behave more sine-wave-like [Fig. 7(B)] and 
the estimate/~. = 1.94 (8% error). Obviously, an im- 
provement in the estimate of K.  can be seen using the 
saturation relay. If the slope decreases further to the 
critical slope (k = kr.i. = 2.1), the input and output of 
the relay look exactly like a sine-wave [Fig. 7(C)] and 
/ ( ,  = 2.098 and ~b. = 1.607. These are almost exact 
values for K.  and co.. However, if the slope is chosen 

( A )  k -  = 

1.0 

0.5 ~ 

0.0 - 
N 

-0.5 

-1.0 5 10 1'5 " 20 
T i m e  ( m i n )  

(B) 
1.0 

=~ 0.0 
N 

-0 .5  

- I . 0  5 10 I "5 " 2 0  
T i m e  ( m i n )  

(c) 1 
1.o 

0.5 

o.o 

- 0 . 5  

-1  .o 

(D) 

1 0  15  20 
i m e  (min~ 

k=1.5 

1.0 

0.5 

N 
0.0 

-0.5 5 10 1~5 20 
T i m e  (min~  

2 

1 

-1 

-2 5 1 0 .  l h  20 
T i m e  ( r a i n )  

2 

1 

~ 0  

-1 

-2 5 I 0 I '5 20 
Time ( m i n ~  

I 

2O 

5 " 10 " 15 " 20 
Time (rnin) 

Fig. 7. Relay feedback test for Example l: (A) ideal relay (k ~ oo), (B) saturation relay (k = 5), (C) 
saturation relay (k = kmi. = 2.1), (D) saturation relay (k = 1.5 < kml.). 
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to be less than kmi. (e.g. k = 1.5), then the relay fails to 
generate sustained oscillation. 

The above example clearly indicates that the satu- 
ration relay can improve the estimation of ultimate 
gain and ultimate frequency. However, attention has 
to be paid in the selection of the slope (k). 

3. AUTOTUNE IDENTIFICATION 

3.1. Selection of the slope of saturation relay 
As mentioned earlier, a critical slope (km~,) exists to 

indicate the success/failure of a relay-feedback test. 
Furthermore, this critical slope is system dependent 
[eq. (29)]. Qualitatively, we also understand that the 
smaller the slope (k) is, the more accurate estimates of 
K, and co, are, if the test is successful. However, in 
a relay-feedback test a quantitative value of the slope 
should be given. 

In order to determine the slope, the typical process 
transfer function for chemical processes is used to 
illustrate the trade-off between success of an experi- 
ment and accuracy of the estimate. Consider a transfer 
function of the form 

G(s) = e-m/(zs + 1) (34) 

where D is the dead time and z is the time constant. 
A range of D/z is studied for different value of dimen- 
sionless slope (k/kmi.) and, subsequently, percent er- 
rors in K. and ~o. are evaluated. Results (Fig. 8) show 
that the improvement in the estimate levels off as 
k approaches 10 times k~ ,  (i.e. k = 10km~.). Further- 
more, the error in K~ ranges from - 10 to - 2 0 %  for 
these first-order plus dead time systems with an ideal 
relay (k ~ ~ )  and the experiments tend to underesti- 
mate K,. Several things become apparent immedi- 
ately. First, generally, the slope should be less than 
10k~. in order to improve the estimates. Second, it is 
preferable to choose the slope at least 1 .4k~ to 
avoid unsuccessful relay-feedback test (kmin = 
K. = 1/I G(jog.)l). Therefore, a simple value of thumb 
is to select the slope as 1.4 times k~..  Notice that this 
is a safety factor for a class of transfer function over 
a range of parameter space; for a given system, the 
true safety factor is actually system dependent as 
shown in Fig. 8. In order to test the validity of this 
proposal, consider a second-order example. 

Example 2: 

G(s) = 37.7e-t°'/(7200s + 1)(2s + 1). 

For this system, the exact values for K, and c% are 
26.24 and 0.1315. For an ideal relay (k ~ oo), the 
ultimate gain found is 23.15. This corresponds to 
-11 .7% error in K,. As we decrease the slope to 

Km~., almost exact value of K, can be found 
(K, = 26.04) (Fig. 9). Furthermore, for k = 1.4kmi,, we 
can generate sustained oscillation with an improved 
estimate in both K, and o9~ (Fig. 9). 

1193 

go l _. 

2 / - q 5  
& 

Fig. 8. Percent error in K~ and co, for first-order plus dead 
time system (e-m/(zs + 1)) with different value of D/r. 

Example 3: 

G(s) = -(10s + 1)e-~/(2s + 1)(4s + 1). 

This is a system with inverse response (Shen and Yu, 
1994). The exact values for Ku and cou are 0.576 and 
0.336, respectively. When an ideal relay is employed in 
the relay-feedback test, the percent errors in K, and 
cou are -15.8 and -15.09%, respectively. Again, 
improvement in the estimates of K, and cou can be 
seen as we decrease the slope toward kmin (Fig. 10). 
This example shows again that k = 1.4kr,~. will lead to 
quite accurate ultimate gain and ultimate frequency 
while guaranteeing the success of the relay-feedback 
test. 

With this guideline in the selection of the slope of 
the saturation relay, we can devise a procedure for 
finding more accurate K, and co,. 

3.2. Procedure 
Since kmin (or K~) is needed to find the slope of the 

saturation relay, the proposed procedure finds 
a rough estimate of kmi, first and goes on to find k and 
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Fig. 9. Percent error in Ku and c~u for Example 2. 
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Fig. 10. Percent error in K~ and o9, for Example 3. 

obtains a better K,  and o9~. The procedure is sum- 
marized as follows. Consider a relay feedback system. 

(1) Select the height of the relay h (upper and lower 
limits in the manipulated input in the experi- 
ment). 

(2) (a) Use ideal relay to estimate g .  (/~u = 4h/rca). 
(b) Calculate the slope of the saturation relay 

k = 1.4kmin (kmin =/~u) .  
(c) Continue the relay-feedback experiment us- 

ing the saturation relay with k = 1.4kmin. 
(3) Find K.  and coo from the relay feedback test. 

4. APPLICATIONS 

The proposed saturation relay feedback is applied 
to system identification (identifying K, and cow) as well 
as autotuning multivariate systems. Both linear sys- 
tem and nonlinear process are studied. 

Consider the WB column studied in Example 1. 
The exact value for K~ and o~ are 2.1 and 1.608, 
respectively. The proposed procedure goes as follows. 
The relay height h is chosen as unity. Initially, a posit- 
ive change R is made and x ,  starts to increase 
(Fig. 11). As soon as xD moves upward, R is moved to 
the lower position (AR = - 1). This ideal relay-feed- 
back test goes on for 2-3 cycles (e.g. time < 11 min in 
Fig. 11) and we can estimate K~ from system re- 
sponses. The result is K~ = 1.71 ( -  18.6% error). With 

the initial result, the slope of the saturation relay is 
chosen as k = 1.4kmi. = 2.4, then the relay feedback 
test continues with the saturation relay (e.g. time 
>11 min in Fig. 11). The results show that the ulti- 

mate gain and ultimate frequency found from the 
saturation-relay feedback are 2.098 and 1.606, respec- 
tively. This corresponds to 0.01% error in K,  and 
0.012% error in o&. Obviously, significant improve- 
ment can be achieved using the proposed procedure. 

A nonlinear distillation example is used to illustrate 
the accuracy of the proposed autotune identification 
procedure. The column studied by Shen and Yu (1992) 
is a 20-tray distillation column. The product specifica- 
tions are 98 and 2% of the light component on the top 
and bottom of the column. The relative volatility is 
2.26 with a reflux ratio 1.76. Table 1 gives the steady- 
state values. The control objective is to maintain the 
top and bottom product compositions by changing 
the reflux flow rate (R) and vapor boilup rate (V). This 
is the conventional R - V  control structure (Fig. 12). 

First, the xB-V loop is used to test the accuracy of 
proposed method in finding K~ and ~o.. Figure 13 
shows the input (V) and output (xB) responses using 
the proposed autotune identification with a relay 
height of 5%. The results given in Table 2, show that 
the ideal relay-feedback experiment gives significant 
errors in K,  and cou compared with the stepping 
technique. On the other hand, saturation relay 
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Fig. 11. Proposed autotune identification procedure for WB 
column. 

Table 1. Steady-state values for moderate-purity distillation 
column 

Parameters Values 

Number of trays 20 
Feed tray 10 
Relative volatility 2.26 
Operating pressure (atm) 1.0 
Feed flow rate (kg mole/min) 36.3 
Distillation flow rate (kg mole/min) 18.15 
Bottoms flow rate (kg mole/min) 18.15 
Reflux ratio 1.76 
Feed composition (mole fraction) 0.50 
Distillation composition (mole fraction) 0.98 
Bottoms composition (mole fraction) 0.02 

feedback with the slope k = 1.4kmin (k = 704) gives 
very good estimate in Ku and a~u. The errors in K, and 
o& are -2 .8  and -3 .3%,  respectively. 

Next, the saturation-relay feedback is applied to 
MIMO autotuning of this R - V  controlled column. 
The MIMO autotuning is performed sequentially 
starting from xo-R loop while keeping xs -V  loop on 
manual. When K, and co, for the xo-R loop are 
found, the PI controller is tuned according to (Shen 
and Yu, 1994) 

K c = K , / 3  (35) 

Ez 

• , =P./0.5. (36) 

kl 
-. @ 

i ............ i 

1195 

D,x~ 

Fig. 12. R-V controlled moderate-purity distillation col- 
umn. 
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Fig. 13. Proposed autotune identification procedure in 
xB-V loop for moderate-purity distillation column. 

With this set of tuning constants, the xD-R loop is 
closed and the saturation-relay feedback is performed 
on xB-V loop. This procedure is repeated until the 
tuning constants converge. Shen and Yu (1994) give 
details on this MIMO autotuning procedure. Fig- 
ure 14 shows that, it takes 2 saturation-relay feedback 
test to complete the autotuning procedure. In order to 

CES 51:8-B 
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Table 2. Identification results (K,  and co,) in xn-V  loop for moderate-purity 
distillation column 

Ku co. 

Value % error Value % error 

Stepping method 562.2 0 0.1862 0 
Ideal relay (k ~ oo) 503.2 - 10.5 0.1839 - 5.2 
Saturation relay (k = 704) 547.1 - 2.8 0.1802 - 3.3 

X B  

13 
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Fig. 14. MIMO autotuning process. 

test the correctness of identified system, the closed- 
loop transfer functions (g. ,c[S) obtained from differ- 
ent approaches are compared.  Let 1 and 2 denote xD 
and xB. The closed-loop transfer function for the 

x D - R  loop is 

gll"CL = g l l  ( 1 - g12921gllg22 1 -~-g-22K2#22K2J~" (37) 

K,  and co, from saturation-relay feedback (Fig. 14) 
are used to back-calculate the coefficients of the para- 
metric gl Lc,. and g 2 2 , C L ,  

gll .cL(S) = O.O0965e-6S/(9.89s + 1)(23s + 1) 

gz2,cL(S) = O.01316e-6~/(4.7s + 1)(24.5s + 1). 
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Fig. 15. Bode diagram for moderate-purity distillation col- 
umn: (A) g l l , C L ,  ( B )  g 2 2 , C L .  
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The two closed-loop transfer functions are compared 
with the frequency responses from the stepping tech- 
nique. Results (Fig. 15) show that the proposed satu- 
ration-relay based MIMO autotuning gives very ac- 
curate estimates of the process transfer functions as 
compared to the almost analytical results (results from 
stepping technique). Furthermore, autotuning based 
on saturation-relay feedback gives satisfactory closed- 
loop performance for +__20% changes in feed com- 
position (Fig. 16). 

The linear and nonlinear examples as well as identi- 
fication and autotuning results clearly indicate that 
the proposed saturation-relay feedback gives signifi- 
cant improvement in finding K,  and co, and, sub- 
sequently, lead to improved performance in identifica- 
tion and M I M O  autotuning. 

5. CONCLUSIONS 

In this work, the saturation-relay feedback system 
is proposed to improve the accuracy of the estimates 

20 250 500 750 I 0b0 
T i m e  (min) 

Fig. 16. Load responses for +20% feed composition 
changes. 

of ultimate gain and ultimate frequency. The analyses 
show that significant improvement in the estimates of 
K,  and co, can be achieved using saturation-relay 
feedback. It also shows that too small a slope in the 
saturation relay may fail to generate a limit cycle and, 
subsequently, lead to a failed experiment. A procedure 
to overcome the trade-off between the accuracy 
and (possible) failure is proposed. The proposed 
method is tested on linear and nonlinear systems. The 
results of system identification and MIMO autotun- 
ing show that significant improvement can be 
achieved. More importantly, the proposed method 
maintains the simplicity of the conventional relay- 
feedback system. 
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NOTATION 

a amplitude of limit cycle 
D time delay 
e input to the nonlinear element 
go(s) the (i, j) entry of process transfer function 

matrix 
g,,c~.(s) the (i, i) entry of close-loop transfer func- 

tion 
G(s) process transfer function 
h magnitude of relay output 
k slope of saturation relay 
kmi, critical slope 
kp steady-state gain 
Kc controller gain 
K, i entry of multiloop SISO controller 
K~ ultimate gain 
R~ estimated ultimate gain 
N(a) describing function 
P~ period of limit cycle 
R reflux flow rate 
s Laplace transform variable 
u output to the nonlinear element 
V vapor boilup flow rate 
xn top component 
xB bottoms component 
y process output 

Greek letters 
ct relative volatility 
2, (i, i) entry of RGA 
~ reset time of PI controller 
co frequency 

(/)u ultimate frequency 
estimated ultimate frequency 
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