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Abstract-The generalized binary sequence (GBS) of Tulleken 
offers an attractive alternative in input design for system identi- 
fication. In terms of time-domain responses, the GBS ranges 
from a square-wave sequence to a step input as the non-switch- 
ing probability changes from zero to unity. In terms of frequency 
responses, the emphasis of input spectrum changes from low 
frequency to the Nyquist frequency as the non-switching prob- 
ability varies. In this work, analytical expression for the optimal 
non-switching probability for the GBS is derived when the 
specification is given on a single-frequency value. Moreover, for 
a more realistic case, if the specification is given as a frequency 
interval, the optimal non-switching probability can also be ob- 
tained analytically. A linear example is used to illustrate this 
GBS-based input design procedure. 0 1997 Elsevier Science 
Ltd. 

1. Introduction 
It is desirable to have an accurate process model for the design of 
a controller. However, the quality of the process model depends 
on the type of the controller used and the tuning rule employed. 
For example, if the Ziegler-Nichols tuning is used, emphasis is 
placed on the ultimate frequency (e.g. good estimates of ultimate 
gain (K,) and ultimate frequency (w,)). And if a static compen- 
sator is required, then, the low-frequency behavior of the model 
is of major importance. Traditional gain margin and phase 
margin types of specifications require quality process informa- 
tion at high-frequency range (e.g. frequency range with phase 
angles between - 135 and - 180 ), i.e. quality of the model can 
be examined at the prescribed single-frequency point or fre- 
quency range of interest. 

Typically, a process model is obtained from system identifica- 
tion. Initially, the plant input is perturbed in a specific manner 
and a model is approximated from input-output data (Ljung, 
1987; Luyben, 1990; Marlin, 1995; Shen et al., 1996). In the 
identification procedure, the input design plays a deciding role 
in process excitation (Goodwin and Payne, 1977; Ljung, 1987; 
Schoukens et a[., 1988; Tulleken, 1990; Belforte and Tay, 1993). 
Two types of input signals are often employed in chemical 
process control: step input (Luyben, 1990; Cluett and Wang, 
1991; Tyreus and Luyben, 1992; Harris, 1995) and pseudo- 
random binary sequence (PRBS) (Prett et al., 1986; Tulleken, 
1990; Luyben, 1990; Bailey, 1995; Chan, 1995; Marlin, 1995). 

For the step input, emphasis is placed on the low (zero) 
frequency and for the PRBS, the input energy is placed equally 
over the entire frequency range. However, in many occasions, we 
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are interested in the frequency (or frequency range) other than 
these two extremes. The concept of the generalized binary se- 
quence (GBS) of Tulleken (1990) offers some light along that 
direction. Tulleken uses GBS, initially proposed by Cumming 
(1970) for improved input design in system identification. The 
GBS has the same configuration as the PRBS except that an 
additional parameter switching (or non-switching) probability is 
introduced. Actually, similar approaches are taken to identify 
non-linear autoregressive models for high-purity distillation col- 
umns (Sriniwas et cd.. 1995; Chien, 1996). The conventional 
PRBS can be viewed as the GBS with a switching probability of 
0.5 (e.g. tossing a fair coin) and the step input is equivalent to the 
GBS with a switching probability of zero (e.g. tossing a coin 
always showing head or tail). More importantly, the GBS can be 
specified with a switching probability ranging from zero to one. 
Therefore, it constitutes the basic means for input design in 
system identification. 

The objective of this work is to derive analytical relationships 
between the optimal switching probability and the frequency of 
interest. Analytical expressions for both a signal-frequency point 
and a frequency interval are derived. The remaining of this paper 
is organized as follows: Section 2 describes the GBS and rel- 
evant properties. In Section 3, main results are given and an 
input design procedure is summarized. A transfer function 
example is used to illustrate the input design followed by the 
conclusion. 

2. Generalized binary signal 

2.1. Definition. Consider a sequence of input signal, i.e. 
ukr k = 1,2,3, , with a basic switching (or sampling) time of 7. 
The input is switched at two levels: uk = + h or 2~~ = - h. At 
time kt, the input ulr is related to the previous input signal, uK_ i. 
in the following probabilistic manner: 

P(u, = Ub_,) = 0.5, (1) 

where P( .) is the probability for the indicated event and in this 
case the non-switching probability is: 0.5. This is the conven- 
tional binary signal (BS) as shown in Fig. 1 (i.e. p = 0.5). For 
a finite number of input, i.e., uk, k = 1, , N. this sequence is 
often referred to as pseudo-random binary signal (PRBS) (Eyk- 
ho& 1974; Goodwin and Payne, 1977; Luyben, 1990) and it is 
generally regarded as an “optimal” input signal for the reason 
that frequencies are tested with almost equal power. 

It is well known that in system identification one ought to 
place the energy of the input sequence on the relevant frequency 
range (Goodwin and Payne, 1977; Ljung, 1987). Instead of 
extracting relevant information from a poor designed experi- 
ment (e.g. using only the initial response from a step test), one 
would rather improve the input design. The generalized version 
of the binary signal (GBS) of Tulleken (1990) serves the right 
purpose. 

Instead of fixing the probability at 0.5, the GBS uses the 
non-switching probability, p, as a design variable, i.e. 
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Fig. 2. Frequency spectra of GBS for different values of p. 
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constant from zero frequency up to the Nyquist frequency n/T 
(Fig. 2). However, as p > 4 the energy of the input signal is 
shifted toward the low-frequency range (Fig. 2) and the opposite 
behavior can be observed for the case of p < 4. This additional 
degree of freedom provides an attractive alternative to place the 
emphasis on the frequency range of interest. 

1.0 

Fig. 1. Test signal of GBS for different values of p with T = 1. 

with p ranging from 0 to 1 (0 I p I 1). In doing this the energy 
of the input signal is no longer equally placed (as what the BS 
does). More importantly, we can put the emphasis on the fre- 
quency range of interest by selecting an appropriate p. Figure 
Fig. 1 shows the input sequence starts from a square wave to 
a step test as the non-switching probability changes from 0 to 1. 

2.2. Frequency response. Tulleken (1990) derives the fre- 
quency spectrum of the GBS. Briefly, it begins with relating the 
covariance function of the sequence u at time k to that of the 
previous sampling instance, i.e. for uk and u, with k > I, 

~Cw,l = VP - l)JTs,- l%l (3) 

extended to a more general case. Since E[u,u,] = h*, we have: 

EIUIIUk+J = h2q’“’ (4) 
with 

4 = 2p - 1. (5) 

The covariance function of u in equation (4) serves as the basis 
to find the frequency spectrum of the GBS (Tulleken, 1990). 
Considering the normalized case, h = 1, we have 

%(w,q) = T f 
m=-cc 

ECukuk+,XimoT = 1 _ ~~,,“~~+ 42, 

w E Co, 47’1, (6) 

where Q. is the frequency spectrum of the input u and it is 
termed as the input spectrum hereafter. It immediately becomes 
clear that when p = 0.5 [or q = 0) the input spectrum remains 

3. Main results 
Despite establishing the fundamentals for the GBS, Tulleken 

(1990) addresses the issues of input design for the ARMA type of 
models, instead of relevant frequency ranges. Here, we are more 
interested in designing appropriate GBS as input signal when 
specifications are given on a particular frequency or certain 
frequency interval. 

3.1. Singlefrequency point. Under the framework of the GBS, 
we would like to find the optimal non-switching probability, p*, 
such that the maximum input spectrum is placed on the fre- 
quency of interest for p E [0, 11. The following theorem calculates 
the given frequency to p*. 

Theorem 1. Consider a GBS with the basis switching time 
T [equation (2)]. The non-switching probability gives the max- 
imum input spectrum on a particular frequency w, w E [O, n/T], 
is: 

1 

’ = 1 + tan(oT/2) 

Proof. See Appendix A. 0 

This theorem provides a quantitative assessment on how 
p should be chosen when the emphasis is placed on a particular 
frequency point. For example, if the zero frequency, i.e. the 
steady-state behavior, is of interest, the non-switching probabil- 
ity becomes unity and a step input should be used (Fig. 1) and if 
the Nyquist frequency, w = x/T, is of interest, the non-switching 
probability becomes zero (Fig. 1) and a square wave is gener- 
ated. Figure 3 shows the optimal p,p* for the GBS when the 
specification is given on a certain frequency point. 

Despite the interesting result derived for the GBS at a single- 
frequency point, in practice, the frequency-domain specifications 
are often given over a frequency range of interest. Therefore, it 
will be useful to find the optimal non-switching probability for 
the GBS if the specification is a frequency interval. 

3.2.. Frequency interoal. The following theorem gives the op- 
timal non-switching probability for the GBS of which the max- 
imum input energy is placed on a frequency interval of interest. 

Theorem 2. Consider a GBS with the basic switching time 
T [equation (2)]. The non-switching probability gives the 
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Fig. 3. Optimal non-switching probability for signal frequency 
point. 

maximum input spectrum over a frequency interval 
[wr, wn], wu 2 or and wr, wu E CO, n/T], is: 

Proof: See Appendix B. cl 

Actually, the result, equation (8) represents a generalization 
for the case of single frequency point. The second factor in the 
denominator of equation (8) is a geometric mean of the corres- 
ponding tangent functions and when wu = wr, equation (8) 
reduces to that of single-frequency point, equation (7). 

The simple result of equation (8) forms the basis for the input 
design when the generalized binary sequence is employed. 
Therefore, the procedure for the input design with a frequency- 
domain specification expressed in terms of an interval Co,,, wu] 
can be summarized as follows: 

Sl. choose an appropriate input magnitude h; 
S2. compute the optimal non-switching probability, p*, from 

equation (8) for a given [wr, wu]; 
S3. generate the input sequence, uk, using p*. 

4. Example 
Let us take a transfer function model to illustrate the pro- 

posed input design. Consider the following second order with 
dead-time system: 

G(s) = 
e-’ 

(s + l)(lOs + 1)’ 
(9) 

If we are interested in the frequency range of [0.51,0.93] (corres- 
ponding to the following phase angle range - 135’ N - 180), 
the non-switching probability can be calculated from equation 
(8) and we have 

1 
P= 

1 + Jtan(O.51T/2)tan(0.937+/2)’ 
(10) 

For the case of T = 1, we have p* = 0.73. A sequence of input 
(i.e. 200 points) is generated using p* = 0.73 with h = 1 and the 
output is corrupted with Gaussian noise with a variance of 0.5. 
The frequency response of the system is obtained from the 
Fourier transformation of the input-output data. Comparison is 
made between the GBS with different non-switching probability, 
p = 0.5,0.73, and 0.95. The results, Fig. 4, show that the optimal 
CBS, i.e. p = 0.73, gives better response. 
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Fig. 4. Frequency responses of true (solid) and estimated 
(dashed) transfer functions using GBS-based input with different 

values of p. 

5. Conclusions 
The GBS of Tulleken has the advantage of shifting the distri- 

bution of frequency spectra. Therefore, it offers an attractive 
alternative in input design for system identification. In this work, 
analytical expressions are derived for the GBS when the fre- 
quency-domain specifications are given as a single-frequency 
point or a frequency interval. The simple results derived can be 
useful for experimental design of input sequence. 
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Appendix A 
Since @“(o, q) is convex for wT E [0, x] and q E [ - 1, 11, the 

extreme value can be obtained by taking the derivative of the 
input specturm mu with respect to q. 

From equation (6), we have 

4= 
l&K-Z&Z 

coswT ’ 
w E [0, n/T]. 

The definition of q [equation (5)] indicates that q ranges from 
- 1 to 1. Thus, only the minus sign in the above equation is 

valid. After some algebraic manipulation, the optimal non- 
switching probability can then be expressed as 

with caT~[O,n]. 

1 
P= 

1 + tan $ 
( > 

0 

Appendix B. 
For the case of a frequency interval, we would like to maxi- 

mize the input power over a particular frequency range, i.e. 
[oL, wn] with wn 2 wr. and wL, wn E [0, n/T]. First, integrating 
@. from wr to wn gives: 

s 0” 

01 

Q.dw = 2T~an_i[(~)tan~] 

- tan-i[ (2) tan’]}. 

Taking the derivative of the integrand with respect to q and 
letting it equals to zero, we arrive at 

1+q -=/i&q) 
Substituting the definition of p [equation (5)] into the equation, 
the optimal non-switching probability becomes 

p=l+Jm 
0 

d% - = 0. 
dq 


