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Abstract

Autotuning based on relay feedback tests have received a great deal of attention recently. The relay feedback tests fail to generate
sustained oscillation in some cases. For systems with RHP poles and/or zeros, incorrect autotune identi®cation procedure may give

erroneous information and unstable limit cycle. Frequency domain analyses provide a criteria for prediction of the existence of
stable limit cycle. Furthermore, a procedure is given to ensure the success of a relay feedback test. The analyses and procedure are
illustrated through open loop stable and unstable systems. Results show that, except for some rare occasion, successful relay feed-

back experiments can be obtained following the proposed procedure. # 1999 Elsevier Science Ltd. All rights reserved.
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Nomenclature

a amplitude of continuous cycling
a intersection of ÿ1/N and G(jo) loci
aÿ region right before the point `a'
a+ region right after the point `a'
BR boilup ratio
D distillate ¯ow rate
G(s) transfer function
h height of relay
Im(.) imaginary part of (.)
Kc controller gain
Ku ultimate gain
n number of clockwise encirclements
N describing function
p number of open-loop unstable poles
Pu ultimate period
R re¯ux ¯ow rate
Re(.) real part of (.)
RHP right half plane
u system input
V vapor boilup
xB bottoms composition
xD distillate composition
y system output
yset set point of y

z number of unstable poles for closed-loop system
ZN Ziegler±Nichols tuning

Greek symbols

! frequency
!u ultimate frequency
�I integral time for PI controller (min)

1. Introduction

Autotuning of PID controllers based on relay feed-
back tests receives a great deal of attention recently [1±
3]. It identi®es the important dynamic information,
ultimate gain and ultimate frequency, in a straightfor-
ward manner. The success of this type of autotuners lies
on the fact that it is simple and reliable. The appealing
feature of the relay feedback autotuning has lead to a
number of commercial autotuners [2] and industrial
applications [4]. Modi®cations [5±7] and extensions [8±
10] of the AÊ stroÈ m±HaÈ gglund autotuner have been made.

Despite the success of relay feedback tests in most
applications, a few cases of unsuccessful applications
are also reported. Papastathopoulou and Luyben [11]
show that a relay feedback test cannot generate sus-
tained oscillation on a D±BR (distillate±boilup ratio)
controlled C3 splitter. Another example is that the relay
feedback test fails to generate a stable limit cycle for the
incorrectly paired WB [12] column [10]. Obviously, the
relay feedback test cannot generate sustained oscillation
in all systems. The failure can come from lack of process
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understanding, incorrect knowledge about process sys-
tem, system inherent property or, even worse, ignoring
known process information.

The objective of this work is to investigate under
what conditions the relay feedback experiment may fail
to generate sustained oscillation. In particular, systems
with right-half-plane (RHP) poles and zeros are studied.
This paper is organized as follows. Section 2 describes
the problems and a number of systems are analyzed
according to the pole and zero location of the process
transfer functions. Frequency domain analyses for the
prediction of a stable limit cycle are given in Section 3.
From the analyses, a workable procedure for relay
feedback identi®cation is given in Section 4 followed by
the conclusion.

2. Problem description

The basic idea of AÊ stroÈ m±HaÈ gglund autotuner is that
an ideal (on±o�) relay is placed in the feedback loop
(Fig. 1A) to generate a limit cycle. A typical relay feed-
back experiment is described next. Considering a system
with a positive steady-state gain. Initially, a positive
change in the manipulated input u(u=h) is made
(Fig. 1B) and as soon as the output y becomes higher
than its set point (e<0), a negative change in u(u=ÿh)
is followed. Generally, a limit cycle is generated by
repeating this procedure and the ultimate gain (Ku=4h/
pa) and ultimate period (Pu) can be read o� directly

from the input±output responses (Fig. 1). Obviously,
the success of a relay feedback test depends on the exis-
tence of a limit cycle. In most literature examples,
sustained oscillation is observed using a relay feedback
test. However, two literature examples indicate appar-
ent failure of the relay feedback tests.

2.1. Failed examples

For a D±BR controlled C3 splitter, Papastathopoulou
and Luyben [11] reveal that the relay feedback test
cannot generate sustained oscillation for the xD±BR
loop (a relay placed between xD and BR). Consider a
190-tray C3 splitter [11]. Table 1 gives the steady-state
operating condition. Initially, a 5% increase in BR
(from 26.7 to 28.1) is made. Once a decrease in xD is
observed (Fig. 2), the relay is switched to a negative
position (BR=25.3) until xD crosses the set point. Fig. 2
shows clearly that the relay feedback test fails to
generate a limit cycle.

A second example is the incorrectly pairedWB column
[12] as shown by Shen and Yu [10]. This pairing gives a
negative relative gain which implies the sign of the
closed-loop gain is opposite to that of the open-loop one.

xB
xD

� �
�

6:6eÿ7s
10:9s�1

ÿ19:4eÿ3s
21s�1

12:8eÿs
16:7s�1

ÿ18:9eÿ3s
21s�1

 !
R
V

� �
�1�

A sequential tuning procedure is carried out form the
xB±R loop to the xD±V loop (Fig. 3). Again, the relay
feedback test fails to generate a limit cycle on the xD±V
loop as shown in Fig. 3 (t�200 min).

These two seemingly di�erent examples show a com-
mon characteristic: the loop to be tested shows the
inverse step response characteristic. Therefore, a sys-
tematic analysis is carried out for systems with di�erent
characteristics and process understandings.

Fig. 1. (A) Block diagram for relay feedback system and (B) relay

feedback experiment for a system with positive steady-state gain.

Table 1

Steady-state operating condition for C3 splitter

Parameter Values

Number of trays 190

Feed tray 61

Relative volatility 1.12±1.24a

Column pressure (atm) 7.5

Feed ¯ow rate (kgmol/min) 16.67

Distillation ¯ow rate (kgmol/min) 11.71

Bottoms ¯ow rate (kgmol/min) 4.96

Re¯ux ratio 10.3

Boilup ratio 26.743

Feed composition (mole fraction) 0.7

Distillation composition (mole fraction) 0.9966

Bottoms composition (mole fraction) 0.0002

a �=1.23644ÿ0.076695xÿ0.036147x2, where x=mole fraction of

light component on each tray.
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2.2. System analyses

The systems studied are classi®ed according to the
pole and zero locations of the transfer functions. The
level of process understanding depends on the knowl-
edge (correct, incorrect or unknown) about the sign of
the steady-state gain of the system.

2.2.1. Open-loop stable systems

2.2.1.1. Systems without right-half-plane (RHP) zeros.
Obviously, this is the typical transfer function for che-
mical process. Again, consider the transfer function
between xD and R for the WB column.

Example 1. First order plus dead time system [12].

G�s� � xD
R
� 12:8eÿs

16:8s� 1

Assume that we know the sign of G(s), G(0)=12.8 (>0).
It may sound strange that the `sign' of the process is

unknown after the instrumentation has been set up. A
more likely situation is that process operators simply
ignore this information when performing a relay feed-
back test.) One is expecting an increase in xD when a
positive change in R is made as shown is Fig. 4A. A
sustained oscillation is observed when we continue the

Fig. 3. Multivariable autotuning procedure for WB column with

incorrect pairing (starting from xB±R loop (t=0±120 min)) followed

by xD±V loop (t>200 min)).

Fig. 2. Failed relay feedback test for C3 splitter.

Fig. 4. Relay-feedback test for the ®rst order plus dead time example

(Example 1) with: (A) correct prior knowledge (positive sign) and (B)

incorrect prior knowledge (negative sign).
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relay feedback test. However, if we have a misconcep-
tion about the sign of the process gain and the sign is
thought to be `negative'. Under this circumstance, if an
initial `positive' change in R is made, one is expecting xD
becoming negative. Clearly, this will not happen since
the sign of the process is `positive' (Fig. 4B). Therefore,
the relay never switches and the experiment fails. This
simple example indicates that the relay feedback test
may fail if one has incorrect knowledge about the
system.

One way to overcome this possible failure is: let the
relay switches when the output starts moving (ignoring
the knowledge about of sign of the process). This
approach seems to work is this example as shown in
Fig. 4A. &

2.2.1.2. Systems with RHP zeros. Consider the following
system with one RHP zero.

Example 2. System with one RHP zero [13].

G�s� � y

u
� �ÿ3s� 1�eÿ0:6s
�5s� 1��s� 1�

This system shows an inverse response for a step change
in u. Following the simple minded procedure in Section
2.2.1.1 (ignoring the knowledge about the `sign'), the
relay switches as soon as the output starts to move and
the responses is shown in Fig. 5B. The results show that
the relay feedback test does not generate a stable limit
cycle (Fig. 5B). More importantly, this experiment looks
successful for the ®rst 20 min (the operator or the com-
puter is very likely to stop the experiment at t=20 min).
One may go on to design the controller by ignoring any
information about the sign, then one has (taking the
averaging height between the 2nd and 4th cycling):
Ku=4h/pa=3.90 and Pu=2.44 This gives the Ziegler±
Nichols (ZN) tuning of Kc=1.77 and �I=2.0 for a PI
controller. Unfortunately, this set of tuning constants
will produce an unstable closed loop response, since the
true ultimate gain and period are Ku=1.40 and
Pu=13.5.

On the other hand, if we utilize the knowledge about
the sign of the system, a positive sign, one is expecting
an increase in y for a positive change in u and the relay
switches accordingly (Fig. 5A). This results in an suc-
cessful relay feedback test as shown in Fig. 5A. Again,
the ZN setting becomes: Kc=0.636 and �I=11.25. This
gives a stable set point responses. &

Example 2 explains the reason why the relay feedback
tests fail in D±BR controlled C3 splitter and the incor-
rectly paired WB column examples. From the system
point of view, the RHP zero misleads the movement of
the relay. Obviously, this can be overcome by utilizing
the always available process information: the `sign' of
the process gain.

This principle can also be applied to systems with
multiple RHP zeros.

Example 3. Systems with two RHP zeros.

G�s� � �ÿs� 1�2eÿ0:1s
�0:8s� 1�3

The unit step response of this system is given in Fig. 6.
It shows that we have three possible locations (a, b and
c) for the relay to switch. If one recognizes that the sign
of the system is `positive', then the points a and c in
Fig. 6 are two possible switching locations. Fig. 7A and

Fig. 6. Unit step set point change for system with two RHP zeros

(Example 3).

Fig. 5. Relay feedback tests for system with RHP zero (Example 2)

with: (A) correct prior knowledge (positive sign) and (B) no prior

knowledge (sign unknown).
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C shows that either switching locations give successful
relay feedback experiments and the switching point b
results in a failed experiment. Example 3, again, indi-
cates that successful relay feedback tests can be achieved
by utilizing the knowledge about the sign of the system.
System with more then two RHP zeros are discussed in
Yu [14]. &

2.2.2. Open-loop unstable systems

Open-loop unstable systems are often encountered in
exothermic chemical reactors [15]. Little is said about
the applicability of the relay feedback to open-loop
unstable systems. Systems with one RHP poles are
classi®ed according to the shape of the Nyquist plot.
The ®rst one is the case where the Nyquist plot starts
from the negative real axis and moves toward the third
quadrant. That is:

lim
!!0

dIm�G�j!��
d!

< 0

where Im(.) stands for the imaginary part of a complex
number. This is the typical characteristic for open-loop
unstable chemical reactor systems.

Example 4. Open-loop unstable system with
lim!!0�dIm�G�=d!� < 0.

G�s� � �3s� 1�eÿs
�3sÿ 1��4s� 1�

The solid line in Fig. 8 shows the Nyquist contour of
Example 4 as ! goes from zero to in®nity. Fig. 9 shows a
relay feedback test gives sustained oscillation regardless

Fig. 7. Relay feedback tests for Example 3 when the relay switched at: (A) point a, (B) point b and (C) point c in Fig. 1.
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of the knowledge about the process gain (positive or
negative sign). However, this is not always the case for
open-loop unstable systems. &

Example 5. Open-loop unstable system with
lim!!0�dIm�G�=d!� > 0

G�s� � �s� 1�eÿs
�2sÿ 1��10s� 1�

The Nyquist plot of Example 5 shows a di�erent char-
acteristic where the G(jo) moves toward the second
quadrant initially and further crosses the imaginary axis
into the ®rst quadrant (solid line in Fig. 10). Further-
more, it is not possible to generate a stable limit cycle
regardless of how the relay switches (Fig. 11). Example
5 clearly indicates the relay feedback test may fail to
generate continuous cycling for open-loop unstable sys-
tems and the criterion, lim!!0�dIm�G�=d!� > 0, pro-
vides the necessary condition for this failure. However,
this is not a su�cient condition. Let us consider the
following example. &

Example 6. Open-loop unstable system with
lim!!0�dIm�G�=d!� > 0.

G�s� � �3s� 1�eÿs
�3sÿ 1��10s� 1�

Fig. 12 shows the Nyquist plot of Example 6. Despite
the fact that it (solid line in Fig. 12) meets the criterion
for the failure, a relay feedback test can generate a
stable limit cycle. &

From the on-going analyses, heuristics can be found
for the success/failure of a relay feedback provided with
di�erent levels of process understanding. For open-loop
stable systems, the relay feedback can generate a stable
limit cycle if the knowledge of the `sign' of the process
gain is utilized in the experiment (Table 2). However,

Fig. 8. Nyquist plot and ÿ1/N loci for open-loop unstable system of

Example 4.

Fig. 9. Relay feedback test for open-loop unstable system in Example 4.
Fig. 10. Nyquist plot and ÿ1/N loci for open-loop unstable system

with lim!!0�dIm�G�j!��=d!� > 0 (Example 5).
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for open-loop unstable system, the results are not quite
as clear. For some systems, it is simply not possible to
generate a stable limit cycle (e.g. Example 5) for an ideal
relay. Table 2 summarizes these heuristics. A simple rule
of thumb immediately follows: utilize the knowledge of
process sign throughout the relay feedback experiment.

3. Frequency domain analyses

In addition to these heuristics, the condition for limit
cycling can be analyzed using the describing function
N(a) (of an ideal relay). If the system exhibits a limit
cycle with an amplitude a(y(t)=asinot), then we have
[1]

1�NG�j!� � 0

or

G�j!� � ÿ 1

N

Therefore, a simple way to investigate the existence of a
limit cycle is to plot the loci of G(jo) and ÿ1/N and to
look for intersections. For example, the point `a' is the
intersection of the ÿ1/N and G(jo) contours in Fig. 8.
However, the existence of an intersection of G(jo) and
ÿ1/N is only the necessary condition for a stable limit
cycle [1,16±18]. In other words, the intersection only
indicates that a stable limit cycle may exist.

Fendrich [18], based on the Nyquist stability criter-
ion, proposes a simple way to check the existence of a
stable limit cycle. In terms of stability analysis, a limit
cycle indicates we have a pair (an even number to be
exact) of poles on the imaginary axis. Obviously, this
corresponds to the limit of stability. Therefore, the loci
of ÿ1/N(a) right before (e.g. region of aÿ in Fig. 8) and
after (e.g. region of a+ in Fig. 8) the intersection (e.g. a)
should indicate a change in the number of unstable
poles. If the system has a pair of unstable poles in the aÿ
region and no unstable pole in the a+ region, then a
stable limit cycle exists (e.g. Fig. 8). The means the

Fig. 12. Nyquist plot and ÿ1/N loci for open-loop unstable system

with lim!!0�dIm�G�j!��=d!� > 0 (Example 6).

Fig. 11. Relay feedback test for open-loop unstable system in Exam-

ple 5.

Table 2

Summary of success/failure for relay feedback test with di�erent degree of prior knowledge

Sign of steady-state gain Open-loop stable system Open-loop unstable system

No RHP zero RHP zeros lim!!0
dIm�G�j!��

d! < 0 lim!!0
dIm�G�j!��

d! > 0

Odd Even

Known @ @ @ @ ?

Unknown @ � @ @ ?

�, Failed relay feedback test; @, successful relay feedback test; ?, unknown.
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number of unstable poles goes from zero to two as we
crosses the limit of stability. Notice that the arrow on
the ÿ1/N(a) loci represents an increase in the amplitude
a (Fig. 8).

This simple method utilizes the well-known Nyquist
stability criterion to check for the existence of a stable
limit cycle. Let us re-state the criterion. If n denotes the
number of clockwise encirclements made by G(jo) for
the point of interest and p represents the number of
unstable poles of G(s), then the number of unstable
poles (z) is:

z � n� p

This criterion is employed to ®nd the number of
unstable poles for points in the regions of aÿ and a+.
Then, the rule of Fenrich can be applied directly.

Let us take the open-loop unstable system (Example
4) to illustrate this simple method. First, the system has
one unstable pole: p=1. The number of clockwise
encirclements made by G(jo) is 1 in aÿ and ÿ1 in a+,
i.e. n=1 and n=ÿ1. Therefore, we have z=2 in aÿ is 2
(n=2) and z=0 for a+. This is exactly what shown in
Fig. 8. According to Fenrich rule, we have a stable limit
cycle and the relay feedback test in Fig. 9 con®rms this.
For the unstable system of Example 5, Fig. 11 shows
that the number of unstable poles reduces from three to
two as the locus of ÿ1/N(a) crosses the intersection `a'.
Since the change in z is an odd number, a stable limit
cycle, or a successful relay feedback test, is not expected
(Fig. 11). Fig. 12 also indicates that a stable limit cycle
exists which corresponds to point the `a' in Fig. 12.

The simple method presented here is very e�ective to
identify cases where the relay feedback tests fail. Yu
[14] gives a detailed discussion on other systems.

4. Discussion

Despite the fact that the frequency domain analysis
can be used to verify the existence of a stable limit cycle,
we generally do not have knowledge about the structure
(e.g. pole or zero location) of the process system at this
phase. However, we do have the information about the
sign of process gain (it is hidden in the action of the
controller and direction of the valve movement) once
the instrumentation is set up. This type of process
knowledge need to be utilized during the relay feedback
experiment. Therefore, the following procedure is
recommended in the relay feedback identi®cation:

1. obtain the knowledge about the sign of the process
gain (positive or negative);

2. switch the relay according the sign of the process
system.

Using the procedure, we can generate sustained
oscillation for most systems except some unusual pro-
cess systems (e.g. Example 5). Let us take the C3 splitter
example (Table 1) to illustrate this. First, physically we
know an increase in boilup ratio (BR) while holding D
constant will result in an increase in light component
concentration (xD). That is the steady-state gain
between xD and BR is positive. An increase in BR is
made initially and then xD decreases for a while (as the
result of inverse response) followed by an increase and
the relay switches accordingly. Repeating this proce-
dure, a successful relay feedback test is obtained as
shown in Fig. 13. The results show that Ku and !u for
the C3 splitter are 91 and 0.0216, respectively.

5. Conclusions

Despite successful applications of relay feedback in
system identi®cation, it may fail to produce sustained
oscillation in several occasions. In this work, the rea-
sons for unsuccessful autotune identi®cation are pointed
out. These include: misconception about the `sign' of
the steady-state gain, ignoring the information about
the `sign' in the experiment and, for some open-loop
unstable systems, the system inherent property. Fur-
thermore, for systems with RHP zero(s), incorrect
autotune identi®cation procedure may provide mislead-
ing information about Ku and !u and, subsequently,

Fig. 13. Successful relay feedback test for C3 splitter by employing the

knowledge about the sign of process gain.
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gives erroneous tuning constants and unstable respon-
ses. Frequency domain analyses are given for the pre-
diction of the success/failure of a relay feedback test and
systems with RHP poles and zeros are studied to illus-
trate this criterion. Finally, guidelines are given for relay
feedback tests.
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