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Nonlinear Process Control Using Multiple Models: Relay Feedback

Approach

Yu-Chang Cheng and Cheng-Ching Yu*

Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung

Road, Sec. 4, Taipei 106-07, Taiwan

In this work the relay feedback autotuning is extended to handle process nonlinearity using
multiple local models. Local models from relay feedback tests are scheduled using the Takagi—
Sugeno fuzzy model, and local controllers are designed accordingly. This results in a gradual
model switching between different operating conditions. The characteristics of the fuzzy
implications are explored, and analytical expressions for the fuzzy model are derived. The
importance of the selection of the scheduled parameters is emphasized, and the necessity of
model scheduling for different loops is also explored. One transfer function example and two
recycle plant examples are used to illustrate the advantage of the simple model scheduling
method. Performance is evaluated according to the regions of robust performance and/or
simulations. Results show that the proposed approach provides a simple and workable scheme

for model scheduling large-scale systems.

1. Introduction

Intelligent control is now becoming common in the
literature and in practice. Control systems with some
types of intelligent features begin to appear. Among
these features, the abilities to perform automatic tuning
in a multivariable environment and to adjust param-
eters as the operating condition changes are of primary
importance in chemical process control. The reason is
obvious: chemical processes, generally, are multivari-
able and nonlinear.

The last decade has seen significant progress in the
autotuning of proportional—integral derivative (PID)
controllers. Most of approaches are the variation of the
Astrom—Hagglund relay feedback tests.! First, a con-
tinuous cycling of the controlled variable is generated
from a relay-feedback experiment, and the important
process information, ultimate gain (K,) and ultimate
frequency (wy), can be extracted directly from the
experiment. A controller can be designed according to
Ky and 1921232427 Applications of relay-feedback-
based autotuners are shown throughout process indus-
tries. The success of these types of autotuners is due to
the fact that the tuning mechanism is so simple that
operators understand how it works. Moreover, it also
works well in many multivariable systems.1?

Chemical processes are often operated at different
steady states. Changes in the operating condition are
usually initiated by external factors. These parameters
are often known a priori, e.g., changes in the production
rate or product specification. The objective of process
control is to achieve good transition while moving
toward a new operating point and yet maintaining
robust performance in the face of unknown distur-
bances. The concept of multiple models provides a
useful framework for automated chemical process
control 357721516 Since knowledge on process dynamics
accumulated as the plant starts operation, provided
with an efficient autotuning procedure, multiple models

*To whom all correspondence should be addressed. E-
mail: ccyu@ch.ntust.edu.tw. Fax: +886-2-2737-6644.

10.1021/ie990244w CCC: $19.00

(or multiple sets of controller parameters) can be
obtained in a straightforward manner. Conventionally,
these models, if they exist, are utilized via a look-up
table approach.

The objective of this work is to devise a framework
for the control system design such that it works well
over the entire operating regime. The automated control
system design consists of two steps: (1) automatic
tuning at a specific operating condition and (2) auto-
matic model scheduling for the entire operating regime.
The relay-feedback-based autotuning is proven reliable
in the neighborhood of nominal operating point. For
multivariable systems, the autotuning is carried out in
a sequential manner. Applications to complex chemical
plants are also reported.'126 The controller tuning for
the entire plant can be carried out effectively. However,
if the process is operated over a wide range of operating
conditions, the local controllers have to be retuned (as
a result of large uncertainty bound) to meet global
performance criterion. Once multiple models are avail-
able, the next step is to employ the local model(s) at a
corresponding operating condition. Approaches exist for
incorporating models at different operating regimes.
One is switching to a specific model if a certain condition
is met (a crisp switching).'® The other way is to combine
local models using interpolation techniques (a fuzzy
switching). In this work, the fuzzy modeling of Takagi
and Sugeno?? are used to schedule local models. It is a
fuzzy augmentation of crisp models which provides a
nice framework for model scheduling. The linguistic
nature of the fuzzy logic provides a better interface
between process operators and control system designers.
Characteristics of the Takagi—Sugeno model are ana-
lyzed, and the importance in the selection of the output
variables (model or controller parameters) is also em-
phasized. A transfer function example and two plant-
wide control examples are used to illustrate the com-
bined automatic tuning and model scheduling procedure.

2. Autotuning

Astrom and Hagglund?! suggest the relay-feedback
test to generate sustained oscillation as an alternative

© 2000 American Chemical Society
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Figure 1. (A) Block diagram for a relay-feedback system and (B)
relay-feedback test for a system with positive steady-state gain.

Table 1. Additional Versions of the Ziegler—Nichols
Settings for PI Controller

rule Ke 7
original Ku/2.2 P./1.2
Tyreus—Luyben Ku/3.22 2.2P,
Shen—Yu Ku/3 2Py
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Figure 2. Membership functions and resultant global model from
fuzzy modeling (example 1).

to the conventional continuous cycling technique. It is
very effective in determining the ultimate gain and
ultimate frequency. Luyben!! popularizes the relay-
feedback method and calls this method “ATV” (autotune
variation). It has become a standard practice in chemical
process control, as can be seen in recent textbooks in
process controlt18 and books also devoted to this
subject.226

Consider a relay-feedback system where G(s) is the
process transfer function, y is the controlled output, yst
is the set point, e is the error, and u is the manipulated
input. An ideal (on—off) relay is placed in the feedback
loop. Figure 1B illustrates how the relay-feedback
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Figure 3. Linear membership functions for a two-input system.
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Figure 4. Global bilinear model from fuzzy modeling for example
3 with (A) four data sets and (B) three data sets.

system works. A relay of magnitude h is inserted in the
feedback loop. Initially, the input u is increased by h.
As the output y starts to increase (after a time delay
D), the relay switches to the opposite position, u = —h.
Because the phase lag is —z, a limit cycle with a period
P, results (Figure 1). The period of the limit cycle is the
ultimate period. Therefore, the ultimate properties from
this relay-feedback experiment are

w, = 27lP, (1)
K, = 4h/ma )

where h is the height of the relay and a is the amplitude
of oscillation. Notice that the relay-feedback tests result
in sustained oscillations for open-loop stable systems
and most of open-loop unstable systems.20
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Figure 5. Effect of the selected scheduled (output) variables.
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Figure 6. Regime of robust stability (RS) and robust performance
(RP, shaded area).
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The Ziegler—Nichols tuning is still popular in control
engineering practice. It works reasonably well for some
loops but tends to be too underdamped for many process
control applications. On the basis of the integrator plus
time delay system, Tyreus and Luyben?® proposed a
tuning rule which also utilizes the information of K, and
P.. A different version of Ziegler—Nichols tuning is also
proposed.1® They are proven useful for many plantwide
control applications.12 For a Pl controller, the settings
are shown in Table 1. Notice that these types of settings
tend to work well for first-order systems with a long
time constant. This can be seen from the derivation of
the Tyreus—Luyben tuning (for the integrator plus time

delay process). Therefore, once we have the ultimate
gain and ultimate period, the tuning rule can be applied
directly. In many cases, that completes the controller
tuning.

As will be shown later, in some cases, transfer
function models are preferable for the purpose of model
scheduling. The ultimate gain (K,) and ultimate fre-
guency (wy) can be used directly to backcalculate the
local transfer function model. As pointed out by several
authors,*11.23 the high-frequency characteristic of the
integrator plus time delay model offers an attractive
means in modeling slow chemical processes. The trans-
fer functions have the following form:

G(s) = Ke s (3)

The model parameters can be solved directly from the
ultimate gain and ultimate frequency.

K = u 4
TR, KP, ®
P
Tt _Tu
D_Zw 4 ®)

The controller parameters of the modified Ziegler—

Nichols tuning can be expressed explicitly in terms of

Kp and D. If the settings of Shen and Yu (Table 1) are
used, we have

K, = 7/6K,D (6)

7,=8D (7

In this section, the relay-feedback test is introduced,
and steps required to perform the experiment are also
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Figure 7. Regions of robust performance at different operating
conditions (indicated by x) for the fixed gain control (the middle
shaded area), crisp switching (all three shaded areas), and fuzzy
switching (the entire closed region).
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given. Once you have obtained the information on the
ultimate frequency, the controller settings can be de-
cided using the modified Ziegler—Nichols methods.
Moreover, the model parameters of the useful integrator
plus time delay model can be found directly (eqs 4 and
5). This completes the tuning and modeling at a given
operating condition. In other words, the local controller
and local model can be found in a straightforward
manner. It is very likely that, after some period of
process operation, the autotuning procedure is repeated
at different operating conditions. How can we utilize this
local information to construct a global model?

3. Model Scheduling

Similar to the gain scheduling, the model scheduling
is defined as using different process models as the
operating condition changes. The output (or scheduled)
variables z are often referred to as model parameters
or controller settings, and the input (or scheduling)
variables x are the variables that indicate changes in
the operating condition. They are often set by the
operating condition, e.g., production rate, product speci-
fication, process outputs, etc. The model scheduling
problem then becomes the following: Given sets of
process data (z, x), find the functions z = f(x) which
can describe the global behavior.

3.1. Takagi—Sugeno Fuzzy Model. The fuzzy mod-
eling of Takagi and Sugeno?? is employed to construct
the global model. It uses fuzzy logic to interpolate
between several models. A brief description of the fuzzy
set is given. In the fuzzy set, a variable x may belong
partially to a set (e.g., a set of high temperature). The
membership function (A) characterizes this degree of
belonging. A is defined as

A(X): x—[0,1], xeX

where X, generally, is a subset of R and the grade falls
between 0 and 1. The truth value (TV) of a proposition
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Figure 8. Set-point responses of example 3 using the fixed gain
control and fuzzy switching.

----- Fixed Gain
Fuzzy Switching

Figure 9. Set-point and load responses of example 3 at different
operating points using the fixed gain control and fuzzy switching.

“x1 is A; and xz is Ay” is expressed as
Aq(X1) A Ax(Xp) = min(Ay(Xy), Ay(Xy))
where A is the logical .AND. operator.
Takagi and Sugeno suggest that a multivariable

system can be represented by the fuzzy implications
(R®). Consider a multivariable system with n input

variables (x;, i =1, ..., n) and one output (z) with k fuzzy
implications.
RM: 1fx, is A, ... and x,, is AD,

then z = py + pix; + ... + pix,

R®:  1fx, is AW, ... and x,, is A,
then z = p& + p¥x, + ... + p¥x,,

Then, the output z becomes

k
z= Z Bi(Pb + PiXy + o+ PrXy) (8)
£
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Figure 10. Conventional control structure for a simple recycle plant.

where

. ADx) A oA AD(X)
S e A

In this work, the following assumptions are made: (1)
the membership function is linear and (2) each regime
(except two ends) is defined by two membership func-
tions.

A. Single-Input Systems. The Takagi—Sugeno
method offers a general framework to establish a
nonlinear (global) model between the scheduling vari-
able x (e.g., production rate, product specification, etc.)
and the scheduled variable z (e.g., process steady-state
gain, time constants, time delay, etc.). Let us use a
single-input—single-output example to analyze the fuzzy
model.

Example 1. Suppose the trend of the process variable
(z) around two operating points is known. We have the
following two implications:

9)

R®:  1fxis AY, thenz=0.1x + 0.9
R®  1fxisA® thenz=x+1

The membership functions A® and A® are given in
Figure 2, and the results show that the Takagi—Sugeno
model leads to a piecewise nonlinear function between
z and x. Analytically, the nonlinear function can be
expressed as

z=r(x+1)+ (1 —-r)0.1x+0.9), 1=x=2 (20)

where

X=X

r (12)

*
X=X,

with x* and x, defining the upper and lower bounds of
the regime. This is simply a linear combination of two
linear functions as shown in Figure 2.
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Figure 11. Load responses of the recycle plant for +30%
production rate changes using the fixed gain control and fuzzy
switching.
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Figure 12. Global model of the recycle plant as production rate
varies from —40% to +40% (solid, true value; dashed, from fuzzy
modeling).

Several observations can be made immediately. Con-
sider the linear membership functions in Figure 2 where
the scheduling variable (x) superimposes the same
range.

OL1. If the output variable z shows the same trend as
the scheduling variable x varies (i.e., the slopes in the
consequence of Figure 2 have the same sign), then the
resultant nonlinear function is monotonic (i.e., the sign
of the slope remains the same).

O2. If the output variable z shows different trends
as the scheduling variable x varies (i.e., the slopes have
different signs), then the resultant nonlinear function
is nonmonotonic.

An even simpler model scheduling mechanism can be
devised. If we do not have any knowledge about the
trend of the process variable (i.e., the slope in Figure
2), the process variable can simply be set constant
around the neighborhood where system identification
is performed. Suppose the two data points we have are

Ind. Eng. Chem. Res., Vol. 39, No. 2, 2000 425

Table 2. Nominal Controller Parameters for the
Tennessee Eastman Process

loop unit K transmitter span
level reactor 4 100%
separator 2.35 100%
stripper 2 100%
pressure reactor 3.33 3000 kPa
temperature reactor 12.7 100 °C
separator 0.96 100 °C
stripper 108 100 °C
composition A in recycle 115 100 mol %
B in recycle 23.1 100 mol %

z* at x* and z, at x,. Mathematically, we have

z=rxX"+ @1 -rx, X, =x=x' 12)
This is simply a linear interpolation between these two
points. The following observation points out its limita-
tion.

0O3. If the trend of the output variable z is not
included, then the resultant function is simply linear
interpolation of these two different data points which
always exhibit monotonic behavior in between.

Actually, the general result is as follows: If the
process description in the consequence is a polynomial
with an order m, then the resultant function is also a
polynomial function to the m + 1 power. Despite its
limitation, this simple approach offers an attractive
alternative in most cases. Another nice feature of the
Takagi—Sugeno modeling is that once a new identifica-
tion result becomes available we can simply add another
implication to the original rule sets. The function then
becomes a piecewise linear function (e.g., eq 12).

B. Multiple-Input Systems. Systems with multiple
scheduling variables are often encountered in practice.
For example, both the production rate and the produc-
tion specification are changed to meet the business
condition (e.g., the Tennessee Eastman process is a good
example®12). Consider a general dual-input system with
two input variables x; and x and one output variable
z. Suppose we have four experimental results and the
corresponding data are (Xi., Xz Z0D), (X7, X2 zGD),

G/H Ratio [ a , q}:jlé § """"
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Figure 13. Tennessee Eastman process using Luyben control structure for the case of on-demand product.
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Figure 14. Controller parameters from relay-feedback tests for
different operating conditions: changes in the production rate and
product specification.

(X140 X5, 232), and (X3, X5, z?2). Figure 3 gives the
ranges of the two input variables and the membership
functions. If these local data are employed in modeling,
again, the result of fuzzy implications can be expressed
analytically. It becomes a bilinear function:

z=rr,z" 4+ r 1 - ry)z*? +

1 —r)r,z2®Y+ @ - r)a - r,)z%? (13)

where
* %
X; — X X, — X
1 1 2 2
n=——- and r=—— (14)
* %
Xy ™ Xy X2 = Xou

Example 2. Consider a system with two inputs (x; and
X»2) and one output (z). Suppose the trend of the output
variable is not known and plant tests give the following
four data sets: (X1, X2, z) = (1, 1, 1), (1, 3, 3), (1, 3, 3),
and (3, 3, 1). The four fuzzy implications are similar to
that shown above with Xy, = X, = 1 and xj = x; = 3.
Figure 4A shows the resultant bilinear function. O

In practice, we may not have all of the data points.
For example, only three data points are available in
example 2 where z(ID corresponds to the nominal steady
state, z@D stands for an increase in the production rate,
and z(32 represents a change in the product specifica-
tion. Under this circumstance, we only have three fuzzy

implications (RW, R@, and R®). The analytical expres-
sion then becomes:

r(l—ry)
rl + rz — rlrz
(1 —ryr,

r+r,—nr

— 1) 1.2

v4 27+
ry + r,—nrr,
2% (15)

With one less data point, the Takagi—Sugeno model
gives a good description for the triangular region defined
by z@D, z02) and z(1. However, extrapolation outside
this region is less reliable as shown in Figure 4B.

It is obvious the extension of the Takagi—Sugeno
model to a multivariable system is fairly straightfor-
ward. As expected, with the least process information,
the model leads to a bilinear system. However, one
should be cautious when the model is extrapolated.

3.2. Selection of a Scheduled Variable. From
previous discussion, it becomes clear that the Takagi—
Sugeno model interpolates linearly among data points.
Hence, we need more than two data points to describe
a function with nonmonotonic behavior. It generally
requires more process information in quantity as well
as in quality. Therefore, in building a global model, it
is important to select appropriate scheduled variables
(z) such that the nonmonotonic behavior can be avoided.
Typical output variables in model scheduling are con-
troller parameters and model parameters. It is rather
intuitive to use the controller parameters (e.g., K. and
7)) as the output variables in the fuzzy modeling. Let
us use the linear integrator plus time delay model to
illustrate the effect of different scheduled variables.
Suppose the T—L tuning (Table 1) is employed to tune
the typical slow processes.

Consider the first case where both model parameters
(Kp and D) increase as the operating condition changes
(i.e., increase in the scheduling variable). Figure 5A
shows that the controller parameters also change mono-
tonically as the operating condition varies. However, a
better global model can be achieved if the model
parameters are selected as the scheduled variables.
Numerically, it can be shown using the fuzzy modeling
in the previous section for the case with or without a
process trend. The second case is that K, and D change
toward different directions as the operating condition
changes (Figure 5B). This is a more likely situation in
process systems. Because K represents the slope of the
output responses and D is a measure of time delay, an
increase in K, and a decrease in D implies a faster
output response. This is exactly the case in the plant-
wide control example (next section). However, if the
controller parameters are used as the output variable,
we have a nonmonotonic behavior in the controller gain
K. as shown in Figure 5B. As mentioned earlier, we need
either more identification results or a very precise
description of the process trend to find a reasonable
global model. If the model parameters are employed as
the scheduled variables, only two data points are
sufficient to construct a good global model. The ex-
amples clearly illustrate the importance in selecting the
scheduled variables. For the integrator plus time delay
model with the Ziegler—Nichols type of tuning, the
model parameters seem to be a better choice as the
speed of response changes with the operating condition
(this is most likely the case).
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4. Nonlinear Control

4.1. Transfer Function System. In this work, the
integrator plus time delay model is chosen (eq 3) to
represent slow chemical processes. The controller set-
tings of eqs 6 and 7 give a gain margin (GM) of 2.83
and a phase margin (PM) of 46.1° for all possible model
parameters (i.e., Kp = 0 and D = 0). First we would like
to know how well the nominal controller settings work.
Considering the nominal condition of K, =1 and D =
1, Figure 6 shows the region of robust stability (RS).
For example, the closed-loop system becomes unstable
when K, =2 and D = 2 (Figure 6), and it remains stable
for small values of K, and D. Figure 6 shows that the
settings remain stable for a fairly large region in the
parameter space. A more useful assessment is that the
region can achieve the robust performance (RP). In this
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work, a very simple measure of the RP is defined: A
system is RP if and only if 2.21 < GM < 3.95 and 36.1°
< PM = 56.1°. That means we allow the 1/GM and PM
to vary by +0.1 and +10°, respectively. The following
equations describing the magnitude (M) and phase (¢)
are useful in finding the GM and PM as model param-
eters change. Substituting nominal tuning constants
into the integrator plus time delay model, we have

~\2
M _ 1+ (BwD)" Ky (16)

48(wD)? K,

$ =7 — S(D) + tan"*(8wD) (17)

where the overbar stands for the nominal condition. The
region of the RP can then be found by solving eqs 16
and 17. The shaded area in Figure 6 indicates the
parameter space where the RP can be achieved. In other
words, if the process drifts out of the shaded area, the
controller has to be retuned for good performance.
Therefore, the region of the RP can be used to evaluate
the effectiveness of model scheduling approaches.
Suppose the process is operated at three different
conditions: high, nominal, and low productions which
correspond to K, = D = 0.5, 1, and 2, respectively
(indicated by x in Figure 7). We examined three
approaches: (1) fixed gain control, (2) crisp switching
control, and (3) fuzzy switching control. By crisp switch-
ing, we mean the model parameters (and, consequently,
the controller parameters) are chosen from one of the
three sets if a certain condition in the scheduling
variable is met. Fuzzy switching implies the model
parameters (and, consequently, the controller param-
eters) are generated from a fuzzy model (e.g., eq 12). In
the fixed gain control, we only have the nominal
settings; the region of RP is indicated by the middle
shaded area in Figure 7. Performance degradation can
be expected as the operating point moves out of the
region. If we choose to use the crisp model switching
among three sets of model parameters, then, at best,

7

N

N

\\\\“
NN
N

.

N

Z

\§

\\\\\\\\\
N
N

N

—

N

MK
N
\\\

N

\

\\\\\\\\\\
NN

N
N
X

——
S

—

NN

N
AL

W

AN
AN
N

N
N\

MAMANNN

N

\\

AN

LR

LN

=,
EEE-“" .................
— | /

-20 PR

035 03 0.25
PS

Figure 16. Global model for the separator level ultimate gain of the Tennessee Eastman process as production rate (PR) and product
specification (PS) vary (—20% < PR < +20% and 0.3 < D/(D + E) < 0.6).



428 Ind. Eng. Chem. Res., Vol. 39, No. 2, 2000

(A)

2720 129
o s
27004 . | . )
) 10 20 e 10 20
130 100
[0y
«120 = 50
I_ O BN sty
110 I )
e 10 20 € 18 2
% 25
i |
’mmm\ [ Moo
i”]
}-—
MW
80 ; 15 .
12 20 e 19 2
68 100
o567
@
’_
&4 .
€ 19 20
49
O
=20 "
o T T v
) 19 20
) 49
55
@
T
504 ' | . 20+ . | :
) 19 20 ) 10 2

Time Time

the regions of RP are these three shaded areas. How-
ever, if the local models are scheduled according to the
Takagi—Sugeno fuzzy implications, we have a much
larger region for the RP, as shown in Figure 7. The
degree of sophistication in the consequence of fuzzy
rules (e.g., with or without knowledge of process trend)
has little effect on the RP region.

Example 3. Consider the following nonlinear system:

_ Kp(Y) e—D(Y)Su

s (18)

with

Kiy)=y+1 and Dy)=y+1 (19
Nominally the system is operatedaty =0 andu=0. A
PI controller with the T—L tuning is employed, and the
results show that the fixed gain control gives oscillatory
set-point responses (dashed line in Figure 8). If we
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obtain new identification results aty = 1, a fuzzy model
scheduling can be constructed.

R 1fyis A® thenK,=2and D =2

R®: Ifyis A® thenK,=1andD =1

The membership functions are similar to that of Figure
2 except that the range of the scheduling variables (y)
is between 0 and 1. The results show that much better
set-point responses can be obtained (solid line in Figure
8) when these two local models are scheduled using the
simple Takagi—Sugeno fuzzy implications. Figure 9
shows the set-point and load responses when the process
is operated at different conditions. Here, a load transfer
function of 1/(10s + 1) and L = 1 are assumed.

4.2. Simple Recycle Plant. The second example is
a reactor/separator plant studied by Wu and Yu.2> The
feed to the system is the reactant A, and almost pure
product B is taken out from the bottoms of the distil-
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Figure 17. Responses of the Tennessee Eastman process for a simultaneous production rate and product specification changes followed
by a load change (IDV(1) at time = 10) using (A) fixed gain control and (B) fuzzy switching.

lation column. The conventional control structure is
designed, and the nominal controller parameters are
tuned using the sequential tuning approach of Shen-
Yu.?® Figure 10 shows that the control structure and
the important controlled variable, product quality (Xp),
is maintained by changing the boilup ratio (BR). The
nominal production rate (B) is 460 Ibmol/h, and as the
economic condition changes, the plant produces 70—
130% of the nominal rate.

If only the nominal model parameters are available,
we use the settings at all possible operating points. The
dashed lines in Figure 11 show the closed-loop responses
for £30% changes in the production rate. On the other
hand, as the process knowledge accumulates, we have
the model parameters at +20% and —30% of the
nominal production (Figure 12). The fuzzy modeling can,
then, be employed for the model scheduling. The inte-
grator plus time delay model is appropriate for this
application. Again, the simplest fuzzy modeling is used.

That is, we do not use the information about the trend
on process variable.

R IfyisPR,, thenK, =
10.99 x 10 3 and D = 0.165

R®: IfyisPR, thenK, =
16.58 x 10 3 and D = 0.153

R®: Ifyis PR*, then K, =
17.57 x 10 ®and D = 0.137

PR,, PR, and PR* are the membership functions for
low, nominal, and high production rates, respectively.
They are similar to that of Figure 2 except for the ranges
of the scheduling variable (i.e., the production rate).
Figure 12 shows that that speed of responses becomes
faster as we increase the production rate between the
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range of 70 and 120% of the nominal production rate.
However, ranges of the variations in system parameters
are not large, especially for D. Therefore, only a slight
improvement in closed-loop responses can be obtained
using the model scheduling (Figure 11). Notice that for
the entire range of the production (—40% to +40%) the
model parameters show slight nonmonotonic behavior
(much severe behavior can be observed if the controller
parameters are used).

4.3. Tennessee Eastman Process. The Tennessee
Eastman problem is a realistic complex reactor/separa-
tor process.® Several control strategies are proposed to
solve the challenging problem.1012-1417 A detailed de-
scription of the process is given by Downs and Vogel.®
The essential features of the process include an open-
loop unstable reactor with two major reactions (A + C
+ D — G and A + C + E — H), a separator removes
unreacted light components and recycles them back to
the reactor and a stripper further separates products
from reactants (Figure 13). The temperature, pressure,
and levels are all interacting and nonlinear. The process
is operated under different modes as the business
condition changes. Mainly, we have to run the process
under different production rates (PR) and different
product specifications (PS, G/H mass ratios). Because
we have a wide range of operating conditions, a single
set of controller parameters is not expected to work well
for the entire region. This is an ideal problem for the
application of the multiple models.

The Luyben control structure!® is employed (Figure
13). In this case, an on-demand product is set by the
downstream process. The control structure consists of
nine control loops: three level loops (reactor, separator,
and stripper), one pressure loop (reactor), three tem-
perature loops (reactor, stripper, and separator), and
two composition loops. The integrating nature of the
recycle structure leads to the use of simple proportional-
only control on all loops.’® The reactor level and the
stripper level are maintained by changing the inlet flow
rates; the controllers require little tuning. The Luyben
tuning constants are used for these two level loops and
the pressure loops (Table 2). It should be noticed that
the separator level is maintained by changing the
cooling water flow; this manipulated input has strong
effects on the separator temperature and pressure as
well as the level. Therefore, care should be taken in the
tuning of this level loop. Relay-feedback tests are
applied to the remaining six loops. The autotuning is
carried out sequentially starting from the reactor tem-
perature loop work to the two composition loops.1® The
controller parameters are set to /3 of the ultimate gain
except for the stripper temperature loop (¥/12). Table 2
gives the nominal settings.

The model scheduling mechanism will become very
complex if controller settings of all nine loops (or six
loops) are scheduled. Therefore, it is important to devise
a control structure such that only a minimal number of
loops need to be retuned. (Actually, this can be viewed
as a performance index of different control structures.)
Suppose, after some period of operation, we have
performed relay-feedback tests on 430 production
changes (PR = +30%) with the nominal product speci-
fication (PS = 45/55) and we also have ultimate proper-
ties for 25/75 and 70/30 product ratios (PS = 25/75 and
70/30). Figure 14 shows that the ultimate gains stay
fairly constant for most loops except for the separator
level. Therefore, only the controller parameter for the

separator level is scheduled. Because we have five data
sets, the fuzzy implications thus become

RW:  If PRis PR* and PS is PS, then K = K
R@:  If PRis PR and PS is PS, then K = K®9
R®:  If PRis PR and PS is PS*, then K = K@
R®.  If PRis PR and PS is PS,, then K = K@%

R®: If PRis PR, and PS is PS, then K = K("*9

Figure 15 shows the corresponding membership func-
tions. This is exactly the three data sets scenario
described in section 3 except that we have four trian-
gular regions here. The results of the fuzzy modeling
can also be expressed in the form of eq 15 (use three
data sets for each region). Figure 16 shows the ultimate
gain of the separator level loop as the production rate
and product specification changes. Provided with five
data sets, the fuzzy implications allow us to move
around different operating regions. For example, we
have a simultaneous change in the production rate and
the product specification (PR = —20% and PS = 65/35).
Simulation results (Figure 17) show that much better
transient responses and better disturbance rejection
(IDV(1) at time > 10) are obtained using multiple local
models. Moreover, this is achieved by scheduling only
one level loop.

5. Conclusion

In this work, a framework for local autotuning and
global model scheduling is proposed. The relay feedback
is employed to find local models, and then these models
are scheduled using the Takagi—Sugeno fuzzy model.
The characteristics of the resultant global model are
analyzed. The importance of the selection of the sched-
uled parameters is emphasized. The proposed tech-
niques are applied to a transfer function model as well
as large-scale recycle plants. Issues such as which
variables should be selected and how many loops should
be scheduled become important when dealing with
large-scale systems. Simulation results show that im-
proved performance can be achieved using relatively
simple model scheduling.
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Nomenclature

a = amplitude of limit cycle

A; = membership function for the ith input variable under
jth fuzzy implication

B = production rate

D = time delay

Fo; = fresh feed flow rate, j = A, C, D, E

G(s) = nominal process transfer function

Fs = flow rate of steam to the stripper

G(s) = nominal process transfer function

Hg = reactor level

Hsep = separator level

Hstrip = stripper level

h = magnitude of relay output

Kp = steady-state gain



Ky = ultimate gain

L = flow rate of liquid from separator to stripper

M = magnitude of a transfer function

P = reactor pressure

Psep = separator pressure

PR*, PR, PR, = membership function for high, nominal,
and low production rates

PS*, PS, PS, = membership function for high, nominal, and
G/H (or D/(D + E)) ratio

P, = ultimate period

Purge = purge flow rate

RO = jth fuzzy implication

Recycle = recycle flow rate

Tr = reactor temperature

Tsep = Separator temperature

Tswip = stripper temperature

u = process input

x = input of the fuzzy model (scheduling variable)

Xgj = composition of product, j = G and H

y = process output

yj = composition of recycle stream, j = A and B

z = output of the fuzzy model (scheduled variable)

Greek Symbols

¢ = phase angle
w = frequency
wy = ultimate frequency

Acronyms

ATV = autotune variation

GM = gain margin

PM = phase margin

PR = change in production rate (%)
PS = product specification (D/(D + E))
RP = robust performance

RS = robust stability
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