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Improved Autotuning Using the Shape Factor from Relay Feedback

T. Thyagarajan and Cheng-Ching Yu*

Department of Chemical Engineering, National Taiwan University, Taipei 106-17, Taiwan

Since the introduction of the relay feedback test by Åström and Hägglund (Automatica 1984,
20, 645-651), autotuning of PID controller has received much attention, and many commercial
autotuners have also been designed accordingly. Without knowledge of the model structure,
most of these relay feedback autotuners use Ziegler-Nichols-type tuning rules to set controller
parameters. This can lead to poor performance in some cases, because no single tuning rule can
work well for all model structures over the entire range of parameter values. Luyben points out
that additional information can be obtained from relay feedback tests, namely, the shape of the
response (Ind. Eng. Chem. Res. 2001, 40 (20), 4391-4402). In this work, relay feedback tests
are conducted on processes with different orders and a wide range of dead-time-to-time-constant
ratios. On the basis of the shape of the response from the relay feedback tests, these processes
can be broadly classified into three major categories (model structures). Procedures are given to
find parameters for the corresponding model structures, and then different tuning rules are
employed to find appropriate PI controller settings. The procedures are tested against linear
systems with and without noise. Simulation results clearly indicate that, by incorporating the
shape information, improved autotuning can be achieved in a straightforward manner. Moreover,
possible dead-time compensation and higher-order compensation can also be devised when
necessary. It should be emphasized that the improvement is obtained from the conventional
relay feedback test and no additional testing is required.

1. Introduction

The relay feedback test proposed by Åström and
Hägglund1 has received much attention from process
control practitioners. Luyben2 is among the first to
employ the relay feedback test for system identification.
The autotune variation (ATV) identification method has
become a standard practice in chemical process control.
Chang et al.3 derived transfer functions from relay
feedback tests with increased accuracy. Several groups4-6

have developed autotuning procedures for PID control-
lers for open-loop unstable process having dead time.
Methods to obtain exact parameter estimations from
asymmetrical limit cycle data have also been pro-
posed.7,8 The progress in relay feedback autotuning up
to 1999 is comprehensively documented in the book by
Yu.9 Ultimate-gain- and ultimate-frequency-based au-
totuning might produce poor performance in some
instances, because information on model structure is
lacking. Typical examples include first-order systems
with large dead-time-to-time-constant ratios and second-
order systems with small dead-time-to-time-constant
ratios. Many authors have proposed modifications to the
relay feedback test, and some works recommend ad-
ditional tests to extract extra information about the
process dynamics. Luyben10 suggested that additional
testing might not be necessary if the extra information
available from a single test is used, namely, the shape
of the relay feedback response.

The purpose of this work is to utilize the shape
information from the relay feedback test to identify the
correct model structure of the process and to determine
appropriate PID controller settings. The additional
shape information is also useful for devising dead-time

compensation and higher-order compensation when
necessary. This paper is organized as follows. A review
of relay feedback, the shapes of relay feedback responses
of various processes, observations related to process
dynamics made from these shapes, and the classification
of different processes based on the shape information
are presented in section 2. The identification procedure
is detailed in section 3. The implications of proposed
method in process control, dead-time compensation, and
higher-order compensation devised and the results are
discussed in section 4. Concluding remarks are pre-
sented in the final section.

2. Shapes of Relay Feedback Response

2.1. Relay Feedback. The Åström and Hägglund
relay feedback test is based on the observation that,
when the output lags behind the input by π radians,
the closed-loop system can oscillate with a period of Pu.
A relay of magnitude h is inserted in the feedback loop.
Initially, the input u(t) is increased by h. Once the
output y(t) starts increasing after a time delay (D), the
relay switches to the opposite direction, u(t) ) -h.
Because there is a phase lag of -π, a limit cycle of
amplitude a is generated, as shown in Figure 1. The
period of the limit cycle is the ultimate period, Pu. The
approximate ultimate gain, Ku, and the ultimate fre-
quency, ωu, are

The relay feedback test is a useful tool for system
identification because it identifies two important pa-
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rameters for controller tuning, the ultimate gain and
the ultimate frequency. Typically, Ziegler-Nichols-type
tuning rules are applied because Ku and Pu are the
quantities required to set PID controller parameters.
Unfortunately, satisfactory performance is not always
guaranteed because no single tuning rule works well
for the entire range of dead time (D) to time constant
(τ) ratios (D/τ), even for first-order plus dead time
(FOPDT) processes.10,11 Luyben10 demonstrates that, for
first-order plus dead time processes, different D/τ ratios
give different shapes in relay feedback tests (Figure 2)
and these shape factors can be utilized to find the
corresponding D/τ values, so that different tuning rules
can be applied accordingly. This approach represents
significant progress in relay feedback identification, and
much reliable autotuning has resulted, as shown by
Luyben.10 Figure 2 shows the transition from a trian-
gular to an almost rectangular shape as D/τ changes
from 0.1 to 10. Similar figures have also been provided
by Friman and Waller.12 In Luyben’s work, the time to
the midpoint of the amplitude (a) is used to characterize
D/τ.

2.2. Shapes. To characterize model structures and
parameter values (e.g., D/τ), processes with different
orders (i.e., 1st, 2nd, 3rd, 8th, 15th, and 20th) and
different dead-time-to-time-constant ratios (i.e., D/τ )
0.01, 1, and 10) were studied. In this work, only
overdamped processes are considered (underdamped
processes and systems with inverse responses are not
included). Figure 3 shows the relay feedback responses
for the higher-order processes. Note that all process
gains were assumed to be 1, and a relay height of 1 (i.e.,
h ) 1) was used to generate sustained oscillations.

From the shapes of the curves in Figures 2 and 3,
several observations can immediately be made.

1. First-Order Plus Dead Time (FOPDT) Process. If
the response curves have sharp edge (discontinuities)
at the peak amplitudes (i.e., y ) (a), the process can
be considered as a FOPDT system, as shown in Figure
2.

2. Effect of D/τ for FOPDT Process. If the relay
feedback gives a triangular wave, the process can be
treated as a time-constant-dominant process (i.e., small
D/τ for FOPDT). Specifically, the time required to reach
the peak amplitude is equal to the dead time, as will be
shown later. If the dead-time-to-time-constant ratio
becomes larger, curvature begins to appear (e.g., Figure
2), and this implies gradual development toward a step

response. As D/τ approaches infinity (D/τ f ∞), the
response resembles a symmetrical rectangular wave.
Actually, FOPDT processes represent a very unique
class in terms of relay feedback responses.

3. Effect of Order. If the order of the process increases
to 2 and beyond (e.g., n ) 2, 3, 8, 15, and 20 in Figure
3), the sharp edges disappear, and the responses
resemble sinusoidal oscillations. Generally, sustained
oscillations develop in all cycles, except for second-order
processes with small D/τ values (Figure 3). Again, when
the dead-time-to-time-constant ratios become large, the
responses approach rectangular waves.

4. Exponentially Developed Cycling. If the response
consists of sinusoidal oscillations with exponentially
increasing magnitude that reach steady state after
many cycles, the process can be considered as a second-
order process with a small D/τ value. This again
represents a special class in relay feedback responses.

2.3. Model Structures. The observations presented
above are useful in identifying different model struc-
tures. The basic principle in classification is to use the
fewest classes while capturing all possible curve shapes
in the relay feedback responses. From the responses in
Figures 2 and 3, three distinct classes can be identified.

2.3.1. Categories 1a and 1b: First-Order Plus
Dead Time (FOPDT). As pointed out in the previous
section, two distinct features signify FOPDT systems:
(1) response curves showing sharp edges and (2) re-
sponses reaching stationary oscillations in the first cycle
(see Figure 1). Therefore, category 1 is represented by
the FOPDT process

Figure 1. Typical relay feedback response.

Figure 2. Relay feedback responses of first-order plus dead time
(FOPDT) processes with different D/τ values (controlled variable,
solid lines; manipulated variable, dashed lines).
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where Kp is the steady-state gain, D is the dead time,
and τ denotes the time constant. Figure 4 shows that,
if the process is truly first-order plus dead time, it
certainly falls into category 1. However, a higher-order
process with a large D/τ value can also be classified into
this category, as suggested by inspection of the relay
feedback responses shown in the top two rows of Figure
3 with D/τ ) 10. A quantitative comparison of the
multiplicative error (defined by eq 30 and reported in
Table 3) also reveals that higher-order systems with D/τ
greater than 10 are better represented by FOPDT
system.

2.3.2. Category 2: Second-Order Plus Small
Dead Time (SOPSDT). Inspection of Figure 3 indi-
cates that a model structure to describe exponentially
developed cycling (top row with D/τ ) 0.01 in Figure 3)
is needed. An ideal candidate is a second-order plus
small dead time (SOPSDT) process, i.e.

Typically, if the ratio ε ) D/τ is less than 0.01, the
oscillation develops slowly. In this work, the ratio ε is
set to 0.001. Thus, the transfer function can be ex-
pressed as

Again, a quantitative assessment (Figure 4) confirms
this category as SOPSDT.

2.3.3. Category 3: Higher-Order (HO). In addition
to the two above-mentioned categories, Figure 3 indi-
cates that the rest of the responses show sinusoidal
oscillations with stationary cycling reached in 1-2
cycles. This behavior can be described by a higher-order
(HO) process without dead time. A typical transfer
function for such a process is

Figure 3. Relay feedback response for processes with different orders and various D/τ ratios (controlled variable, solid lines; manipulated
variable, dashed lines).

Figure 4. Quantitative classification of different model structures
(categories 1-3) based on integrated absolute error from frequency
response.

G(s) )
Kpe

-Ds

τs + 1
(3)

G(s) )
Kpe

-Ds

(τs + 1)2
(4)

G(s) )
Kpe

-ετs

(τs + 1)2
(5)
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As long as n g 3, similar relay feedback responses can
be seen. In this work, a default value of n g 5 is used,
which leads to

Figure 4 shows that this category, category 3, covers
the largest parameter space for the systems studied.

The model structures presented above (eqs 3, 5, and
7) show that there are only two unknown parameters
for categories 2 and 3 and that, for the FOPDT model,
there are three unknown parameters (i.e., Kp, D, and
τ). The parameters chosen for categories 2 and 3 (i.e., ε
and n in eqs 5 and 6) can affect the distribution of model
structures in the parameter space of Figure 4. Nonethe-
less, most of the curve shapes are well-represented using
these three classes.

3. System Identification

The detailed procedures for system identification of
various processes under different categories are pre-
sented below.

3.1. Category 1: FOPDT. This category includes two
types of systems. One is the true first-order plus dead
time process, as shown in the last row of Figure 4, and
this is denoted category 1a. The second one is higher-
order systems with large D/τ values, as shown on the
right-hand side of Figure 4, which is called category 1b.

3.1.1. Category 1a. This category has two important
characteristics: (1) sharp edges at the peak amplitude
and (2) stationary oscillations that develop in the first
cycle. The relay feedback response of an FOPDT system
can actually be described analytically. Figure 5A shows
the original response curve where the output starts to
increase after the dead time D. If the output (y) is
aligned with the input (u) by being shifted to the left
(Figure 5B), it becomes clear that the increasing part
of the output response is the result of a step increase
in u of magnitude h. After a delay time D, the relay
switches to -h, and the second step change becomes
effective immediately, which results in the decreasing
portion of the half-cycle, as shown in Figure 5B.
Therefore, the analytical expression for the first half-
cycle becomes

The continuous step change repeats itself, and a
sustained oscillation results. Note that similar deriva-
tions were proposed by Wang et al.7 for stable first-order
plus dead time systems and Tan et al.4 and Huang and
Chen5 for unstable first-order open-loop systems. Equa-
tions 8 and 9 clearly indicate that the time required to
reach the peak amplitude is exactly the dead time (D)
for the FOPDT process and that this value can be
validated repeatedly at each half-cycle (Pu/2). Given the
boundary conditions y(D) ) a and y(Pu/2) ) 0, one can
solve for the other two model parameters, Kp and τ

G(s) )
Kp

(τs + 1)n
(6)

Figure 5. Analytical expressions of relay feedback response for FOPDT systems: (A) original response and (B) shifted version.

G(s) )
Kp

(τs + 1)5
(7)

y(t) ) Kph(1 - e-t/τ) for 0 < t < D (8)

y(t) ) Kph(1 - e-t/τ) - 2Kph(1 - e-(t-D)/τ)
for D < t < Pu/2 (9)
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Thus, all three model parameters can be determined
from the relay feedback response for true FOPDT
processes. Therefore, the identification consists the
following steps: (0) Record the time to the peak ampli-
tude (D), the peak amplitude (a), and the period of
oscillation (Pu). (1) Set the dead time (D) as the time to
the peak value (Figure 5). (2) Compute the time constant
τ from eq 10. Note that eq 10 is an implicit equation for
τ that requires an iterative solution. One can use the
relationship between the ultimate frequency and τ given
below to obtain a first guess for the value of τ

(3) Compute Kp from eq 11.
Similarly, for an unstable first-order plus dead time

system, all three model parameters can be obtained
directly from the relay feedback responses

First, the output responses can be represented analyti-
cally as shown in Figure 6. From the first half-period,
the expression becomes

Substituting the boundary conditions y(D) ) a and y(Pu/
2) ) 0 into eqs 14 and 15, the time constant (τ) and
steady-state gain (Kp) can be computed directly via

The identification procedure for the unstable process
is exactly the same as that for the stable process except
that the equations for computing τ and Kp are eqs 16
and 17, respectively, rather than eqs 10 and 11. Equa-
tion 16 also reveals that the condition for the existence
of a limit cycle requires D/τ < ln 2 (when D/τ ) ln 2,
the ultimate period becomes infinite).

3.1.2. Category 1b: Approximated FOPDT. This
category also has the FOPDT model structure. As in
category 1a, stationary cycling develops in the first cycle,
but the sharp edge around the peak amplitude is not
quite obvious as it is for category 1a. Second- and third-
order systems with D/τ ) 10 fall into this category.
Because the true process is not exactly an FOPDT
system, determining the dead time directly from the
response (e.g., Figure 5B) can be erroneous. As in
Luyben’s approach, we first define the time required to
reach the peak amplitude (a) as ta and the time required
to reach one-half of the peak amplitude (a/2) as ta/2.

Following the analytical expressions in eqs 8 and 9, we
have

Dividing eq 18 by eq 19, we can solve for τ using

Once τ is known, we can solve for the other two model
parameters, Kp and D, from the ultimate properties

Therefore, the identification consists of the following
steps: (0) Record the time to the peak amplitude (ta),
the time to one-half of the peak amplitude (ta/2), the peak
amplitude (a), and the period of oscillation (Pu). (1)
Compute the time constant τ from eq 20. (2) Calculate
the dead time from eq 21. (3) Calculate the steady-state
gain (Kp) from eq 22.

This procedure enables us to find the approximate
FOPDT model.

3.2. Category 2: SOPSDT. As pointed out earlier,
if a small dead-time-to-time-constant ratio (ε ) D/τ) is

τ )
Pu/2

ln(2eD/τ - 1)
(10)

Kp ) a
h(1 - e-D/τ)

(11)

τ )
tan(π - Dωu)

ωu
(12)

G(s) )
Kpe

-Ds

τs - 1
(13)

y(t) ) Kph(et/τ - 1) for 0 < t < D (14)

y(t) ) Kph(et/τ - 1) - 2Kph(e(t-D)/τ - 1)
for D < t < Pu/2 (15)

τ )
Pu/2

ln[1/(2e-D/τ - 1)]
(16)

Kp ) a
h

(eD/τ - 1) (17)

Figure 6. Analytical expressions of relay feed back response for
unstable FOPDT systems (shifted version).

a ) Kph(1 - e-ta/τ) (18)

a
2

) Kph(1 - e-ta/2/τ) (19)

2e-ta/2/τ - e-ta/τ ) 1 (20)

D )
π - tan-1(τωu)

ωu
(21)

Kp )
x1 + (τωu)2

Ku
(22)
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specified, then there are only two unknown parameters,
as shown in eq 5. After several numerical simulations,
the default value of ε ) 0.001 was found to work well
for a wide range of parameter values. The time constant
can be obtained from phase-angle information

and the steady-state gain can be computed according
to

Therefore, the procedure consists of the following
steps: (0) Record the values of the peak amplitude (a)
and the period of oscillation (Pu). (1) Compute the time
constant τ from eq 23. (2) Calculate the steady-state gain
(Kp) from eq 24.

This procedure enables us to find the SOPSDT model
with the default setting of ε ) 0.001.

However, for certain cases, the model parameters
obtained using the default value of ε ) 0.001 might not
be satisfactory. This is because the ratio ε depends on
the rate at which the oscillations develop. Figure 7
presents the relay feedback responses obtained for
SOPSDT processes with ε ) 0.001, 0.005, and 0.01.
Figure 7 indicates that, as ε increases, the normalized
time constant [ratio of the time constant (τG) defined
by the peaks of the oscillations to the period of oscilla-
tion (Pu)] decreases. In other words, as D/τ increases,
fewer cycles are required to reach static oscillations.
Figure 8 displays a plot showing the dependence of the
ratio D/τ on the normalized time constant. A linear
model is used to relate log(ε) to the normalized time
constant (τG/Pu)

Thus, with the value of τG/Pu from the relay feedback
tests, we are able to calculate the ratio of D to τ, ε.

Therefore, this more elaborate procedure consists of
the following steps: (0) Record the values of the peak
amplitude (a), the period of oscillation (Pu), and the time
constant (τG) from the global response (Figure 7). (1)
Compute the value of the normalized time constant τG/
Pu. (2) Compute the value of ε using eq 25. (3) Compute
the time constant τ from eq 23. (4) Calculate the steady-
state gain (Kp) from eq 24.

This procedure enables us to find the dead-time-to-
time-constant ratio (ε) and the model parameters for the
SOPSDT model.

3.3. Category 3: HO. After several numerical simu-
lations, the default value of n ) 5 was found to work
well for a wide range of parameter values. Thus, if the
order n is chosen for category 3 (e.g., n ) 5 in eq 6), we
are left with two unknown parameters. They can be
determined from the ultimate properties via

Similarly, the identification procedure becomes: (0)
Record the values of the peak amplitude (a) and the
period of oscillation (Pu). (1) Compute the time constant
τ from eq 26 (with n ) 5). (2) Calculate the steady-state
gain (Kp) from eq 27 (with n ) 5).

This procedure enables us to find the parameters for
the 5th-order process (HO model).

However, for certain cases, the model parameters
obtained using the default value of n ) 5 might not be
satisfactory. This is because the value of n depends on
the rate at which the oscillations develop. Similar to
discussion in section 2.3.2, we can relate the normalized
time constant (τG/Pu) to the order n by eq 28. A linear

Figure 7. Relay feedback responses and global responses (defined by peaks) of SOPSDT processes with different D/τ ratios.

-π ) -ετωu - 2 tan-1(τωu) (23)

Kp )
1 + (τωu)2

Ku
(24)

log(ε) ) -0.3031(τG

Pu
) - 1.4767 (25)

Figure 8. Relationship between the normalized global time
constant (τG/Pu) and the dead time/time constant ratio (ε ) D/τ)
for SOPSDT processes.

τ )
tan(π/n)

ωu
(26)

Kp )
[1 + (τωu)2]n/2

Ku
(27)
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model is used to interpolate for n and τG/Pu between n
) 3 and n ) 10

Thus, with the value of τG/Pu from the relay feedback
tests, we are able to calculate the order n.

Therefore, the more elaborate procedure consists of
the following steps: (0) Record the values of the peak
amplitude (a), the period of oscillation (Pu), and the time
constant of the curvature (τG). (1) Compute the value of
the curvature factor C ) τG/Pu. (2) Compute the value

of n using eq 28. (3) Compute the time constant τ from
eq 26. (4) Calculate the steady-state gain (Kp) from eq
27.

This procedure enables us to find the order as well
as model parameters for the HO model.

3.4. Validation. To illustrate the appropriateness of
the proposed classification, six typical examples repre-
senting the various categories are considered (Table 1).
Relay feedback tests were conducted on all of the above
examples, and the relay feedback responses thus ob-
tained are shown in Figure 9 under the heading “true”.
Time-domain responses clearly indicate that examples
1-3 can be classified as approximated FOPDT systems

Figure 9. Reproduction of relay feedback responses (controlled variable, solid lines; manipulated variable, dashed lines) for six examples
with the assumption of different model structures (from left to right: true process, FOPDT, SOPSDT, and HO).

log(n) ) 1.9040 - 1.3736(τG

Pu
) (28)
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(category 1b), example 4 is an SOPSDT system (category
2), and examples 5 and 6 can be classified as HO
processes (category 3). The ultimate properties com-
puted from the relay experiments are also presented in
Table 1.

3.4.1. Time-Domain Analysis. The equivalent mod-
els in the 3 categories for the above six examples were
formulated using the identification procedures described

in the previous section. The 18 equivalent models thus
obtained are presented in Table 2. Note that each
equivalent model has the same values of Ku and ωu but
very different model structures. Relay experiments were
conducted on all three equivalent models, as shown in
Figure 9. The results show that the correct model
structure reproduces the relay feedback response while
the mismatched model structures give completely dif-

4432 Ind. Eng. Chem. Res., Vol. 42, No. 20, 2003



ferent curve shapes, despite having the same Ku and
Pu. The time domain responses confirm that examples
1-3 belong to category 1, example 4 belongs to category
2, and examples 5 and 6 belong to category 3.

The identified models in Table 2 also reveal the
importance of applying the appropriate model structure.
In example 1, using the same values of Ku and ωu, the
SOPSDT model gives a steady-state gain 1600 times the

true value, and in example 4, the FOPDT model
structure results in an unstable system. The results
clearly indicate the need to extract model structure
information from relay feedback tests.

3.4.2. Frequency-Domain Analysis. The above
categorization can be validated in the frequency domain
by evaluating the integrated absolute error (IAE) for
each of the equivalent models. Multiplicative error is

Figure 10. Comparison of set-point responses for six examples with PI controllers: (A) controlled variables, (B) manipulated variables.

Ind. Eng. Chem. Res., Vol. 42, No. 20, 2003 4433



employed here

where G is the true process and Gm is the derived model.
The integrated absolute error is evaluated between
0.1ωu and 10ωu

The numerical values of IAEω are presented in Table
3. By comparing the values of IAEω of the models under
categories 1, 2, and 3 of a particular true process, one
can easily identify the category to which the true process
belongs. The category to which the true process belongs
offers the lowest integrated absolute error, thereby
validating the proposed categorization. Even though all
three model structures give small errors at the ultimate
frequency, the correct category results in the lowest
overall IAEω. With the help of IAEω values computed
for different model structures for various processes over

a wide range of D/τ values as well as different orders, a
quantitative classification can be made as shown in
Figure 4.

4. Implications for Control

After identifying the appropriate model structure and
associated model parameters, different tuning rules can
be designed to achieve improved performance.

4.1. PID Control. 4.1.1. Category 1: FOPDT.
Following Luyben’s approach,10 different tuning formu-
las can be applied for different D/τ values. PI controllers
are used here, but the approach can be extended to PID
controllers with little difficulty.

1. D/τ < 0.1. For processes in category 1 having D/τ
ratios less than 0.1, the Tyreus-Luyben tuning rule is
found to be suitable.

The Tyreus-Luyben tuning equations13 for PI con-
trollers are

2. 0.1 eD/τ e1. The minimum ITAE tuning rule
developed by Rovira11 is found to be suitable for FOPDT
processes in category 1 with D/τ ratios ranging from 0.1
to 1.

The ITAE tuning equations11 for a PI controller are

3. D/τ > 1. For processes in category 1 having D/τ
ratios greater than 1, the PI controller with the IMC
tuning rule is found to be suitable.

The IMC tuning equations14 for a PI controller are

The various tuning rules for FOPDT processes with
different D/τ ratios are summarized in Table 4. For
unstable FOPDT systems, the tuning rules given by Tan
et al.,4 Huang and Chen,5 Marchetti et al.,6 and Jacob
and Chidambaram15 can be used.

4.1.2. Category 2: SOPSDT. For second-order plus
small dead time system, Ziegler-Nichols tuning gives

Figure 11. Comparison of closed-loop responses of an SOPSDT
process (special case) for set-point tracking: (A) controller settings
obtained using the true process, (B) controller settings obtained
using the (SOPSDT) model with the default value of ε ) 0.001,
and (C) controller settings obtained using the SOPSDT model with
ε obtained from eq 25 (ε ) 0.006 85).

e(ω) )
Gm(jω) - G(jω)

G(jω)
(29)

IAEω ) ∫0.1ωu

10ωu|e(ω)| dω (30)

Table 1. Processes Studied and Corresponding Ultimate
Properties

example true process Ku Pu

1 e-10s/(s + 1)3 1.274 25.348
2 e-15s/(s + 1)15 1.2736 59.338
3 e-10s/(s + 1)2 1.2735 23.358
4 e-0.05s/(25s + 1)2 862.8633 5.434
5 e-0.6s/(6s + 1)8 1.8424 91.94
6 e-0.001s/(s + 1)20 1.3424 39.332

Kc )
Ku

3.2
(31)

τI ) 2.2Pu (32)

Kc ) 0.586
Kp

( τ
D)0.916

(33)

τI ) τ

1.03 - 0.165(Dτ )
(34)

λ ) max (1.7D, 0.2τ) (35)

Kc )
τ + D

2
Kpλ

(36)

τI ) τ + D
2

(37)
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poor performance. It should also be emphasized that this
category is just an approximate modeling of the true
process, so modeling error should be expected. For
SOPSDT processes with small values of D/τ (i.e., D/τ )
0.01-0.001), we find the following rules appropriate. For
a PI controller, first set

Then, find that value of Kc that gives a 45° phase
margin. For D/τ ) 0.001, this gives

4.1.3. Category 3: HO. Again, this is just an ap-
proximate model of a large variety of processes (Figure
4), and therefore, a conservative tuning rule should be
devised. For HO processes with orders ranging from 3
to 10 (i.e., n) 3-10), first, set the reset time to

Figure 12. Performance of an FOPDT process (D/τ ) 0.1) with different levels of measurement noise (NSR ) 0, 1/5, and 1/10): (A) relay
feedback responses, (B) set-point responses with a PI controller.

τI ) 2τ (38)

Kc )
2[(0.0432τωu)3 + 0.0432τωu]

Kp[x4(0.0432τωu)2 + 1]
(39)

τI ) (n - 1)τ (40)
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Next, adjust Kc to give a closed-loop logarithmic modu-
lus (Lc

max) of 3 dB. For the default value of n ) 5, this
gives a very simple expression for Kc

4.2. Results. 4.2.1. Noise-Free Systems. After the
exact category of the true process and the appropriate
control strategy had been identified, closed-loop studies
were carried out on all six examples listed in Table 1.

PI controllers were designed on the basis of the
identified models. For example, for the third-order plus
dead time process of example 1, three different PI

controllers were designed according to the FOPDT,
SOPSDT, and HO model structures (i.e., first row of
Table 2) using the tuning rules presented in Table 4,
and eqs 38-41. This procedure was repeated for all six
examples. Table 5 gives the controller settings for the
examples studied. The effects of model structures on
closed-loop performance can thus be compared. Closed-
loop studies were carried out on the true processes. The
set-point responses of three different controllers settings
(from different model structures) on the six examples
are presented in Figure 10. A close look at the responses
reveals the following:

For examples 1-3, the responses obtained from the
controller designed using the FOPDT model structure

Figure 13. Performance of an FOPDT process (D/τ ) 10) with different levels of measurement noise (NSR ) 0, 1/5, and 1/10): (A) relay
feedback responses, (B) set-point responses with a PI controller.

Kc ) 1
Kp

(41)
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are superior to the other responses. This is because
examples 1-3 fall into category 1, for which a PI
controller with IMC tuning is the recommended control-
ler (D/τ > 1). The controller settings obtained using the
SOPSDT model structure give very slow responses,
whereas those obtained by assuming an HO process
result in undershoot responses.

For example 4, the correct model structure (SOPSDT)
gives a reasonable set-point response when compared
to those of the other two model structures. The TL
tuning (a conservative Ziegler-Nichols type of tuning)
produces unstable responses for the second-order system
with small dead-time-to-time-constant ratio, and the
assumption of an HO model structure also fails to
maintain stability. The reason is that this is almost a
double integrator process, which is difficult to control.

For examples 5 and 6, the responses obtained from
the controller designed using the equivalent HO models
are superior to the other responses. The FOPDT model
structure results in undershoot responses, whereas the
SOPSDT equivalent model gives even more sluggish set-
point responses. Note that the controller gain (Kc) of the
SOPSDT model is almost 2 orders of magnitude smaller
than that of the reasonable model.

A special case under the SOPSDT category for which
the default value of ε ) 0.001 does not work very well
is also considered below. Consider the SOPSDT process
represented by

The relay feedback test output response indicates that
the process belongs to category 2, i.e., SOPSDT process
with a model structure given by eq 5. The model
parameters obtained using the procedure described in
section 3.2 with the default value of ε ) 0.001 is given
by

The controller settings obtained (Kc ) 0.6038 and τI )
10) using eqs 38 and 39 with the above model param-
eters results in a slow set-point response (Figure 11).
Hence, there is a need to select an appropriate value of
ε using the procedure described in section 3.2. The model
parameters thus obtained with the modified value of ε
) 0.006 85 are given in the equation

Table 2. True Process and Equivalent Models by Assuming Different Model Structures

example true process FOPDT SOPSDT HO

1 e-10s/(s + 1)3 0.8724e-10.8567s/(1.9574s + 1) 1615.9378e-0.1830s/(182.95s + 1)2 2.2648/(2.9310s + 1)5

2 e-15s/(s + 1)15 0.8970e-24.9161s/(5.2159s + 1) 1615.9378e- 0.1830s/(182.95s + 1)2 2.2656/(6.8613s + 1)5

3 e-10s(s + 1)2 1.0169e-10.0017s/(2.4497s + 1) 1615.9645e-0.1686s/(168.6s + 1)2 2.2658/(2.7009s + 1)5

4 e-0.05s/(25s + 1)2 0.0234e-1.3233s/(21.2556s - 1) 2.3822e-0.0392s/(39.2s + 1)2 0.0033/(0.6283s + 1)5

5 e-0.6s/(6s + 1)8 12.0599e-23.6439s/(400.6714s + 1) 1118.8082e-0.6637s/(663.7s + 1)2 1.5661/(10.6313s + 1)5

6 e-0.001s/(s + 1)20 4.6861e-10.835s/(47.9111s + 1) 1533.106e-0.2839s/(283.91s + 1)2 2.1494/(4.5479s + 1)5

Table 3. Comparison of Integrated Frequency Response Errors for Different Model Structures

integrated absolute error

example true process FOPDT SOPSDT HO

1 e-10s/(s + 1)3 1.3083 × 10-4 7.5365 × 10-3 9.9724 × 10-4

2 e-15s/(s + 1)15 1.0958 × 10-4 7.5468 × 10-3 9.9986 × 10-4

3 e-10s/(s + 1)2 3.7721 × 10-5 7.5233 × 10-3 9.9337 × 10-4

4 e-0.05s/(25s + 1)2 9.9766 × 10-3 2.3097 × 10-4 5.1679 × 10-3

5 e-0.6s/(6s + 1)8 1.1144 × 10-3 5.6718 × 10-3 4.7446 × 10-4

6 e-0.001s/(s + 1)20 1.1952 × 10-3 7.309 × 10-3 9.3339 × 10-4

Table 4. Tuning Rules for FOPDT Processes with
Different D/τ Ratios

D/τ < 0.1 0.1 e D/τ e 1 D/τ > 1

method TL ITAE IMC

formula Kc )
Ku

3.2
Kc ) 0.586

Kp
( τ
D)0.916

λ ) max(1.7D, 0.2τ)

τI ) 2.2Pu τI ) τ

1.03 - 0.165(Dτ )
Kc )

τ + D
2

Kpλ

τI ) τ + D
2

Table 5. PI Controller Parameters for Different
Examples

true process Kc τI Kc τI Kc τI

FOPDT-IMC SOPSDT-PM HO-Lc
max

e-10s/(s + 1)3 0.4587 7.3858 0.0023 365.9 0.4418 11.724
e-15s/(s + 1)15 0.4652 17.6739 0.0023 856.64 0.4416 27.4452
e-10s/(s + 1)2 0.4309 7.4506 0.0023 337.2 0.4415 10.8036

FOPDT-TL
e-0.05s/(25s + 1)2 269.6448 11.9548 1.5279 78.4 303.15 2.5132
e-0.6s/(6s + 1)8 0.5758 202.268 0.0033 1327.4 0.6387 42.5252

FOPDT-ITAE
e-0.001s/(s + 1)20 0.4880 48.2641 0.0024 567.82 0.4654 18.1916

Table 6. True Process, Equivalent Models, and
Corresponding PI Controller Settings for Different
Noise-to-Signal Ratiosa

true NSR ) 0 NSR ) 1/10 NSR ) 1/5

G e-0.1s

(s + 1)
1.0091e-0.1s

(1.0118s + 1)
0.5526e-0.1036s

(0.5414s + 1)
0.3962e-0.1089s

(0.3717s + 1)
Kc 4.1900 4.1900 4.383 3.9527
τI 0.8404 0.8404 0.8382 0.8492

a FOPDT with D/τ ) 0.1.

Table 7. True Process, Equivalent Models, and
Corresponding PI Controller Settings for Different
Noise-to-Signal Ratiosa

true NSR ) 0 NSR ) 1/20 NSR ) 1/10

G e-10s

(s + 1)
0.9998e-10.0010s

(1.0258s + 1)
1.0026e-9.1667s

(1.6449s + 1)
1.2527e-8.7135s

(2.3101s + 1)
Kc 0.3529 0.3525 0.3986 0.3766
τI 6 6.0263 6.2282 6.6668

a FOPDT with D/τ ) 10.

G ) e-0.01s

(2s + 1)2
(42)

Gm ) 6.027e-0.05s

(5s + 1)2
(43)

Gm ) 0.8709e-0.013s

(1.8978s + 1)2
(44)
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The controller settings obtained (Kc ) 4.1794 and τI )
3.7956) using eqs 38 and 39 with the above model
parameters result in a better set-point response (Figure
11), on a par with that obtained using the true process
(Kc ) 3.6398 and τI ) 4).

Thus, it is clear that the appropriate model structure
with suitable tuning rules offers better closed-loop
performance. More importantly, the improvement is
achieved by taking the shape factor in the relay feed-
back response into account.

4.2.2. Systems with Noise. In a real process envi-
ronment, measurement noise is unavoidable. The pro-
posed method was tested against measurement noise.
In the context of system identification, the noise-to-
signal ratio (NSR) can be expressed as7

where abs(.) denotes the absolute value and mean(.)
represents the mean value.

The following two FOPDT processes are used to
illustrate the effect of process noises

In the case of the process represented by eq 46, relay
feedback tests were performed with NSR ) 0 and 1/5
and with a relay height of 1. The relay feedback
responses thus obtained are shown in Figure 12A. The
limit cycle data was computed by taking the average of
the fictitious peaks around the peak. Two cycles were
employed to compute the average values of the limit
cycle data. The FOPDT equivalent model (Table 6) was
formulated using the procedure described in section
3.1.1. Tyreus-Luyben tuning rules (eqs 31 and 32) were
used to tune the PI controller settings (Table 6). The
set-point responses thus obtained are shown in Figure
12B and are on a par with the responses obtained for
the true noise-free process. However, when the process
was corrupted with noise, there was model mismatch
in the FOPDT equivalent model derived. This mismatch
can be alleviated by increasing the strength of the signal
(h ) 2, NSR ) 1/10). Better FOPDT equivalent model
parameters and controller settings were obtained (Table
6) by following a procedure similar to that described
above. Figure 12A shows that the closed-loop perfor-
mance results satisfactory set-point responses even
under the influence of measurement noise.

Figure 14. Set-point responses for a process with large dead time
(category 1b) using a dead-time compensator (solid lines) and a
PI controller (dashed lines).

NSR )
mean[abs(noise)]
mean[abs(signal)]

(45)

G(s) ) e-0.1s

(s + 1)
(46)

Figure 15. Load responses for a higher-order process (category
3) using a higher-order controller (solid lines) and a PI controller
(dashed lines).

G(s) ) e-10s

(s + 1)
(47)
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Similarly, for the process represented by eq 47, relay
feedback tests were performed with NSR ) 0 and 1/10
and with a relay height of 1. The corresponding relay
feedback responses thus obtained are shown in Figure
13A. The limit cycle data were computed in a manner
similar to that carried out for the process represented
by eq 46. The FOPDT equivalent model was formulated
using the procedure described in section 3.1.2. PI
controller settings were obtained using the tuning rules
given in eqs 35-37. Figure 13B shows the set-point
responses obtained using the above controller settings.
Even though the closed-loop response obtained for NSR
) 1/10 is on a par with that obtained for the noise-free
process, the FOPDT model formulated has a mismatch
in the estimated model parameters (Table 7). An
increase in the strength of the signal (NSR ) 1/20, h )
2) can alleviate the model parameter mismatch. The PI
controller settings derived using the above model pa-
rameters result in satisfactory set-point response, as
shown in Figure 13B.

The observations from Figures 12B and 13B indicate
that the proposed method works well even in the
presence of measurement noise, resulting in satisfactory
closed-loop performance.

4.3. Extension. Because the model structure and
corresponding parameters are available, dead-time com-
pensation or higher-order compensation can be provided
whenever necessary. For the purpose of illustration,
IMC15 was used to design controllers for an FOPDT
system with a large D/τ value and for HO systems.

4.3.1. Dead-Time-Dominant Process. For processes
in category 1b, a dead-time-compensating controller can
be designed to improve the performance. Given the
following model (Gm) and IMC filter F (a first-order
filter)

the conventional controller (K) using the IMC design
becomes

In this work, the filter time constant is set to

Example 1 (D/τ ) 5.5465) is used to illustrate the
potential improvement, Figure 14 shows that better set-
point responses can be obtained for systems with large
D/τ values.

4.3.2. Higher-Order Processes. For processes in
category 3, a higher-order controller can be used to
improve the control performance. Again, IMC control
was employed with the following model (Gm) and filter
(F)

The recommended value for λ is 0.45τ. Thus, with the
known values of Gm and F, the equivalent controller in
the conventional feedback structure becomes

Example 5 is used to illustrate the potential improve-
ment. Figure 15 shows that a better load response is
achieved using the higher-order controller without
exciting the manipulated variable excessively.

5. Conclusion

The shapes of relay feedback responses are useful in
extracting additional information about process dynam-
ics. From a methodical analysis of the shape informa-
tion, different processes can be broadly classified into
three major categories. Analytical expressions (eqs 8,
9, 14, and 15) for the responses of stable and unstable
FOPDT processes can be used to derive all three model
parameters. From the insight gained, the identification
procedures for different processes under various cat-
egories were evolved. Different tuning rules were em-
ployed to find appropriate PID controller settings.
Procedures are tested against linear systems with and
without noise. Further, dead-time compensation (for
category 1b) and higher-order compensation (for cat-
egory 3) can also be devised whenever necessary. The
results show that the proposed method results in
improved autotuning in a straightforward manner.
Thus, shape information is useful in inferring the
correct model structure of the process and also in
selecting the appropriate control strategy to offer im-
proved performance without the need for any additional
testing.
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Nomenclature

a ) amplitude of output response
D ) dead time
DTC ) dead time compensator
F ) filter transfer function
FOPDT ) first-order plus dead time
G ) process transfer function
Gm ) model of the process
h ) relay magnitude
HO ) higher-order
HOC ) higher-order controller
IAE ) integrated absolute error
IMC ) internal model control
ITAE ) integral of time-weighted absolute error
K ) controller transfer function
Kc ) controller gain
Kp ) steady-state gain
Ku ) ultimate gain
Lc

max ) maximum closed-loop logarithmic modulus
n ) order of the process

Gm )
Kpe

-Ds

τs + 1
(48)

F ) 1
λs + 1

(49)

K )
Gc

1 - GcGm
) 1

Kp

(τs + 1)

[(λs + 1) - e-Ds]
(50)

λ ) 2τ (51)

Gm )
Kp

(τs + 1)5
(52)

F ) 1
(λs + 1)5

(53)

K ) 1
5Kpλs[ (τs + 1)5

(λ4/5)s4 + λ3s3 + 2λ2s2 + 2λs + 1] (54)
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Pu ) ultimate period
PI ) proportional-integral controller
PM ) phase margin
s ) Laplace transform variable
SOPDT ) second-order plus dead time
SOPSDT ) second-order plus small dead time
ta ) time to the peak amplitude
ta/2 ) time to one-half of the peak amplitude
TL ) Tyreus-Luyben tuning
u ) manipulated variable
y ) controlled variable
ε ) constant with a value of 0.001
λ ) IMC tuning parameter
τ ) process open-loop time constant
τG ) global time constant characterized by the global relay

feedback responses (defined by the peaks of cycling)
τI ) controller integral time
ωu ) ultimate frequency
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