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Abstract

In this work, a systematic approach to derive analytical expressions for relay feed back responses is proposed. It is based on the
observation that a relay feedback test consists of a series of step inputs and a stable limit cycle implies a convergent infinite series.
The second order plus dead time processes with different damping coefficients are used to illustrate the derivation. Analytical

expressions for typical transfer functions up to 5th order are tabulated and a general expression for nth order system is also given.
These analytical expressions are useful to identify unknown system parameters and subsequently for autotuning.
# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Chemical processes are complex and non-linear in
nature due to interactions between inputs and outputs.
With increase in complexity of the process, it becomes
difficult to control the loops properly. Most of the chemi-
cal industries use PID controllers. Proper tuning of PID
loops need proper model structure process parameters.
Relay feedback is one promising tool for identification
of process models. Relay feedback is important as it is
used in autotuning of controller parameters. Ultimate
gain (Ku) and ultimate frequency (pu) are used to
approximate the process model parameters. But it has
been found that those models are not very accurate. A
theory of relay control systems based on the concepts of
transfer functions and frequency characteristics is pre-
sented by Tsypkin [1] that helps to develop compu-
tational methods to analyze general properties of relay
control systems. Li et al. [2] proposed a method to esti-
mate process gain by using information from two relay
experiments. Chang et al. [3] derived transfer functions
of first order plus dead time (FOPDT) systems from
relay feedback tests with increased accuracy using
autotuning variation (ATV) method. But these methods
use frequency domain parameters (Ku and pu), which
are derived from describing functions and carry only
approximate information of process at ultimate fre-
quency. A method, to derive FOPDT type of systems,
was proposed by Wang et al. [4] using multiple method
identification and a single relay test. In one separate
attempt, Majhi and Atherton [5] proposed a technique
to identify plant parameters. But the method needs a
correct initial guess and convergence is not guaranteed.
Kaya and Atherton [6] described another method
(A-locus) to identify low order process parameters from
relay auto-tuning response. Closed-form solutions are not
available for general transfer functions. Recent progresses
in relay feedback is described elaborately by Yu [7]. Leva
and Lovera [8] attempted to extract model structure
information using singular value decomposition tech-
nique. Luyben [9] discussed shape factor in relay feed
back for stable and unstable FOPDT systems and
explained their identification procedure. Thyagarajan
and Yu [10] proposed improved auto-tuning using
shape factor of relay feedback response. They discussed
identification methods for FOPDT, second order plus
dead time (SOPDT) and higher order processes.
Though, time domain model equations for relay output
is derived for FOPDT systems [10], no exact expressions
are available for relay output of SOPDT and higher order
processes. So, this paper gives the first approach to derive
analytical expressions for relay output of different pro-
cesses. The remainder of this paper is organized as follows.
Section 2 gives the derivation of analytical expressions.
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Results are discussed in Section 3 and a detailed discus-
sion from this study and application of these analytical
equations are presented in Section 4. The conclusion is
drawn in Section 5.
2. Analytical expressions

According to Astrom and Hagglund [11], when a
relay output lags behind the input by � radians, the
closed-loop system oscillates around set-point with a per-
iod of pu (Fig. 1A). If a relay of magnitude ‘h’ is inserted
in a feedback loop, the input u(t) becomes ‘h’. As the out-
put y(t) starts increasing after a time delay of ‘D’, the relay
output switches to opposite direction and becomes
u(t)=�h. With a phase lag of ��, a limit cycle of ampli-
tude ‘a’ is formed and the process variable crosses the set-
point. From the principle harmonic approximation of the
oscillations, the ultimate gain (Ku) can be approximated
[11] as Ku=4h/�a and ultimate frequency (!u) thus
becomes !u=2�/pu (where pu is the period of oscillation).
Since the shapes of input and output are far from sinu-
soidal response, the approximation in Ku and !u can be
off by 2–35%. Let us use SOPDT systems with different
time delay to time constant ratios (D/� =0.01�10.0) and
different damping coefficients (� =0.2�5.0) values to
illustrate potential deviations from sinusoidal responses
(Fig. 2). It can be seen that, at the lower left corner, the
oscillation is far from sinusoidal response.
Mathematical models are developed to represent relay
responses produced by different systems. The relay out-
put consists of a series of step changes in manipulated
variable (with opposite sign). Hence, the stabilized out-
put is a sum of infinite terms of step responses due to
those step changes. For systems with time delay, D, the
actual relay output lags the input by an amount D. The
inputs and outputs can be synchronized by shifting
behind the output by an amount D as shown in Fig. 1B,
and, in doing this, the time delay D can be eliminated
from the expression for relay responses as will be shown
later. The shifted version of a typical relay feedback
response provides the basis for the derivation.
It is assumed that the relay response is formed by

n-number of step changes, of opposite directions (�u),
in input. Each period is one half cycle or from time, t=0
to time, t=pu/2. In Fig. 3, in the first interval, as time
changes from t=0 to t=D, the response y1 is produced
due to the first step change (u1). Again, in the second
interval, time progressing from D to D+pu/2, response
y2 results due to combined effects of step changes u1 and
u2. Similarly, the effect of u1, u2 and u3 produces y3
during the third time interval (D+pu/2 to D+pu).
Two half periods (pu/2) are of special interests in
Fig. 3. The even values of n result in ascending half
period (y2n) while the odd values of n formulate the
descending half periods (y2n+1). It is interesting to
note that the generalized response term (yn) slowly
forms a convergent series. Let us use second order sys-
Fig. 1. Schematic representation for the development of analytical expressions of relay feedback responses. A1 is original relay response. Input (u) is

shifted by D in A2. Input (u) and output (y) are shifted by �D in A3.
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tems to illustrate the derivation as they are rich in sys-
tem dynamics.

2.1. Overdamped system

The transfer function of an overdamped SOPDT sys-
tem with damping coefficient greater than one can be
expressed as: G sð Þ ¼

kpe
�Ds

�1sþ1ð Þ �2sþ1ð Þ
where kp is the steady

state gain, �1 and �2 are process time constants with �1
> �2, and D is the time delay. The original step response
of an overdamped SOPDT can be given by:

y ¼ kp 1� a1e
� t�Dð Þ=�1 þ b1e

� t�Dð Þ=�2
� �

where a1 and b1 are given by

a1 ¼
�1

�1 � �2
and b1 ¼

�2
�1 � �2

Under the shifted version (Figs. 1B or 3), the first
segment of the relay response (y1) is simply the step
response without time delay in the time index.

y1 ¼ kP 1� a1e
�t=�1 þ b1e

�t=�2
� �

ð1Þ

At second instant, the time is reset to zero at the
initial point. The step response (relay output) can be
given by [i.e., introducing a time shift by D amount in
the Eq. (1)]

y2 ¼ kp 1�a1e
�tþD

�1 þ b1e
�tþD

�2

h i
� 2kp 1� a1e

� t
�1 þ b1e

� t
�2

h i
Here the first term represents the effect of the first step
change (occurred D time earlier) and the second term
shows the effect of the second step input, switching to
the opposite direction. The above Equation can be sim-
plified as

y2 ¼ kp 1� 2½ � � a1e
� t

�1 e
�D

�1 � 2
� �

þ b1e
� t

�2 e
�D

�2 � 2
� �n o

ð2Þ

The relay response at the third interval, is the result of
three step changes, lags by an amount D+pu/2 from
input. After introducing a time shift of D+pu/2 in Eq.
(1), the net effect becomes:

y3 ¼ kp 1� a1e
�

tþDþ
pu
2

�1 þ b1e
�

tþDþ
pu
2

�2

	 
�

�2 1� a1e
�

tþ
pu
2

�1 þ b1e
�

tþ
pu
2

�2

	 

þ 2 1� a1e

� t
�1 þ b1e

� t
�2

h i�

which can be easily simplified as

y3 ¼ kp 1� 2þ 2½ � � a1e
� t

�1 e
�

Dþ
pu
2

�1 � 2e
�

pu
2�1 þ 2

	 
�

þ b1e
� t

�2 e
�

Dþ
pu
2

�2 � 2e
�

pu
2�2 þ 2

	 
� ð3Þ

It can be seen that the terms in the right hand side
(RHS) of the above equation are slowly forming a series.
Fig. 2. Shifted version of relay output response of a typical SOPDT system.
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With the progress of time, response becomes stabi-
lized and the general expression for the nth term can be
described as

yn ¼ kp 1� 2þ 2� . . .½ � � a1e
� t

�1 e�Dþ n�2ð Þpu=2=�1
�n

�2e
�

n�2ð Þpu
2�1 þ 2e

�
n�1ð Þpu
2�1 � . . . þ 2e

�
pu
2�1 � 2

i
þb1e

� t
�1 e�Dþ n�2ð Þpu=2=�2 � 2e

�
n�2ð Þpu
2�2 þ 2e

�
n�1ð Þpu
2�2

h
� . . . þ 2e

�
pu
2�2 � 2

io
ð4Þ
The RHS of the above Eq. (4) has three parts and
each part consists of an infinite series, F1, F2 and F3.

yn ¼ kp F1 � a1e
� t

�1F2 þ b1e
� t

�2F3

n o

Let v1 ¼
pu

2�1
and r ¼ e�v1 . The first series, F1 is simply

F1 ¼ 1� 2þ 2� 2þ . . .½ � ¼ 1ð Þ
2n�1

¼ 1
Fig. 3. Relay feedback responses for some SOPDT processes with different D/� and � values.
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If n is odd, the second series becomes,

F2 ¼ e
�D

�1rn�2 � 2rn�2 þ 2rn�3 � 2rn�4 þ 	 	 	 � 2rþ 2
h i

This above series is convergent and can be put into
the following form (note that terms are rearranged from
the back side of above expression)

F2 ¼ lim
n !1

e�D=�rn�2

 �

þ 2 1� rþ r2 � r3 þ . . .

 �

hence

F2 ¼ 2 1� rþ r2 � r3 þ 	 	 	
� �

¼
2

1þ r
¼

2

1þ e
�

pu
2�1

In a similar way, the F3 of RHS of Eq. (4) can also be
simplified. Ultimately, the response can be given by :

yn ¼ kp 1� a1e
� t

�1
2

1þ e�Pu=2=�1

� �
þ b1e

� t
�2

2

1þ e�Pu=2=�2

� �� �
ð5Þ

This represents the ascending response (n is odd).
Since this response is dissymmetric, the general form
can be employed as:

yn ¼ kp �1þ a1e
� t

�1
2

1þ e�Pu=2=�1

� ��

� b1e
� t

�2
2

1þ e�Pu=2=�2

� ��
�1ð Þ

n

ð6Þ

2.2. Critically damped systems

The transfer function of a criticallydamped SOPDT
system with damping coefficient greater than one can be
expressed as: G sð Þ ¼

kpe
�Ds

�sþ1ð Þ
2 where kp is the steady state

gain, � is process time constant, and D is the time delay.
The original step response of a criticallydamped
SOPDT process can be given by:

y ¼ kp 1� 1þ
t�D

�

� �
e�

t�D
�

	 


Similar to the procedure followed in Section 2.1, the
first segment of the relay response (y1) is simply the step
response without time delay in the time index.

y1 ¼ kp 1� 1þ
t

�

� �
e�

t
�

h i
ð7Þ

For the second segment, the time is reset to zero at the
initial point and, the relay response can be given by [i.e.,
introducing a time shift of D in Eq. (7)]

y2 ¼ kP 1� 1þ
tþD

�

� �
e�

tþD
�

	 

� 2kp 1� 1þ

t

�

� �
e�

t
�

h i
The above equation can be simplified as

y2 ¼ kp 1� 2½ � � e�
t
� e�

D
� � 2

h i
� e�

t
�
tþD

�
e�

D
� � 2

t

�

	 
� �
ð8Þ

The relay output at the third interval is the result of
three step changes and [i.e., introducing a time shift
D+pu/2 in Eq. (7) can be expressed as

y3 ¼ kp 1� 2þ 2½ � � e�
t
� e�

Dþ
pu
2

� � 2e�pu=2=� þ 2

	 
�

�e�t=�
tþDþ

pu

2
�

e�
Dþ

pu
2

� � 2
tþ

pu

2
�

e�pu=2=� þ 2
t

�

2
4

3
5
9=
;
ð9Þ

Proceeding similarly as described in Section 2.1
above, the stabilized response can be expressed as

yn ¼ kp 1� 2þ 2� 2þ 	 	 	½ �
�

�e�
t
� e�Dþ n�2ð Þpu=2=� � 2e� n�2ð Þpu=2=� þ 	 	 	 þ 2
� �

�e�t=� tþDþ n� 2ð Þpu=2

�
e�Dþ n�2ð Þpu=2=�

	

�2
tþ n� 2ð Þpu=2

�
e� n�2ð Þpu=2=�

þ2
tþ n� 1ð Þpu=2

�
e� n�1ð Þpu=2=� � 	 	 	 þ 2

t

�


�
ð10Þ

It can be seen that, in the above Eq. (10), the RHS has
three parts of which each part is an infinite series (F1, F2

and F3) and they are convergent.

yn ¼ kP F1 � F2 � F3f g

Let r ¼ �e�
pu
2� and q ¼

t

�
and v ¼

pu

2�
.

then F1 ¼ 1� 2þ 2� 2 	 	 	½ � ¼ 1ð Þ
2n�1

¼ 1

F2 ¼ e�
t
� 	2 1� rþ r2 � r3 þ 	 	 	
� �

¼ e�
t
�

2

1þ e�
Pu
2�

	 


and F3 ¼ e�
t
� qþ qþ vð Þrþ qþ 2vð Þr2 þ 	 	 	
� �

or

then F3 ¼ 2e�
t
�

t

�
1þ e�

pu
2�

þ

�
pu

2�
e�

Pu
2�

1þ e�
pu
2�


 �2
2
64

3
75

So, ultimately, the response can be expressed analyti-
cally as

yn¼kp 1� e�
t
�

2

1þ e�
pu
2�

	 

� 2e�

t
�

t

�
1þ e�

pu
2�

þ

�
pu

2�
e�

pu
2�

1þ e�
pu
2�


 �2
2
64

3
75

8><
>:

9>=
>;
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This represents the ascending response (n is odd). The
general form can be employed as (n=odd for ascending
trends or even for descending trends),

yn ¼ kp �1þ e�
t
�

2

1þ e�
pu
2�

	 
�

þ2e�
t
�

t

�
1þ e�

pu
2�

þ

�
pu

2�
e�

pu
2�

1þ e�
pu
2�


 �2
2
64

3
75
9>=
>; �1ð Þ

n

ð11Þ

2.3. Underdamped system

The second order under damped process can be
described as

y sð Þ

u sð Þ
¼

kpe
�Ds

�2s2 þ 2��sþ 1

or

y sð Þ

u sð Þ
¼

e�Ds

sþ p1ð Þ sþ p2ð Þ

where p1 ¼
���i�

� and p2 ¼
��þi�

� with � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

.
Here kp is the steady-state gain, � is process time

constant, � is damping coefficient, and D is the time
delay. The original step response for unit step change
can be expressed as

y ¼ kp 1� a1e
p2 t�Dð Þ þ b1e

p1 t�Dð Þ
� �

where a1 ¼
p1

p1 � p2
and b1 ¼

p2
p1 � p2

Similar to the procedure followed in Sections 2.1 and
2.2 above, the relay response for the first segment can be
given, by shifting the output by D (as in Fig. 2), as

y1 ¼ kp 1� a1e
p2t þ b1e

p1t
� �

ð12Þ

At second instant, the relay response is the result of
two step changes, and can be given by [i.e., introducing
a time shift by D amount in the Eq. (12)]

y2 ¼ kp 1� a1e
p2 t�Dð Þ þ b1e

p1 t�Dð Þ
� �

� 2kp 1� a1e
p2t þ b1e

p1t
� �

The above equation can be rearranged as

y2 ¼ kp 1� 2½ � � a1e
p2t e�Dp2 � 2

 �

þ b1e
p1t e�Dp1 � 2

 �� !

ð13Þ
Similarly, the relay response for the third interval is
the result of three step changes. After introducing a time
shift of D+pu/2 in Eq. (12), the net effect becomes

y3 ¼ kp 1� 2þ 2½ � � a1e
p2t e� Dþ

pu
2ð Þp2 � 2e�

pu
2 	p2 þ 2

h in

þb1e
p1t e� Dþ

pu
2ð Þp1 � 2e�

pu
2 	p1 þ 2

h io
ð14Þ

By proceeding this way, the general expression for the
relay response can be given as

yn ¼ kp �1ð Þ
n 1� 2þ 2� 2þ . . .½ �
�

�a1e
p2t e� Dþ n�2ð Þpu=2ð Þp2 � 2e� n�2ð Þpu=2ð Þp2
�

þ2e� n�1ð Þpu=2ð Þp2 � 	 	 	 þ 2
�
þ b1e

p1t e� Dþ n�2ð Þpu=2ð Þp1
�

�2e� n�2ð Þpu=2ð Þp1 þ 2e� n�1ð Þpu=2ð Þp1 � 	 	 	 þ 2
�!

ð15Þ

It can be seen that, in the above Eq. (15), the RHS has
three parts of which each part is an infinite series (con-
vergent). These series can be simplified and Eq. (15) can
be rewritten as

yn ¼ kp �1ð Þ
n

�1þ a1
2

1þ e
pu
2p2

	 

ep2t � b1

2

1þ e
pu
2p1

	 

ep1t

� �
ð16Þ

The above equation is the general form of relay out-
put (n=odd for ascending trends or even for descending
trends).
Eq. (16) is a function of complex poles. It can be fur-

ther simplified, as it contains conjugate poles, as fol-
lows: eix can be written as

eix ¼ cos xð Þ þ i	sin xð Þ

hence,

yn ¼ kp �1ð Þ
n

�1þ e�
�t
� c1 � c2ð Þcos

�t

�

� �	�

þi c1 þ c2ð Þsin
�t

�

� �
� ð17Þ

where

c1 ¼
p1

p1 � p2
	

2

1þ e
Pu
2p2

and c2 ¼
p2

p1 � p2
	

2

1þ e
Pu
2p1

Now mathematically, it can be further simplified
astaking r ¼ e�

pu:�:�
2 and 	 ¼ pu:�:�

2

c1 � c2 ¼
2

�

�þ �rcos 	ð Þ � �rsin 	ð Þ

1þ 2rcos 	ð Þ þ r2

� �
and,

c1 þ c2 ¼
2

i�

� þ �rcos 	ð Þ þ �rsin 	ð Þ

1þ 2rcos 	ð Þ þ r2

� �
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After simplification, the complex conjugate parts
cancel each other and the equation can be rewritten as

yn ¼ kp �1þ 2
e�

�t
�

�
sin

�t

�
þ 


� �( )
�1ð Þ

n
ð18Þ

where


 ¼ tan�1 �þ �rcos 	ð Þ � �rsin 	ð Þ

� þ �rcos 	ð Þ þ �rsin 	ð Þ

� �

Eq. (18) represents the ascending response (n is odd).
Responses obtained after simulating the above models

are compared with original relay responses from similar
systems.
3. Results

Different types of transfer functions are considered
and the analytical expressions for their relay feedback
output response are developed following the above
procedure (as discussed in Section 2 above). Table 1
gives a list of first order plus dead time and second order
plus dead time processes and their corresponding
mathematical expressions for the stabilized relay feed-
back output responses. These equations (yn) denote the
upward or ascending trend (or sometimes, curves in the
lower part of midline for higher order systems) of relay
feedback output (while time, t, changes from 0 to pu/2).
The downward or descending trend can be obtained by
reversing the sign of the output (�yn).
In this Table 1, individual expression, for relay feed-

back responses of 1st, 2nd and 3rd order systems, con-
tains terms similar to that of corresponding equation for
step responses; except, they differ only in weighing fac-
tor ( 2

1þe�pu=2�). (i.e., If we compare the terms of expres-
sions of relay feedback response with those of step
response of a process, we see that they differ by weigh-
ing factor of 2

1þe�pu=2�). For a FOPDT system, the
response starts (t=0) from the minimal point, at y=�a,
and ends (t=pu/2) at maximal point, at y=a. Also note
that for an unstable FOPDT system, stable limit cycles
can occur only if D/� < ln(2). For the lead/lag second
order system (No.6 in Table 1), the expression is
applicable to systems with left-half plane (�3 > 0) or
right half plane (�3 <0) zero.
Analytical expressions of relay feed back output

responses for higher order systems are presented in
Table 2. They are of much interest because when we see,
for example, the expression for fifth order process, the
equation contains mainly 5 terms (except ‘1’). Each of
these terms represents corresponding lower order pro-
cesses. The first term inside the third bracket of first
line/row appears to be for a FOPDT. The second term
Table 1

Time response (yn) of relay feedback for FOPDT, SOPDT and third order processes
No.
 Process transfer

functions
Time response (yn) of relay feedback

(yn is for ascending part of response:

�yn is for descending part)
Remarks
1

KPe

�Ds

�sþ 1

Kp 1� e�t=� 2

1þ e�pu=2�

	 
� �

In a particular cycle, response starts from min point

and reaches to a max. point
2

KPe

�Ds

�s� 1

Kp 1� et=�

2

1þ epu=2�

	 
� �

D/t < ln (2)
3

KPe

�Ds

�sþ 1ð Þ
2

Kp 1� e�
t
�

2

1þ e�pu=2�

	 

� 2e�

t
�

t=�

1þ e�pu=2�
þ� pu=2�ð Þe�pu=2�= 1þ e�pu=2�


 �2	 
� �
4

KPe

�Ds

�1sþ 1ð Þ �2sþ 1ð Þ

kp 1� a1e

� t
�1

2

1þ e�pu=2�1

� �
þ b1e

� t
�2

2

1þ e�pu=2�2

� �� �
where a1 ¼

�1
�1 � �2

and b1 ¼
�2

�1 � �2
: �1 > �2
5

KPe

�Ds

�2s2 þ 2��sþ 1

kp 1� 2

e�
�t
�

�
sin

�t

�
þ 


� �( )
where 
 ¼ tan�1 �þ �rcos 	ð Þ � �rsin 	ð Þ

� þ �rcos 	ð Þ þ �rsin 	ð Þ

� �
, � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p
, r ¼ e�

pu:�:�
2 and 	 ¼ pu:�:�=2
6

KP �3sþ 1ð Þe�Ds

�1sþ 1ð Þ �2sþ 1ð Þ

kp 1� a1e

� t
�1

2

1þ e�pu=2�1

� �
þ b1e

� t
�2

2

1þ e�pu=2�2

� �� �
where a1 ¼

�1 � �3
�1 � �2

and b1 ¼
�2 � �3
�1 � �2

: �1 > �2

�3 > or < 0
7

KP

�sþ 1ð Þ
3

Kp 1� 2e�t=� 1

1� r

� �
þ

q

1� r
þ

rv

1� rð Þ
2

� �
þ

1

2!

� �
q2

1� r
þ

2qvr

1� rð Þ
2
þ
v2r 1þ rð Þ

1� rð Þ
3

� �	 
� �

where q ¼ t=� ; v ¼ pu=2� and r ¼ �e�pu=2�
8

KP

�1sþ 1ð Þ �2sþ 1ð Þ �3sþ 1ð Þ

kp 1þ a1e

� t
�1

2

1þ e�pu=2�1

� �
þ b1e

� t
�2

2

1þ e�pu=2�2

� �
þ c1e

� t
�3

2

1þ e�pu=2�3

� �� �
where

a1 ¼
�21 �1 � �2ð Þ

; b1 ¼
�22 �3 � �2ð Þ

and c1 ¼
�23

2

 � : �1 > �2 > �3
�1 � �3ð Þ �1 � �2ð Þ �1�2 � �2�3 � �3�1 þ �3
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(having two terms inside first bracket) is for a SOPDT
(critically damped). The third term (having three terms
inside first bracket) is for a third order process. The
terms in the second row/line (having 4 terms inside) are
for a fourth order process. In the third or last row/line
there are five terms for a fifth order process. Hence, the
number of terms (size of the series) for a particular
order of process is rhythmic. These tables are similar to
the tables of Inverse Laplace transform and will help to
find out equation for relay feedback responses. Deriva-
tion of higher order systems is shown in Appendix.
4. Discussion

4.1. Shapes

Luyben [9] and Thyagarajan and Yu [10] discussed
different kinds of shapes evolved in relay feedback
response curves. Depending on its D/� ratio, a system
takes time to reach to stabilized oscillations. These swings
contain process information like oscillation frequency,
amplitude etc. It can be noted that the term ‘D’ does not
appear in the analytical expressions (Tables 1 and 2) of
relay feedback. D is inherent in pu. When D/� or D is
small, pu becomes smaller and in effect !u becomes lar-
ger. This gives rise to oscillations with smooth and
rounded peaks. Fig. 4 explains the effect of dead time on
pu and !u for any system. The values of corresponding
pu and !u are shown in Table 3. So, processes with small
D/� produce oscillations with low pu but high !u values
and the shapes of relay response become almost trian-
gular (Fig. 4a). On the other hand, processes with large
D/� yield oscillations with higher pu but lower !u values
and the shapes of relay response become almost rectan-
gular (Fig. 4c). If we see the analytical equation for
FOPDT systems, for a very low D/�, the expression
reduces almost to y=1� e�t=�. Moreover, small pu implies
only the initial response is utilized to shape the relay
response and therefore, response becomes triangular.
Table 2

Time response (yn) of relay feedback for fourth and higher order processes (see Appendix for derivation)
No.
 Process

transfer

functions
Time response (yn) of relay feedback

(yn is for ascending part of response: �yn is for descending part)
9
 KP

�sþ 1ð Þ
4
 Kp 1� 2e�t=� 1

1� r
þ

q

1� r
þ

rv

1� rð Þ
2
þ

1

2!

q2

1� r
þ

2qvr

1� rð Þ
2
þ
v2r 1þ rð Þ

1� rð Þ
3

� �	 
�

�
2

3!
e�t=� q3

1� r
þ

3q2dr

1� rð Þ
2
þ
3qv2r 1þ rð Þ

1� rð Þ
3

þ
v3r r2 þ 4rþ 1

 �
1� rð Þ

4

	 
�

where q ¼ t=� ; v ¼ pu=2� and r ¼ �e�pu=2�
10
 KP

�sþ 1ð Þ
5
 Kp 1� 2e�t=� 1

1� r
þ

q

1� r
þ

rv

1� rð Þ
2

� �
þ

1

2!

q2

1� r
þ

2qvr

1� rð Þ
2
þ
v2r 1þ rð Þ

1� rð Þ
3

� �	 
�

�
2

3!
e�t=� q3

1� r
þ

3q2vr

1� rð Þ
2
þ
3a1v

2r 1þ rð Þ

1� rð Þ
3

þ
v3r r2 þ 4rþ 1

 �
1� rð Þ

4

	 


�
2

4!
e�t=� q4

1� r
þ

4q3vr

1� rð Þ
2
þ
6q2v2r 1þ rð Þ

1� rð Þ
3

þ
4qv3r r2 þ 4rþ 1


 �
1� rð Þ

4
þ
v4r r3 þ 11r2 þ 11rþ 1

 �

1� rð Þ
5

	 
�

where q ¼ t=� ; v ¼ pu=2� and r ¼ �e�pu=2�
11
 KP

�sþ 1ð Þ
n
 Kp 1� 2e�q 1

0!

1

1� r

� �
þ

1

1!

q

1� r
þ

rv

1� rð Þ
2

� �
þ

1

2!

q2

1� r
þ

2qvr

1� rð Þ
2
þ
v2rð1þ rÞ

1� rð Þ
3

� �	 
�

�
2

3!
e�q q3

1� r
þ

3q2vr

1� rð Þ
2
þ
3qv2r 1þ rð Þ

1� rð Þ
3

þ
v3r r2 þ 4rþ 1

 �
1� rð Þ

4

	 

þ . . .

�
2

n� 1ð Þ!
e�q

n�1C0q
n�1

1� r
þ

n�1C1q
n�2vr

1� rð Þ
2

þ
n�1C2q

n�3v2r 1þ rð Þ

1� rð Þ
3

þ

n�1C3q v3r r2 þ 4rþ 1

 �

1� rð Þ
4

þ . . . þ n�1Cn�1v
n�1
X1
d¼0

dn�2rd

" #)

where q ¼ t=� ; v ¼ pu=2� and r ¼ �e�pu=2�
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Similarly, for a very large D/�, the analytical expression
for FOPDT becomes y=1� 2e�t=� . Because of large pu,
the response is fully developed and the shape becomes
rectangular. Hence pu has an direct effect on time delay
as well as shape of the response.
4.2. Types of equations

Two kinds of responses can be observed in the analy-
tical expressions in Tables 1 and 2. These responses are
tabulated in Fig. 5. Systems with serial numbers 1 and 2
in Table 1, produce monotonic response where, at t=0,
response from model starts at lower most (or upper
most) point (A or B) and, at t=pu/2, it ends at the other
extreme point (B or C). Whereas processes with serial
numbers 3, 4, 5 and 6 in Table 1, give non-monotonic
response with time (t) where 0< t<pu/2. At t=0, the
position of starting point (A or B) of response is in
between y=0 and y=�a along the relay output curve
(lower or upper meniscus). At t=pu/2, the response
ends at point (B or C) which is in between y=0 and
y=�a along the relay output curve (upper or lower
meniscus).
As the D/� value increases, pu increases and the point

A, (the starting point of response) shifts towards one
pinnacle position along the relay output curve. The time
(!t) between point A and lower most point (at which
y=�a) decreases with increase in the D/� value. Based
on the values of !t, class of non-monotonic responses
can be subdivided into three types. The first type (with
large D/�) has !t almost equal to zero and they may be
considered as practically monotonic systems. The sec-
ond type has moderate !t values. The third type (nos. 7
and 8 in Table 1 and 9–11 in Table 2) is higher order
systems without time delay (i.e., n53). For this type of
systems, this value occurs at the mid-point of the half
period (i.e. !t=pu/4). This is important because this
simplify the parameter identification procedure.
Fig. 5 shows trueness of validation of the derived

mathematical models. If the relay height is other than
unity, then the model for the relay output response will
be just multiplied by actual value of relay height (h).

4.3. Application

It can be observed from Fig. 5 that the responses of
generalized analytical expressions start at point A and
end at point B for a time period from 0 to pu/2. The
position of point A lies either in the peak (minimum or
maximum point) or in-between in these ascending or
descending curves. In identification of parameters, the
landmark points and their values can be observed from
Fig. 4. Effect of D on pu and !u for y1 ¼
1:0e�1S

Sþ1 , y2 ¼
1:0e�10S

Sþ1 and

y3 ¼
1:0e�100S

Sþ1 .
Table 3

Effect of D on pu and !u
Transfer function
 D/�
 pu
 !u
y1 ¼
1:0e�0:01S

Sþ1
 0.01
 0.215
 29.2241
y2 ¼
1:0e�10S

Sþ1
 1.0
 2.98
 2.1085
y3 ¼
1:0e�100S

Sþ1
 100
 201.38
 0.0312
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system. For monotonic systems, one can apply follow-
ing boundary conditions

y t ¼ pu=2�Dð Þ ¼ 0;

y t ¼ 0ð Þ ¼ �a and

y t ¼ pu=2ð Þ ¼ a

where y is response, a is amplitude, D is dead time and
pu is ultimate period. For a FOPDT process, the first
condition yields

2eD=��pu=2� � e�pu=2� � 1 ¼ 0
and the second condition gives

kp ¼ �a= h 1� 2= 1þ e�pu=2�

 �� �
 �
 �

These equations can be solved for � and kp. Time
delay, D, can be found by calculating time to reach peak
of response in any one cycle in stabilized response.
For type 2 of non-monotonic class the following

boundary conditions are valid

y at t ¼ !tð Þ � a;

y at t ¼ D� þ !tð Þ0

where D* is the time taken by the response to reach its
peak, often called as apparent death time
Fig. 5. Validation of analytical expressions for relay output of different systems: solid line is relay output and dashed line is model output. (A

denotes starting of one cycle that ends at B. Again from B next cycle starts and ends at C.)
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y at t ¼ pu=2�Dð Þ ¼ 0

dy

dt
at t ¼ !tð Þ ¼ 0

The above conditions can be used to identify
unknown process parameters.
For type 3 of non-monotonic systems, the following

boundary conditions can be used to estimate its
unknown parameters.

(i) at time t=0, response, y=0

(ii) at time t=pu/2, response, y=0

(iii) at time t=pu/4, response, y=�a
Once model structure and parameters become avail-
able, we proceed with the controller tuning. The users
can use their favorite tuning rules for PID controller
design.
5. Conclusion

A systematic approach is proposed to derive exact
expressions for relay feedback responses. In this work,
time domain model equations are derived for first, sec-
ond, third and higher order processes. These results are
tabulated in a closed form solution for the first time.
These model equations are useful to back calculate the
exact process model parameters. This method of mod-
eling can be extended to different types of transfer
functions.
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Appendix

Derivation of analytical equation of relay feedback
response for 5th order process: process transfer function is
G sð Þ ¼

Kp

�Sþ1ð Þ
5

Similar to the procedure followed in Section 3.1 for
over damped process, the initial response in the first
period is given by y1
y1 ¼ KP 1� 1þ
t

1!�
þ

t2

2!�2
þ

t3

3!�3
þ

t4

4!�4

� �
e�t=�

� �

where t ¼ t�

ðA1Þ
In the second interval, the response will be

y2 ¼ KP 1� 1þ
tþD

1!�
þ

tþDð Þ
2

2!�2

��

þ
tþDð Þ

3

3!�3
þ

tþDð Þ
4

4!�4

�
e� tþDð Þ=�

�

� 2KP 1� 1þ
t

1!�
þ

t2

2!�2
þ

t3

3!�3
þ

t4

4!�4

� �
e�t=�

� �
ðA2Þwhere t=t*�D
For the response in the third interval, we can write

y3 ¼ KP 1� 1þ
tþDþ pu=2

1!�
þ

tþDþ pu=2ð Þ
2

2!�2

��

þ
tþDþ pu=2ð Þ

3

3!�3
þ

tþDþ pu=2ð Þ
4

4!�4

�
e� tþDþpu=2ð Þ=�

�

� 2KP 1� 1þ
tþD

1!�
þ

tþDð Þ
2

2!�2
þ

tþDð Þ
3

3!�3

��

þ
tþDð Þ

4

4!�4

�
e� tþDð Þ=�

�
þ 2KP 1� 1þ

t

1!�
þ

t2

2!�2

��

þ
t3

3!�3
þ

t4

4!�4

�
e�t=�

�

where t ¼ t� �D� pu=2
ðA3Þ

In a similar way, the generalized expression for the
response in the nth interval can be given as:

yn ¼ Kp 1� 2þ 2� . . .½ � � 2e�t=� t

�
�

t

�
þ
pu

2�

� �
e�pu=2�

hn

þ
t

�
þ
2pu

2�

� �
e�2pu=2� � . . .



�

2

2!
e�t=� t

�

� �2	

�
t

�
þ
pu

2�

� �2
e�pu=2� þ

t

�
þ
2pu

2�

� �2

e�2pu=2�

�
t

�
þ
3pu

2�

� �2

e�3pu=2� þ . . .

#
�

2
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e�t=� t

�

� �3	

�
t
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pu

2�

� �3
e�pu=2� þ

t

�
þ
2pu

2�

� �3

e�2pu=2�

�
t

�
þ
3pu

2�

� �3

e�3pu=2� þ . . .

#
�

2
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e�t=� t

�

� �4	

�
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�
þ
pu

2�

� �4
e�pu=2� þ
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�
þ
2pu

2�
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e�2pu=2�

�
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�
þ
3pu

2�

� �4
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#) ðA4Þ
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The RHS of above equation has 5 parts and can be

described as

yn ¼ KP F1 � F2 � F3 � F4 � F5f g ðA5Þ

in which, F1, F2, F3, F4 and F5 can be simplified as
follows:

F1 ¼ 1½ �

F2 ¼ 2e�t=� 1

1þ e�pu=2�

	 


þ 2e�t=� t=�

1þ e�pu=2�
þ� pu=2�ð Þe�pu=2�= 1þ e�pu=2�


 �2	 


Let us take q ¼ t=�; v ¼ pu=2� and r ¼ �e�pu=2�

then F3 becomes

F3 ¼
2

2!
e�q q2þ q2þ2qvþ v2
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2

 �

r2
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Similarly, F5 can be simplified as
F5 ¼
2

4!
e�q q4 þ q4 þ 4q3vþ 6q2v2 þ 4qv3 þ v4
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r
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2
6664

3
7775

Thus Eq. (A5) can be rewritten as :

yn ¼ KP 1� 2e�q 1
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This is the equation given in Table 2.
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