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Abstract

Identification of process parameters using single relay feedback test is mostly used in practice. Limit cycle data along with shape
factor of the response curves are important to identify the correct model structure and corresponding model parameters. Time
domain analytical expressions are helpful in deriving conditions to estimate process parameters accurately. Second order plus dead
time (SOPDT) processes are utilized to represent all different shapes with minimal number of model parameters. Provided with ana-
lytical expressions for relay feedback responses, identification algorithms are formulated and three different model structures are
categorized. The autotuning procedure consists of the following steps. First, a relay feedback test is conducted and relay response
is recorded for analysis. If the response is not symmetric we do a biased relay test to restore the symmetry, otherwise, we proceed for
system identification. After finding out model structures and parameters suitable tuning rules are suggested for different ranges of
dead time to time constant ratio (D/s) and damping coefficient (n) values. Closed-loop performances of the identified systems with
and without measurement noise are found to be satisfactory.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Autotuning using relay feedback is widely used in
industry because of its simplicity. It is used to find dy-
namic information of the process and thereby to tune
the feedback controller. The reliability of the method
is made used of by Astrom and Hagglund [1] for PID
controllers. Process identification using autotuning var-
iation (ATV) is one useful tool today in process indus-
tries. Luyben [9] is one of the pioneers to explain ATV
technique for system identification of low order pro-
cesses in which ultimate gain and ultimate frequency
are obtained (Astrom�s autotuning method). Process
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model parameters were obtained from relay response
of the system. Li et al. [8] proposed a method to estimate
process gain by using information from two relay exper-
iments. Chang et al. [3] derived transfer functions of first
order plus dead time (FOPDT) systems from relay feed-
back tests with increased accuracy using autotuning var-
iation (ATV) method. But these methods use frequency
domain parameters (Ku and Pu), which are derived from
describing functions and carry only approximate infor-
mation of process at ultimate frequency. Few articles
have been reported to find exact parameter estima-
tion of low order transfer functions using single relay
test [15,17,7] or by using A-locus method [12,5]. But
closed-form solutions are not available for general
transfer functions. Progress in relay feedback is summa-
rized by Yu [18]. Most of the literature discusses identi-
fication of process dynamics using initial part of the
relay feedback (RFB) responses. But in practice it is dif-
ficult to store the very initial part of RFB response. So,
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effort has been made in this work to extract unknown
process parameters from stabilized part of the RFB re-
sponse. Moreover, estimation techniques using fre-
quency domain ultimate properties do not yield very
accurate process parameters and hence tuning gives a
poor controller performance. Therefore, there is a need
to identify exact parameters of the process. Mathemati-
cal models of relay feedback responses in time domain
are helpful to estimate exact process parameters. Re-
cently, Luyben [10] discussed a very simple technique
that needs one additional parameter (other than limit
cycle data), namely, shape factor, to identify process
transfer functions using a single relay feedback test for
stable and unstable FOPDT systems. The shapes of re-
lay response curves primarily give an idea of the system
category and its order. Thyagarajan and Yu [16] catego-
rized process models by observing the shapes of relay
feedback response (generated from mostly FOPDT pro-
cesses with different D/s ratio and higher order systems)
and identified the transfer function models.

The purpose of this work is to utilize the shape infor-
mation from the relay feedback test to identify the cor-
rect model structure of the process and to calculate
appropriate PID controller settings. This paper is orga-
nized as follows: an introduction to relay feedback,
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Fig. 1. Flow chart for the proposed scheme of system identification
through relay feed back.
observation related to process dynamics made from dif-
ferent shapes and categorization of different model
structures based on multiplicative error analysis are pre-
sented in Section 2. The identification of model para-
meters is explained in Section 3. Section 4 deals with
retention of shapes in spite of load disturbances. Calcu-
lation of tuning parameters and implementation of PID
controller to the actual process is described in Section 5.
Concluding remarks are drawn at the end. Proposed
scheme of identification is shown in Fig. 1.
2. Relay feedback response and shapes

2.1. Relay feedback

Astrom and Hagglund [1] proposed that if a relay of
magnitude �h� is inserted in a feedback loop, the input
u(t) becomes �h�. If the relay output lags behind the input
by p radians, the closed-loop system starts oscillating
around set-point with a period of Pu (Fig. 2). As the out-
put y(t) starts increasing after a time delay of �D�, the re-
lay output switches to opposite direction and becomes
u(t) = �h. With a phase lag of �p, a limit cycle of ampli-
tude �a� is formed and the process variable crosses the
set-point. From the principle harmonic approximation
of the oscillations, the ultimate gain (Ku) can be approx-
imated [1] as Ku = 4h/pa and ultimate frequency (xu)
thus becomes xu = 2p/Pu (where Pu is the period of
oscillation). With the help of these two identified fre-
quency domain parameters, xu and Pu, many tuning
rules are formulated. Unfortunately, satisfactory closed
loop performance is not always guaranteed as no single
tuning rule is appropriate throughout a wide range of
process delay (D) to process time constant (s) ratios
(D/s). We consider here different SOPDT systems (as
they are rich in different dynamics) with different time
Fig. 2. Typical relay feed back output and input.



Fig. 3. Relay feedback responses for some SOPDT processes with different D/s and n values (thick line refers the classification boundary).
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delay to time constant ratios (D/s = 0.01–10.0) and dif-
ferent damping coefficients (n = 0.2–5.0) values to study
shapes (Fig. 3). Note that all the processes gains are as-
sumed to be 1 and input relay height used is of h = 1.

2.2. Shapes

Relay response of processes with increasing n (col-
umn-wise) and increasing D/s (row-wise) are recorded.
A close look to Fig. 3 reveals that, there are generally
three types of shapes in the sustained oscillations.
Firstly, with low D/s ratio (processes with dominant
time constant compared to the dead time) the shapes
of the oscillations are symmetric with rounded peaks.
The peaks of the oscillations form a smooth global cur-
vature (similar to gradually developed step response)
until it stabilizes. They look like exponentially devel-
oped cycles. As the D/s ratio increases, and with damp-
ing coefficient less than 1, the curvature disappears and
the individual peaks of the oscillations become more
curved. Secondly, with high D/s ratio (more than
3.0) the relay response show typical under damped



Fig. 4. Relay feedback response for first order plus dead time system
(MS-1) and corresponding analytical expression (thick lines) and
landmark values.
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oscillations. Third and lastly, with D/s > 1 and n > 1,
the shapes look fully developed with sharp edge at peak
amplitude and takes somewhat rectangular shape.

Next, let us look at the effects of D/s and n on curve
shapes. The time constant dominated processes show tri-
angular with sharp or rounded peaks. With increase in
both of dead time to time constant ratios (D/s) and
damping factor (n), curvature begins to appear which
implies gradual development toward a step response.
As D/s further increases, the response slowly becomes
a symmetrical rectangular wave. But typical under-
damped types of oscillations are observed with low n
and high D/s value.

2.3. Classification

In control-relevant identification, it is important to
identify correct model structure and, subsequently,
appropriate tuning rules can be applied. Obviously, we
would like to have a minimal number of model struc-
tures while capturing essential characteristics (shapes)
in a relay feedback test. With above observations of
shapes, three different classes are identified. These classi-
fications are based on accommodating all possible types
of curve shapes in relay feedback responses.

2.3.1. Model structure 1 (MS-1)

Shapes under third observation may be under first
category, because, they look similar to the relay re-
sponse produced by FOPDT systems. System under this
category has following model structure (MS-1) (lower
right corner in Fig. 3):

GPðsÞ ¼
KPe

�Ds

ssþ 1
ð1Þ

where KP is the steady state gain, D is the time delay,
and s is the process time constant. Systems with large
D/s ratios and high damping coefficients (i.e., n > 1) fall
under this class.

2.3.2. Model structure 2C (MS-2C)

Shapes with low D/s (first observation) are under sec-
ond category (MS-2C) as they resemble to the similar re-
lay response of SOPDT systems.

These systems are similar to second order with criti-
cally damped behavior, i.e., MS-2C.

GPðsÞ ¼
KPe

�Ds

ðsPsþ 1Þ2
ð2Þ

When an unknown process generates relay responses
similar to exponentially developed cycles, it can be clas-
sified under this category i.e., SOPDT with low D/s. In
fact, most of the systems (including higher order) fall
under this class. Similar to model structure, MS-1,
MS-2C has three unknown parameters, namely, KP, s
and D.
2.3.3. Model structure 2U (MS-2U)

The shapes under third observation (lower left corner
in Fig. 3) mentioned above, comprise of one or multiple
typical under-damped oscillations within one cycle (Pu).
They form a new class or category (MS-2U). Systems
under this class has the following model structure

GPðsÞ ¼
KPe

�Ds

ðs2Ps2 þ 2nsPsþ 1Þ ð3Þ

where n is the damping factor with n < 1.
Both qualitative and quantitative assessments (in lat-

ter section) have been presented in this work to confirm
these classifications. Nonetheless, these 3 model struc-
tures can represent all possible curve shapes generally
found in practice.

3. Identification of transfer functions

After observing the shapes of the curves of relay re-
sponses, a priori guess can be made about the category
of the unknown process. The next work is to identify
the unknown system parameters for that very model
structure (i.e., MS-1, MS-2C, MS-2U). The procedures
for identification are explained below (in this work, relay
height, h is taken as unity).

3.1. Model structure 1 (MS-1)

Responses under this category have sharp edges at
peak amplitude and are fully developed at first cycle.
Here we discuss about the stable FOPDT systems. The
stabilized relay response is modeled analytically [13].
Fig. 4 explains responses obtained from model (thick
line, from t = 0 to Pu/2 as represented by segment
A–B or B–C) and actual process (thin line) that helps
to estimate exact process parameters. The concave



Fig. 5. Relay feedback response for second order critically damped
system (MS-2C) and corresponding analytical expression (thick lines)
and landmark values.
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upward half period (thick solid line in Fig. 4) can be ex-
pressed as

yðtÞ ¼ KPh 1� e�t=s 2

1þ e�Pu=2s

� �� �
with t 2 ½0; P u=2�

ð4Þ
Because this is a strictly monotonic response, obser-

vable boundary conditions, giving the landmark points,
can be applied directly

ðyÞt¼Pu=2�D ¼ 0 ð5Þ

ðyÞt¼0 ¼ �a ð6Þ

ðyÞt¼Pu=2
¼ a ð7Þ

The effect of time delay, D, is inherited in Pu as it is
evident in Eq. (4) above. The time delay, D, is the time
taken to reach peak of relay response [17,10,16].

The above equation can be solved for KP and s with
the help of above boundary conditions. Using first
boundary condition (Eq. (5)) to Eq. (4) one can find
time constant, s, iteratively from following equation

2eðD�Pu=2Þ=s � e�Pu=2s � 1 ¼ 0 ð8Þ
Substitution of second initial condition (Eq. (6)) in

Eq. (4) leads to

KP ¼ �a
hð1� ½2=f1þ e�Pu=2sg�Þ ð9Þ

from which process gain, KP, can be found out.
Therefore identification consists of following steps:

(0) Measure the time taken to reach peak amplitude
(D), peak amplitude (a) and period of oscillation
(Pu) from stabilized part of response.

(1) Compute time constant, s, from Eq. (5). For the
purpose of iteration, initial guess value of s can
be taken as

s ¼ tanðp� DxuÞ
xu

ð10Þ

(2) Compute KP from Eq. (6) above.
3.2. Model structure 2C (MS-2C)

Systems under this category has three unknown
parameters, namely, process gain, KP, process time con-
stant, s and time delay, D. The analytical expression for
the stabilized relay response is given by Panda and Yu
[13] (Fig. 5).

yðtÞ ¼ KPh 1� e�
t
s

2

1þ e�Pu=2s

� �(

� 2e�
t
s

t=s
1þ e�Pu=2s

þ�ðP u=2sÞe�Pu=2s

ð1þ e�Pu=2sÞ2

" #)

t 2 ½0; P u=2� ð11Þ
with boundary conditions as follows:

ðyÞt¼tpeak
¼ �a; ð12Þ

ðyÞt¼Pu=2�D ¼ 0 ð13Þ
dy
dt

� �
t¼tpeak

¼ 0 ð14Þ

As in this case, relay response (Fig. 5) shows non-
monotonous behavior, initial point of the response is
unknown. Hence, time delay (D) can not be directly
measured, as previously, as time taken to reach the peak
of response. One observable parameter, is the apparent
dead time D* which is defined as the time to reach peak
of relay response produced by unknown system. More-
over, observable boundary conditions (landmark points)
cannot be applied directly, because the starting point
of the RFB response of analytical expression for half
period described by Eq. (8) is unknown. Therefore addi-
tional parameters need to be introduced from boundary
conditions mentioned in Eqs. (12)–(14). It can be no-
ticed from Fig. 5 that,

tpeak ¼ D� � D

Substitution of boundary condition Eq. (14) into Eq.
(11) gives rise to

D� � D ¼ P u

2

1

1þ ePu=2s
ð15Þ

Substitution of Eq. (13) into Eq. (11) leads to

ð1þ ePu=2sÞ2 ¼ 2DeD=s

s
P u

2D
� 1

� �
ePu=2s � 1

� �
ð16Þ

Hence, the following steps are followed to estimate
the unknown model parameters:
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(0) Read apparent dead time (D*), i.e., time taken by
actual relay response to reach its peak, amplitude
(a) and ultimate period (Pu) from relay feedback
response data.

(1) Solve simultaneously Eqs. (15) and (16) to find out
D and s.

(2) Calculate KP from following relation:

t P
� �� �
KP 1� y1e
�tpeak=s � e�tP=s y1

peak

s
� u

4s
y21e

�0.5Pu=s ¼ a

ð17Þ

where tpeak ¼ D� � D and y1 ¼
2

1þ e�0.5Pu=s
ð18Þ
Fig. 6. Relay feedback response for second order underdamped system
(MS-2U) large D/s (>1) and corresponding analytical expression (thick
lines) and landmark values.
3.3. Model structure 2U (MS-2U)

SOPDT systems with low damping coefficient, n, and
moderate to high D/s ratio fall under this category. This
has been verified by multiplicative error analysis (pre-
sented in later section). This type of processes has four un-
known parameters, namely, KP, s, n and D, as it appears
in Eq. (3). The analytical expression for the relay feedback
response of this kind of processes is given as [13].

yðtÞ ¼ KPh 1� 2
e
�nt
s

b
sin

bt
s
þ a

� �( )
ð19Þ

here a ¼ tan�1 bþ br cosðhÞ � nr sinðhÞ
nþ nr cosðhÞ þ br sinðhÞ

� �

where r ¼ e�
Puns
2 and h ¼ P ubs

2
and b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

q
ð20Þ

This Eq. (19) with following boundary conditions can
be used to estimate above mentioned four unknown
parameters
Fig. 7. Relay feedback response for second order underdamped system
(MS-2U) with small D/s (<1) and corresponding analytical expression
(thick lines) and landmark values.
ðyÞt¼Pu=2
¼ a ð21Þ

dy
dt

� �
t¼tpeak

¼ 0 ð22Þ

ðyÞt¼0 þ ðyÞt¼Pu=2
¼ 0 ð23Þ

ðyÞt¼Pu=2�D ¼ 0 ð24Þ

Here we find two different scenarios in the left part of
Fig. 3. In the upper portion of this part, the response
is smooth and having a single peak in each cycle whereas
in the lower portion (left corner), the response has more
than one peak per cycle (easy to locate landmark
points). The landmarks are starting point (t = 0), ending
point (t = Pu/2), tpeak and zero-crossing of response. If
one can locate point A or B (as in Fig. 6) on the relay
response obtained from experiment, then it becomes
easy to find equations to calculate unknown parameters.
But the real problem is to find out starting and ending
points of response. We assume the following to formu-
late the Eqs. (21)–(24).

(i) The relay responses are symmetric about zero base
line.

(ii) The response of processes that shows more than
one peak per cycle (second scenario) starts from
point A and ends at point B (as shown in Fig. 6).

(iii) For the first scenario, the response starts from bot-
tom most point and ends at next top point (as in
Fig. 7).



Fig. 8. Quantitative classification of different model structures based
on frequency domain IAE values.
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(iv) If more than one peak exists, we consider the last
peak for calculation of D*).

Now tpeak can be written as tpeak = D* � D + Pu/2.
Substituting Eq. (21) in Eq. (19), we get

KP 1� 2

b
e�nPu=2s sin

bP u

2s
þ a

� �� �� �
¼ a ð25Þ

condition in Eq. (22) gives

s
b
½pþ cos�1n� a� � tPeak ¼ 0 ð26Þ

Replacing Eq. (23) in Eq. (19) yields

1

b
sinðaÞ þ e�nPu=2s sin

bP u

2s
þ a

� �� �
¼ 1 ð27Þ

and according to Eq. (24) one can obtain from Eq. (19)

KP 1� 2

b
e�nð0.5Pu�DÞ=s sin

bð0.5P u � DÞ
s

þ a

� �� �� �
¼ 0

ð28Þ
These equations can be solved simultaneously to find

KP, D, s and n.
Alternatively, a simple procedure can be adopted.

The dead time (D) and time needed to reach peak (tpeak)
can be easily measured from relay response curve (see
Fig. 6). Time from point t = 0.5Pu � D to point B gives
a measure of dead time D. Height of point B (where
t = 0.5Pu) from zero base line gives an estimate of KP.
Other two unknown parameters (s and n) can be found
separately from the above Eqs. (25) and (26).

Hence the following steps may be followed to esti-
mate the four unknown parameters of MS-2U systems:

(0) Estimate apparent dead time (D*), i.e., time taken
by actual relay response to reach its second peak.
In case, there is more than one peak in a particular
cycle of RFB response, we consider the last peak
of that cycle for estimation of D*.

(1) Solve Eqs. (25)–(28) simultaneously to calculate
KP, s, n and D.

This procedure enables us to find parameters for MS-
2U type of models.
4. Validation of model structures

All the (unknown) process models (63) under study
are identified separately as MS-1, MS-2C, and MS-2U
using aforementioned algorithms. Thus each of the pro-
cess model will have three model structures. Multiplica-
tive error (described in latter section) in frequency
domain (IAE) is calculated (with respect to true process)
for each model structures of each (unknown) process. A
minimum IAE was sort (out of three IAE thus obtained)
for each (unknown) process to confirm the exact class in
which the process belongs. The classification thus ob-
tained is shown in Fig. 8. Processes with D/s 6 1 fall
under 2C class. MS-2C also covers different processes
with n = 1.0. Systems with D/s > 1 and n < 1 fall under
MS-2U. Several processes with D/s > 1 and n > 1 consti-
tute the region for MS-1 type of system. Thus this figure
shows that MS-2C covers largest parameter space for
the systems studied. MS-1 followed by MS-2U accord-
ingly covers rest of the portion of parameter space (n
vs D/s).

The validity of the above identification method is
found by selecting six examples arbitrarily having
shapes of RFB responses with different characteristics.
Relay feedback tests are performed on these examples
and are shown in Fig. 9 as ‘‘TRUE’’. Ultimate proper-
ties (Ku and Pu) of these unknown processes (examples)
are tabulated in Table 1. After identifying these exam-
ples as different possible model structures (using the
identification procedures described above), (1) time do-
main relay feedback response are reproduced and (2)
frequency domain multiplicative error are calculated to
compare with that of TRUE.

The equivalent models of six examples, after identify-
ing them as MS-1, MS-2C and MS-2U, are presented in
Table 1. Each equivalent model of one example has
same values of Ku and xu but has different structures.
Relay feedback tests are conducted on these model
structures (MS-1, MS-2C and MS-2U) and are shown
in Fig. 9. Comparing the shapes of RFB responses of
these possible three model structures of one example,
one by one, with that of its TRUE RFB response, one
can find out the correct model structure of the example.



Table 2
Values of integral of absolute IAE in frequency range of 0.1xu to 10xu

Example MS-1 MS-2C MS-2U Recommended category

1 0.2104 0.0033 0.3683 MS-2C
2 0.3261 0.0559 0.2864 MS-2C
3 0.0236 0.1156 2.2728 MS-1
4 0.0121 0.1274 1.3599 MS-1
5 0.5990 0.6196 0.0662 MS-2U
6 1.2370 0.4837 0 MS-2U

Fig. 9. Time domain relay feedback responses with six examples (* indicates limit cycle not possible, and NA denotes not applicable).

Table 1
True process with their ultimate properties and identified models under different model structure

Example TRUE process Ku (true proc.) Pu (true proc.) MS-1a MS-2Cb MS-2Uc

1 1.0e�0.01s

s2 þ 6.0sþ 1

544.4977 0.277 �0.0249e�0.066s

�0.7367sþ 1

1.106e�0.0022s

ð1.066sþ 1Þ2
0.0027e�0.1108s

3.5E � 4s2 þ 0.03sþ 1

2
1.0e�1.0s

s2 þ 0.4sþ 1
0.48726 6.68

�206.1472e�1.41s

�112.0192sþ 1

5.3954e�1.1566s

ð1.2239sþ 1Þ2
2.6129e�2.6995s

0.0077s2 þ 0.17sþ 1

3
1.0e�3.0s

s2 þ 6sþ 1
3.1419 10.435

1.1901e�3.062s

7.3552sþ 1

0.5302e�2.9187s

ð1.4636sþ 1Þ2
2.2016e�6.8515s

0.816s2 þ 3.64sþ 1

4
1.0e�7.0s

s2 þ 10sþ 1
2.1591 21.613

1.036e�7.03s

10.4411sþ 1

0.5984e�6.8595s

ð2.6851sþ 1Þ2
0.6348e�12.2007s

2.377s2 þ 3.08sþ 1

5
1.0e�7.0s

s2 þ 0.4sþ 1
0.61948 16.655

2.08e�7.1935s

�1.65sþ 1

60.5766e1.025s

ð15.9654sþ 1Þ2
1.05e�6.8902s

1.03s2 þ 0.41sþ 1

6
1.0e�10.0s

s2 þ 1.6sþ 1
1.2358 23.009

�1.59e�10.0s

�7.49sþ 1

82.1116e�2.2419s

ð24.4624sþ 1Þ2
1.0e�10.0s

s2 þ 1.6sþ 1

a First order plus dead time.
b Second order critically damped plus dead time.
c Second order underdamped plus dead time.

900 R.C. Panda, C.-C. Yu / Journal of Process Control 15 (2005) 893–906
Thus it is confirmed that examples 1 and 2 (Ex-1, Ex-2)
belong to MS-2C, examples 3 and 4 belong to MS-1 and
example 5 and 6 belong to MS-2U. The results clearly
indicate the strength of the identification algorithm to
extract the correct model structure.

Identification of unknown systems (six examples) un-
der right category/model structure is validated by calcu-
lating the integrated absolute error (IAE) of each of
these equivalent models. IAE is evaluated as



Fig. 10. Frequency domain multiplicative error of six examples (NA denotes not applicable).
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IAEx ¼
Z 10xu

0.1xu

GmðjxÞ � GPðjxÞ
GPðjxÞ

����
����dx ð29Þ

where GP is the true process and Gm is the identified
model.

Eq. (25) is a measure of frequency domain multiplica-
tive error between TRUE process and a particular
model structure of one example. Table 2 shows quanti-
tative IAE values of frequency domain error. Out of
three model structures for a particular example, one
yields lowest IAE and falls under that category. The re-
sults clearly indicate that examples 1 and 2 belong to
MS-2C, example 3 and 4 fall under category 1 whereas
example 5 and 6 belong to MS-2U. Fig. 10 show the fre-
quency domain multiplicative error plots for the exam-
ples undertaken. Thus frequency domain IAE values
are helpful to compare and find out exact model struc-
ture for an unknown process.
Table 3
Details of processes for the study of disturbance rejection

Model structures True process
transfer function

(Ku)b (Ku)u (Ku)a

MS-1 1.0e�10s

s2 þ 10sþ 1
2.0013 4.1901 2.0013

MS-2C
1.0e�1s

s2 þ 2sþ 1
2.5543 2.5508 2.5542

MS-2U
1.0e�10s

s2 þ 1.2sþ 1

1.0702 0.5000 1.0702

b: before load disturbance, a: after adjusting h, u: under load disturbance.
5. Disturbance and noises

5.1. Load disturbance

Load changes frequently occur in process industries.
Disturbance rejection is a major criterion in chemical
process control. Sensitivity with respect to load changes
is an important consideration in evaluating identifica-
tion techniques.

Under load disturbance (L = 0.5 to a process model
with transfer functions as given in Table 3), an ideal
relay feed back test results in an asymmetric oscillation
(Fig. 11), and consequently, an imbalance in half peri-
ods results that leads to errors in estimates of Ku and
xu. To overcome this load effect, a bias value (d0) is
added to the relay-input-height (h). Yu [18] has shown
that this bias value is related to amplitude of oscillation
by following relation:
(xu)b (xu)u (xu)a Remarks

0.2095 0.1920 0.2095 Shapes can be restored

1.3159 1.2955 1.3157 Shapes can be restored

0.2765 0.2759 0.2765 Shapes can be restored



Fig. 11. Use of output biased relay to restore the correct shape under
load disturbance for (a) MS-1 and (b) MS-2C systems (transfer
functions and limit cycle data of the processes are given in Table 3).
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d0 ¼ � Da
a

� �
h ð30Þ

where Da is asymmetry in the output and a is the ampli-
tude of output relay response. Thus to restore the sym-
metry in output response, the relay is switched to an
output bias so that the newly adjusted relay input height
becomes H = h + d0.

Let us take an example of MS-2C with transfer func-
tion, G ¼ 1.0e�1s

ðsþ1Þ2 as mentioned in Table 3. Without load

disturbance, the relay feedback test (with h = 0.8) gives
Ku = 2.5543 and xu = 1.3159 and the response is shown
in Fig. 11(a) (t = 0–20). After introducing a load change
of L = 0.02 at t = 20, an asymmetric sustained oscilla-
tion results (t = 20–40). The estimated values of Ku

and xu become 2.5508 and 1.2955 respectively. From
the system response we have Da = �0.16 and a = 0.4.
With the known values of Da and a, the bias value
(d0) can be computed and the result becomes
d0 = 0.32. Next, an output biased relay feedback test is
performed (t > 40) (with the same load still active) and
Ku and xu are found to be 2.5542 and 1.3157 respec-
tively, which are almost same that of disturbance free
case. Similar tests have been performed with other
examples (h = 1 and L = 0.5 was given) and significant
parameter values are shown in Table 3. In each case,
the shapes, Ku and xu values were regained. Fig. 11
shows that the asymmetry in sustained oscillation in-
duced by load disturbance is removed by output biased
relay. Therefore, output biased relay is very effective in
maintaining the quality of the model in the face of load
changes.
5.2. Presence of measurement noise

Measurement noise is a common problem in almost
all process industries. It is necessary to know whether
the shapes of relay feedback responses are deteriorated
in the presence of noise or not. The proposed method
for model identification was tested against measurement
noise. Two different processes (one belongs to MS-2C
and the other belongs to MS-2U) are undertaken for
study. They are

G ¼ 1.0e�0.1S

ðsþ 1Þ2
ð31Þ

G ¼ 1.0e�10S

s2 þ 1.6sþ 1
ð32Þ

Relay feedback tests (relay height = 1) were per-
formed on these processes with noise. Noise to signal
ratio (NSR) was 0 and 1/5. The relay feedback responses
are shown in Fig. 12. In case of second process (Eq.
(32)) hysteresis was used to switch the relay input at
e = 0.2 to restore the shape at initial stage of response.
The limit cycle data were calculated by taking aver-
age of fictitious peaks around the nominal peak of the
stabilized response. Thus amplitude (a 0) and period of
oscillation (P 0

u) were found. The above mentioned iden-
tification algorithms were used to evaluate the model
structures and are shown in Table 4. It can be seen that
the calculated limit cycle data from noisy RFB response
curves are almost closure to that of noise-free case.
Hence identified model parameters are in close approx-
imation to the process model.
6. Controller tuning and performance

After identifying the model structure of the unknown
process, it is necessary to find a proper controller and its
tuning rule for the process. Choice of a suitable control-
ler and its tuning are discussed in the following section.



Fig. 12. Relay feedback responses for processes (A) (example 1 in Table 4) and (B) (example 2 in Table 4) without and with measurement noise
(NSR = 0.2).

Table 4
Detail of process identification in presence of measurement noise

True process Identified process with NSR = 0 Identified process with NSR = 1/5

1.0e�1.0s

ðsþ 1Þ2
0.9946e�1.0029s

ð0.996sþ 1Þ2
a = 0.4984 Pu = 4.775 1.0129e�1.0357s

ð1.0559sþ 1Þ2
a0 = 0.4985 P0

u = 4.988

1.0e�10.0s

s2 þ 1.6sþ 1

1.0e�10.0s

s2 þ 1.6sþ 1
a = 1.0303 Pu = 23.009

1.0111e�9.9476s

0.984s2 þ 1.63sþ 1
a0 = 1.03186 P 0

u ¼ 22.92
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6.1. Model structure 1

FOPDT systems with low D/s value are better
controlled by PI controller and appropriate tuning
rules are Tyreus–Luyben (TL) or IMC as discussed by
Thyagarajan and Yu [16]. PID controller (with IMC
tuning) may be suggested for MS-1 type of processes
with large D/s ratio [11]. PID with IMC-Maclaurian
tuning can also be used for these systems.

6.2. Model structure 2C

It is well known that PID controller is applicable for
second order plus dead time systems. In a separate at-
tempt [14] and from our experience in the choice/selec-
tion of tuning rules of PID controller for SOPDT
processes with wide range of D/s and n values and it is
concluded that processes with D/s 6 0.1 require Tyr-
eus–Luyben tuning, processes with 0.1 < D/s 6 1 need
IMC-Chien [4], whereas processes with D/s > 1 are rec-
ommended to use IMC-Mac [6] for better performance.
Table 5 shows detail of selection and applicability of
proper tuning rules for PID controllers. Fig. 13 helps
in selecting appropriate PID tuning rules for particular
category or model structure.

6.3. Model structure 2U

Tuning rules like Honeywell tuning, IMC types
of tuning and tuning rules based on direct synthesis



Table 5
PI/PID tuning rules for different model structures

Model Parameter Controller Tuning rules Tuning formula

MS-1 (D/s < 0.1) PI Tyreus–Luyben KC ¼ Ku

3.2
and sI = 2.2Pu

(0.1 6 D/s 6 1) PI Min ITAE (Rovira) KC ¼ 0.586

KP

s
D

	 
0.916
and sI ¼

s

1.03� 0.165 D
s

� �
(D/s > 1) PI IMC KC ¼ sþ D=2

KPk
and sI = s + D/2 where k = max(1.7D,0.2t)

(D/s < 0.1) PID Tyreus–Luyben KC ¼ Ku

2.2
, sI = 2.2Pu and sD ¼ Pu

6.3

(0.1 6 D/s < 1) PID IMC-Chien KC ¼ s
KPðkþ DÞ, sI = 2s and sD = s/2

(D/s P 1) PID IMC-MAC KC ¼ sI
KPðkþ DÞ; sI ¼ sþ D2

2ðkþ DÞ and sD ¼ D2

2ðkþ DÞ 1� D
3sI

� �
;

k = max(0.25D, 0.2t)

MS-2C (0.1 6 D/s 6 10) PI Robust-Brambila [2] KC ¼ s1 þ s2 þ D=2
KPDð2kþ 1Þ and sI = s1 + s2 + D/2

(0.1 6 D/s < 1) PID IMC-Chien KC ¼ 2s
KPðkþ DÞ and sI = 2s and sD = 0.5s, k = max(0.25D, 0.2t)

(D/s P 1) PID IMC-Mac Similar formula as for category 2U below with n = 1

MS-2U (0.1 6 D/s 6 10) PI Robust-Brambila KC ¼ 2nsþ D=2
KPDð2kþ 1Þ and sI = 2ns + D/2

(0.1 6 D/s < 1) PID IMC-Chien KC ¼ 2ns
KPðkþ DÞ and sI = 2ns and sD = 0.5s/n

(D/s P 1) PID IMC-Mac KC ¼ sI
KPð2kþ DÞ and sI ¼ 2ns� 2k2 � D2

2ð2kþ DÞ and

sD ¼ sI � 2nsþ
s2 � D3

6ð2kþ DÞ
sI

,

k = max(0.25D, 0.2t)

Fig. 13. Recommendations of PID-tuning rules for process with different parameter values (solid line is for tuning region and shaded portion is for
selection of model structures).
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methods for SOPDT systems are reported in literature.
It is suggested that PID controller with IMC-Chien
(for processes with 0.1 < D/s 6 1) tuning or IMC-
Maclaurin [6] (for processes with D/s > 1) is suitable for
MS-2U type of model structures as it gives better perfor-
mance. The tuning formula is presented in Table 5.



Table 6
PID controller parameters and integral absolute error values for the examples

Example True
process

Identified
process

Proposed tuning rule TL tuning rule

Tuning
rule

Kc si sD IAEa

Servo/Load
Kc si sD IAE

Servo/Load

Ex-1 1.0e�0.01s

s2 þ 6.0sþ 1

1.106e�0.0022s

ð1.066sþ 1Þ2
TL 247.49 0.6094 0.0440 0.1106 0.0025 247.49 0.6094 0.0440 0.1106 0.0025

Ex-2
1.0e�1.0s

s2 þ 0.4sþ 1

5.3954e�1.1566s

ð1.2239sþ 1Þ2
IMC-Chien 0.3138 2.4478 0.6119 7.8039 8.3665 0.2215 14.696 1.0603 31.4428 47.1102

Ex-3
1.0e�3.0s

s2 þ 6sþ 1

1.1901e�3.062s

7.3552sþ 1
IMC-Mac 1.5551 8.3894 0.9083 5.3951 5.3947 1.4281 22.957 1.6563 13.3325 15.0904

Ex-4
1.0e�7.0s

s2 þ 10sþ 1

1.036e�7.03s

10.4411sþ 1
IMC-Mac 1.3922 13.151 2.2271 10.104 9.443 0.9814 47.548 3.4306 23.6124 31.4234

Ex-5
1.0e�7.0s

s2 þ 0.4sþ 1

1.05e�6.8902s

1.033s2 þ 0.41sþ 1
IMC-Mac 0.2230 2.4199 0.2569 11.424 12.944 0.2816 36.641 2.6437 Ub U

Ex-6
1.0e�10.0s

s2 þ 1.6sþ 1

1.0e�10.0s

s2 þ 1.6sþ 1
IMC-Mac 0.3011 4.5167 0.6780 15.526 15.516 0.5617 50.619 3.6522 U U

a IAE for load changes in italics.
b U is unstable.
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6.4. Closed-loop study

After identifying the proper model structure, a suit-
able tuning rule for PID controller is found out for
the unknown process under investigation. Then closed-
loop studies are carried out for (a) set-point and (b) load
Fig. 14. Closed-loop responses of processes (true processes) with differen
structures) (dotted line is TL, solid thick line is for IMC-Mac/IMC-Chien) (
changes. Here, six examples (mentioned in Table 1) are
used for closed-loop performance. Naturally, from
Table 5, it is suggested that examples 1 and 2 (MS-2C)
need TL and IMC-Chien, respectively as D/s 6 1,
whereas other examples (ex-3 to ex-6) require IMC-
Mac tuning. Calculated PID parameters and IAE values
t PID-tuning rules (tuning rules are derived from identified model
a) set-point change (b) load disturbance.
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are shown in Table 6. All the PID-controller tuning
parameters were calculated based on identified process
model parameters (for the examples considered for
study). These controllers are implemented on PID2
structure (with a = 0.1).

K ¼ PID2 ¼ Kc 1þ 1

sis
þ sDs
asDsþ 1

� �
ð33Þ

In each case, simulation was carried out on true pro-
cess, from time, t = 0 to t = 50 s with set-point = 1.0.
From Fig. 14, we observe closed-loop responses (column
Y) and corresponding controller outputs (column U),
for six different examples undertaken for study. In this
figure, dotted line represents response with ZN tuning
rule and thick solid line denotes tuning with IMC-Mac
(except IMC-Chien for examples 1 and 2). (ranges of
Y axis and U axis are between �2 and 2 where as that
of time axis is from 0 to 50 unless mentioned in the fig-
ure otherwise). Response time of example-1 is very fast.
It can be clearly seen that, examples 1 and 2 (belong to
MS-2C) give IAE of 0.1106 and 7.8039 with TL and
IMC-Chien for set-point change and IAE of 0.0025
and 8.3665 for load change. The corresponding IAE val-
ues with TL tuning are 0.1106 and 31.4428 for set-point
and 0.0025 and 47.1102 for load change, examples 3 and
4 (belong to MS-1) yield IAE of 5.3951 and 10.1041 with
IMC-Mac for set-point change, where as with TL tun-
ing, these values are 13.3325 and 23.6124, respectively.
Again, examples 5 and 6 (belong to MS-2U) give IAE
values of 11.424 and 15.526 with IMC-Mac for set-point
case but yield unstable response with TL tuning. IMC-
Mac tuning rule yields smoother and faster response.
Hence, the performance of this tuning rule is more sat-
isfactory over TL, especially for larger D/s cases. The
performance of IMC-Mac tuning rule can be further im-
proved (by reducing IAE values) by using optimum tun-
ing parameter, k values.
7. Conclusion

Shapes of relay response curves of SOPDT systems
are studied here to get a guess on the order and type
of unknown process. This method of system identifica-
tion (Fig. 1) is simple and will be of much industrial
use. A single relay feedback test is carried out on un-
known system. If the responses are symmetric (in case
of asymmetric signals, we may have to do output bias re-
lay adjustment for load or adjustment through hystere-
sis, at initial stage, for measurement noise) then shapes
of the relay response curves guide us to guess on the
class/category of the unknown process. Based on three
different shapes, three categories of model structures
are formulated. Analytical expressions for the relay re-
sponse of these categories along with boundary condi-
tions are helpful to identify the model parameters
exactly. With the help of analytical expressions for
RFB response, limit cycle data and some initial condi-
tions, equations are derived to find out exact model
parameters. Classification of systems (Fig. 5) gives a
useful hint about the correct model structures of an
unknown process. From the model structure and
parameter values, we are able to apply appropriate tun-
ing rules (i.e., TL, IMC-Chien and IMC-Mac settings)
for better control performance.
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