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Abstract

In this work we develop, demonstrate, and distribute the code for a new Simulink block that models the dynamic evolution of the population
density function for a physical system which can be modeled by a population balance equation. The name of the block is PCSS, for population
balance modeling using the conservation element/solution element method in Simulink. The block interfaces with an auxiliary user-defined function
that allows the user to specify arbitrary expressions for growth and generation/loss terms, as well as an arbitrary number of inputs, outputs and
auxiliary states for the block. The versatility of the block allows a wide variety of physical systems to be modeled, and the implementation in

Simulink facilitates rapid model development and permits the use of pre-existing MATLAB/Simulink packages for system identification and
control.
© 2007 Elsevier Ltd. All rights reserved.
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. Introduction

Mathematical modeling by population balance has become
standard tool for chemical engineers, with applications as

iverse as catalysis, particulate processes, and bioengineering.
ulbert and Katz (1964) are generally credited with being

he first authors to publish a general formulation of the the-
ry. The standard reference on the subject is the textbook by
amkrishna (2000). Applications to crystallization are discussed
y Randolph and Larson (1988).

A population balance for a solids process such as crystalliza-
ion with one property coordinate can be described by the partial
ifferential equation:

∂F (L, t)

∂t
+ ∂(G(F, L, t)F (L, t))

∂L
=

∑
i

Ḟi(F, L, t) (1)

here F(L, t) is the population density function, G(F, L, t) is the
inear growth rate of the crystals, and Ḟi are generation and loss
erms that account for phenomena such as nucleation, attrition,

ow into and out of the control volume, etc. In certain special
ases, particularly batch processes, Eq. (1) can be solved by the
ethod of moments (Chang & Epstein, 1982; Chung, Ma, &
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raatz, 1999; Jones, 1974; Ward, Mellichamp, & Doherty, 2006
nd references therein). However, in most realistic cases this
ethod fails because the moments are not closed. In this case,

t is necessary to solve Eq. (1) explicitly.
Historically, most researchers who have attempted to solve

q. (1) have employed the so-termed method of lines, in which
he differential equation is discretized into a finite number of
rdinary differential equations (Hill & Ng, 1995; Hounslow,
yall, & Marshall, 1988; Kumar & Ramkrishna, 1996a, 1996b,
997; Marchal, David, Klein, & Villermaux, 1988; Pathath &
ienle, 2002). Other methods, including statistical methods, are

eviewed by Ramkrishna (2000).
Wulkow and coworkers (Gerstlauer, Gahn, Zhou, Rauls, &

chreiber, 2006; Wulkow, Gerstlauer, & Nieken, 2001) have
eveloped and marketed a commercial software package (Parsi-
al) for the dynamic simulation of particle size distributions and
owsheets with solids processes. The software is based on the
o-termed Galerkin h–p method (Wulkow, 1996), an adaptive
nite element algorithm.

Recently, Motz, Mitrović, and Gilles (2002) proposed that
he partial differential equation representing the population bal-
nce (Eq. (1)) could be solved using a novel numerical method

alled the space time conservation element and solution element
CE/SE) method developed by Chang and coworkers (Chang,

ang, & Chow, 1999; Lim, Chang, & Jørgensen, 2004; Yu &
hang, 1997). This method was originally developed for the

mailto:jeffward@ntu.edu.tw
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from the auxiliary function. The reader is also advised to refer
to the file pcss ex 1.pdf, which is available as a web-published
supplement to this manuscript. This file contains the code for the
auxiliary function for the first case study, which is referenced by
234 J.D. Ward, C.-C. Yu / Computers and C

olution of the Navier–Stokes and Euler equations, but can be
odified to solve the population balance equation. The method

s derived from first principles by enforcing local (and global)
umerical flux conservation and, as such, it is well suited to the
olution of partial differential equations where numerical diffu-
ion is a concern. It has the further advantages that it is simple
o program and has a simple stability criterion.

The issue of automatic control of continuous crystalliza-
ion processes has also received increased attention recently in
he literature. Historically, one significant difficulty in imple-

enting feedback control for crystallization processes was the
nability to make online measurements of the crystal size dis-
ribution. However, recent improvements in sensor technology
ave begun to mitigate this problem. Another difficulty is the
election of controlled variables, since the crystal size is a
istributed parameter. Eek, Pouw, and Bosgra (1995) investi-
ate the use of proportional-only feedback control. Vollmer and
aisch (2002) and Motz, Mitrović, Gilles, Vollmer, and Raisch

2003) consider H∞ control. Christofides and coworkers (Chiu
Christofides, 1999; Chiu & Christofides, 2000; El-Farra, Chiu,
Christofides, 2001; Shi, El-Farra, Li, Mhaskar, & Christofides,

006) have applied a variety of advanced control methodologies
o crystallization processes, including robust nonlinear control
nd predictive control.

The most widely used commercial software program and
igh-level programming language in the field of automatic con-
rol in general and chemical process control specifically is

ATLAB (The MathWorks, 2004) and the associated dynamic
imulation package Simulink (see, for example, Seborg, Edgar,

Mellichamp, 2004). Various toolboxes have been developed
or this platform for control-specific applications, such as model-
redictive control, robust control, system identification, neural
etworking, fuzzy logic, etc. Therefore, it would be useful if
t were possible for the engineer to simulate the dynamics of
ispersed phase processes such as crystallization in this envi-
onment.

The purpose of this work is to develop, demonstrate and dis-
ribute the code for a Simulink block which models the time
volution of the particle size distribution function for a crystal-
ization process. The code is based on the CE/SE algorithm, and
efers to a user-defined auxiliary function to determine G and Ḟi

s a function of L, t, F and other state variables which the user
ay define.

. Computer code

The CE/SE algorithm is described in detail elsewhere, and
he time marching scheme and its derivation will not be repeated
ere. Instead we make a few remarks about the Simulink imple-
entation to guide the reader in modeling his or her own process.
he MATLAB code for the PCSS block, as well as the auxil-

ary function files and Simulink block diagrams for the two case

tudy processes, are provided in a web-published supplement to
his manuscript with the file PCSS.zip. Some familiarity with the
oding of Simulink S-Functions may be helpful in understanding
he details presented in this section.

F
c

cal Engineering 32 (2008) 2233–2242

The heart of the PCSS block is the m S-Function PCSS.m
his function need not be modified by the user, but it
akes use of an auxiliary m function which the user must

rovide and which specifies all of the model-specific proper-
ies, including nucleation and growth rates, block inputs and
utputs, etc. The auxiliary function can also establish and
pdate auxiliary states for the block, such as liquid phase
oncentration, liquid holdup in the crystallizer, crystallizer
emperature, etc. The auxiliary function has two inputs, the
block” data structure, and a flag which tells the function what
nformation to return. The auxiliary function has a single out-
ut, a variable (usually a data structure) with the requested
nformation.

The block is a discrete time block, with a time step equal
o the parameter dt. All state information, including the current
alues of the crystal size distribution F, its length derivative
L, the growth rate G, and values of auxiliary state vari-
bles are stored in Dwork vectors 1 through 4, respectively.
ince the entire block data structure is passed to the auxil-

ary function, the auxiliary function has access to all of the
nformation known about the system, including the values
f all states, all inputs, the sample time and the simula-
ion time. Therefore, the user-defined function can be quite
eneral.

Fig. 1 shows the flow of information between the PCSS code
nd the auxiliary function. Table 1 shows the required output
ig. 1. Flow diagram illustrating the exchange of information between the PCSS
ode and the user-defined auxiliary function.
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Table 1
Required outputs from auxiliary function

Flag = ‘Init’
Output is a data structure with the following fields

IPorts Vector specifying the dimensions of input ports
OPorts Vector specifying the dimensions of output ports
F0 Vector containing the initial values of the crystal size distribution
FL0 Vector containing the initial values of the length derivative of the crystal size distribution
G0 Vector containing the initial values of the growth rate
AuxInit Vector containing the initial values of the auxiliary state variables
param Vector containing the four parameters for the CE/SE method: length step size dL, time step size dt, and

parameters α and ε as defined by Chang (1995) param = [dL dt α ε]

Flag = ‘GFdot’
Output is a data structure with the following fields

G Vector containing the growth rate at the next time step at each grid point
Fdot Vector containing generation/loss rate at the next time step at each grid point
GBC Growth rate at the left boundary, i.e. G(L = 0)
FBC Left boundary condition for the population density function at the current time, i.e. F(L = 0)

Flag = ‘AuxUpdate’
Output is a vector containing new calculated values for the state variables at the current

time step
Flag = ‘Output’

Output is a data structure of length N where N is the number of outputs. The data structure
h h por
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as one field, named ‘Data’ which specifies the output (scalar or vector) for eac

ine number in this section. More details about the case study
an be found in the following section.

If the flag is equal to “Init”, then the auxiliary block should
eturn information necessary for the initialization of the block. In
he code for Example 1, this occurs on lines 33–45. The output
s a data structure ‘out’ with several fields. The field ‘IPorts’
pecifies the number and dimensions of the input ports. In this
xample, there is one input port with length 1 (this will be the
atch temperature). Likewise, the field ‘OPorts’ specifies the
umber and dimensions of the output ports. There are two output
orts. The first output is a vector containing the value of the
rystal size distribution at the discrete intervals dL; the second
utput is a scalar: the concentration of solute in the liquid phase.
he fields ‘F0’ and ‘FL0’ give the initial values of the crystal
ize distribution and its length derivative FL at the discrete points
L. In this example, the initial condition is a normal distribution
ith a mean length of 200 �m, a standard deviation of 50 �m,

nd a total number of crystals equal to 105. The field ‘G0’ gives
he initial values of the growth rate at the discrete points dL. The
eld AuxInit gives initial values of the auxiliary state variables.
n Example 1, there are two auxiliary state variables, the liquid
hase concentration and the third moment of the crystal size
istribution.

If the flag is equal to “GFdot” then the function should return a
ata structure with three vectors corresponding to the growth rate
nd the generation/loss rate at each grid point (‘G’ and ‘Fdot’)
s well as a value for the growth rate and crystal size distribution
t the left boundary condition (‘GBC’, ‘FBC’). This occurs on
ines 54–68 of the example code.
If the flag is equal to “AuxUpdate” the block should return a
ector containing updated values of the auxiliary state variables.
his occurs on lines 72–78 of the example code.

g
d
t

t

Finally, if the flag is equal to “Output” then the block should
eturn a data structure of length n, where n is the number of
utput ports defined in the initialization step. The data struc-
ure should have one field named ‘Data’ which should contain

scalar or vector with the output for the corresponding port.
his occurs on lines 47–50 of the example code. There are two
utputs in Example 1; therefore, the data structure has length 2.
he first output is the crystal size distribution which is stored in
work(1).Data. The second output is the liquid phase concentra-

ion, which is stored in Dwork(4).Data(1). (Dwork(4) contains
ll auxiliary states, and the concentration was specified as the
rst auxiliary state.)

It is worthwhile to consider some of the limitations of the
lock. These limitations arise both from inherent limitations in
he numerical method and from decisions that we have made in
mplementing the block in Simulink. One important limitation
s the stability criteria for the numerical method: G�T/�L ≤ 1
t all times (Motz et al., 2002). This has the effect of limiting
he magnitude of the time interval �t for a given value of the
esolution of the crystal size distribution �L. Another limitation
n the Simulink block is that as written it can accommodate only
single property coordinate, whereas some researchers (e.g. Ma
Braatz, 2003) consider multiple property coordinates (such as

wo characteristic lengths with two independent growth rates).
hang et al. (1999) describe how the CE/SE method can be
pplied to solve multi-dimensional problems. Another limitation
f the code is that as implemented in this work the space–time
rid must be uniform, whereas it might be desirable in some cir-
umstances to use a non-uniform grid with (for example) a finer

rid at lower values of the length coordinate or in the vicinity of a
iscontinuity such as the fines or product cutoff in the R–z crys-
allizer model (Randolph & Larson, 1988). Chang, Wu, Wang,
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be the case. This case study will develop further insight into this
result by providing the complete population density function at
the end of a batch for a seeded batch crystallizer subjected to
early-growth and late-growth operating policies.
236 J.D. Ward, C.-C. Yu / Computers and C

nd Yang (2000) discuss a method for local mesh refinement in
he CE/SE method.

The following sections present results from two examples
hat use the PCSS block.

. Example 1: Batch crystallization

.1. Mathematical model and numerical parameters

The first example is based on a case study by Chung et al.
1999) for the seeded batch cooling crystallization of potassium
itrate from water. Nucleation is assumed to be by a secondary
echanism, and the nuclei are assumed to be arbitrarily small.
he population balance is given by:

∂F (L, t)

∂t
+ G(t)

∂F (L, t)

∂L
= 0 (2)

ubject to the initial condition:

(L, 0) = F0 (3)

nd the boundary condition:

(0, t) = B(t)

G(t)
(4)

he growth and nucleation rates are given by:

(t) = kgS(t)g (5)

(t) = kbμ3S(t)b (6)

here kg, kb, g and b are empirically determined kinetic param-
ters. μ3 is the third moment of the crystal size distribution as
efined below. The supersaturation is defined as:

= C − Csat

Csat
(7)

here Csat is a function of temperature. Finally, the time evo-
ution of the concentration of solute in the batch is given by a

aterial balance:

dC

dt
= −3ρckvG(t)μ2 (8)

arameters for the potassium nitrate case study are given in
able 2. The moments μ of the population density function
i

are given by:

i(t) =
∫ ∞

0
LiF (L, t) dL (9)

able 2
arameter values for the KNO3 case study system

rowth rate constant kg 1.1612 × 10-4 m/s
ucleation rate constant kb 4.6401 × 1011 #/m3s
rowth rate exponent g 1.32 ––
ucleation rate exponent b 1.78 ––
aturation concentration Csat 0.1286 + 0.00588T

+ 0.000172T2
kg KNO3/kg H2O

olumetric shape factor kv 1 ––
ensity of crystal ρc 2110 kg/m3
cal Engineering 32 (2008) 2233–2242

or this system the moments are closed and if complete knowl-
dge of the time evolution of the population density function is
ot required, it is possible to obtain approximate information by
olving the ordinary differential equations corresponding to the
rst several moments:

dμ0

dt
= B (10)

dμi

dt
= iGμi−1, i = 1, 2, . . . (11)

herefore, the time evolution of the moments can be calculated
ndependently by the integration of Eqs. (8), (10) and (11), and
his result can be compared to the time evolution of the particle
ize distribution as determined by solving Eqs. (12) and (8) using
he PCSS Simulink block.

.2. Results and discussion

Ward et al. (2006) introduce the concepts of “early growth”
nd “late growth” for the selection of operating policies for
eeded batch crystallization where secondary nucleation is
mportant (Eq. (6)). Briefly, under an early-growth operating
olicy the growth rate (supersaturation) is greatest at the begin-
ing of the batch, and under a late growth operating policy it is
reatest at the end of the batch. For cooling crystallization, the
ate of change of temperature is greatest in an absolute sense
t the beginning of a batch for early growth and at the end of
he batch for late growth. Ward et al. predict that early-growth
perating policies should produce a smaller number of nucleus-
rown crystals, but a greater mass of nucleus-grown crystals.

late-growth operating policy should produce a greater num-
er but a smaller mass of nucleus-grown crystals and at the same
ime grow the seed crystals to a larger size. The reader is referred
o Ward et al. (2006) for a detailed explanation of why this should
Fig. 2. Early-growth and late-growth temperature trajectories.
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Fig. 3. Simulink block d

Fig. 2 shows the temperature trajectories used in this case
tudy. Note that the early-growth trajectory has a slope great-
st in an absolute sense at the beginning of the batch while the
ate-growth trajectory has a slope steepest in an absolute sense
t the end of the batch. Although the early-growth trajectory
s nearly linear, it results in a significantly greater supersat-

ration at the beginning of the batch than at the end of the
atch. Fig. 3 shows the Simulink flowsheet that was devel-
ped to model this process. The PCSS block has one input for
he temperature and two outputs: a vector output for the dis-

g
t
t
g

ig. 4. Time evolution of the solute concentration and the first four moments of the c
alculated by using: (—) PCSS ( ) method of moments. The lines lie almos
for the KNO3 process.

retized population density function and a scalar output for the
oncentration.

Fig. 4 shows the time evolution of the first four moments of
he population density function for the early- and late-growth
perating policies as calculated using both the PCSS block and
he method of moments. The lines overlap almost exactly, sug-

esting that the PCSS block gives a very accurate description of
he time evolution of the population density function. Note that
he moments grow rapidly at the end of the batch for the late-
rowth operating policy, but at the beginning of the batch for the

rystal size distribution function for early and late-growth operating policies as
t on top of each other.
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ig. 5. Number and volume distribution functions for the KNO3 process sub-
ected to early- and late-growth operating policies.

arly-growth operating policy. Note also that the 0th moment is
onsiderably higher at the end of the batch for the late-growth
perating policy compared with the early-growth operating
olicy.

Fig. 5 shows the population density function at the end of
he batch for both the early and late-growth operating policies
s calculated using the PCSS block. Note that this information
annot be obtained from only the low moments of the crystal
ize distribution (although the approximate shape of the CSD
an be recovered if a large number of moments are calculated).
he results shown in Fig. 5 are in agreement with the result
ublished previously by Ward et al. (2006). Consider the lower
raph, which shows the volume distribution. The peak near
00 �m corresponds to nucleus-grown crystals, while the peak
ear 750 �m corresponds to the seed-grown crystals. The inte-
ral under these peaks gives the total volume (proportional to
ass) of the crystals grown from nuclei and seeds, respectively.
rom this graph, the late-growth operating policy would seem to
e better, because more crystal mass is found in the seed-grown
rystals (compared to the early-growth operating policy), and
he seeds have grown to a larger size. However, the upper graph,
hich shows the number distribution function at the end of the
atch, would suggest that the early growth operating policy is
referable because the number of nuclei produced by the early-
rowth operating policy is much less. Which of these is actually
referable will depend on the application. Again our primary

urpose here is to demonstrate the efficacy of the PCSS Simulink
lock, and the reader is referred to Ward et al. (2006) for a more
etailed discussion of late-growth and early-growth operating
olicies.

w

ε

Fig. 6. Process flow diagram for Example 2.

. Example 2: Continuous crystallizer with fines
emoval

.1. Mathematical model and numerical parameters

This example is based on a case study system presented by
athath and Kienle (2002) for the continuous crystallization of
otassium chloride from water. The process flow diagram is
hown in Fig. 6. Fresh feed enters the reactor with a volumetric
ow rate q and concentration cin. Product with liquid phase con-
entration c, and particle size distribution F is removed at the
ame flow rate q. A fines dissolution system is also employed.

aterial is withdrawn from the reactor at a flow rate equal to Rq
here R is the fines dissolution ratio. The fines dissolver is mod-

led by assuming that all particles smaller than the fines cutoff
ize Lf are dissolved, and other crystals pass through unchanged.

The mathematical expression for the population balance is:

∂F (L, t)

∂t
+ G(t)

∂F (L, t)

∂L
= − q

V
(1 + hf(L))F (L, t) (12)

ubject to the boundary condition:

(0, t) = B(t)

G(0, t)
(13)

is the crystallizer volume, and hf is the fines dissolution func-
ion, which is given by:

f(L) = R(1 − h(L − Lf)) (14)

here h is the unit step function. The nucleation and growth
ates are empirical functions of the concentration driving force:

= kg(c − csat)
g (15)

= kb(c − csat)
b (16)

inally, a material balance on the solute in the crystallizer gives:

A
dc

dt
= q(ρ − MAc)

V
+ ρ−MAc

ε

dε

dt
+ q(MAcin − ρ)

Vε
(17)
here ε is the void fraction given by:

= 1 − kv

∫ ∞

0
FL3 dL (18)
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Table 3
Parameter values for the KCl case study system

Growth rate constant kg 3.0513 × 10-2 mm L/min mol
Nucleation rate constant kb 8.357 × 109 L3/min mol4

Growth rate exponent g 1 –
Nucleation rate exponent b 4 –
Saturation concentration cs 4.038 mol/L
Feed rate (base case) q 0.035 L/min
Fines removal cut size LF 0.3 mm
Crystal density ρc 1989 g/L
Molar mass KCl M 74.551 g/mol
C
R
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f
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m
u
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e
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s
e
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w
t
w

rystallizer volume V 10.5 L
ecycle ratio (base case) R 2 –

nd:

dε

dt
= −3kvG

∫ ∞

0
FL2 dL + q

V
kv

∫ ∞

0
(1 + hf(L))FL3 dL

(19)
he reader is referred to the paper by Pathath and Kienle (2002)
or the complete derivation of Eqs. (17)–(19). Numerical values
f the physical parameters are given in Table 3. Fig. 7 shows the
imulink block diagram for the process.

s
R
w
I

Fig. 7. Simulink block dia
al Engineering 32 (2008) 2233–2242 2239

.2. Results

Fig. 8 shows the steady state distribution of the 0th and 3rd
oments of the crystal size distribution at steady state calculated

sing two different methods. The dashed line shows the steady
tate result for PCSS Simulink block, and the solid line shows
he result when Eq. (12) is converted to an ordinary differential
quation (by setting time derivatives equal to zero) and solved
sing the standard MATLAB ODE solving routine ode45. The
greement is excellent, suggesting that the PCSS block provides
n accurate solution to the population balance equation.

In order to demonstrate the utility of solving the population
alance equation in the MATLAB/Simulink environment, we
imulated the automatic control of the process using two differ-
nt control methodologies: conventional PI feedback control and
odel-predictive control. In both cases, the manipulated variable
as the fines dissolution ratio R and the controlled variable was

he third moment of the crystal size distribution μ3. A 2-min lag
as assumed for the measurement of μ3. The nominal steady
tate chosen for investigation was with the fines dissolution ratio
= 2, which corresponds to μ3 = 0.0451 mm3/mm3. The process
as found to be underdamped but stable at this operating point.

n addition to a change in the setpoint for μ3, two disturbances

gram for Example 2.
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whether the additional effort required to identify a process model
and implement MPC is justified by the improvement in dynamic
performance.
ig. 8. Comparison of the steady-state distribution of the first and third momen
he steady state. The lines lie almost on top of one another.

ere considered: a step change in the feed flow rate q and a
tep change in the feed solute concentration cin. For the case
f model-predictive control, the feed flow rate was considered
o be a measured disturbance, while the feed concentration was
onsidered to be an unmeasured disturbance.

For PI control, initial values of the tuning parameters were
etermined by investigation of the step response (not shown),
nd these were further refined by investigation of the closed-loop
esponse to disturbances and set-point changes. This resulted
n a dimensional proportional gain of 1.4 (m3/m3 m)−1 and an
ntegral gain of 1.2 (m3/m3 m min)−1 For MPC, a state-space

odel of the process was identified by exciting the process with
seudo-random binary data generated using the MATLAB Sys-
em Identification Toolbox function idinput, and analyzing the
esults using the function n4sid. A model of order 6 (6 state vari-
bles) was determined to represent a judicious tradeoff between
odel complexity and accuracy based on the singular values of

he Hankel matrices for models of various orders as calculated
y n4sid. A model-predictive controller was designed using the
PC Toolbox GUI and implemented in Simulink using the MPC

imulink block. The controller was tuned manually by investi-
ation of the dynamic responses. The resulting controller had a
ampling time of 50 min, a prediction horizon of 10, a control
orizon of 2, an output variables weight of 1, and a manipulated
ariables weight of 0.01.

Figs. 9–11 compare the dynamic response of the process
or three different scenarios: a 20% increase in the feed flow
ate (Fig. 9), an increase of 0.01 mol/L in the feed concen-
ration (Fig. 10) and a 4.5% increase in the setpoint for μ3

Fig. 11). Note that while the magnitude of the step change
n feed concentration seems small compared to the steady state
alue (4.2 mol/L), in fact it is a significant disturbance because
t is the difference between the feed concentration and the sat-

F
i

calculated using (—) PCSS ( ) integrating the ODE corresponding to

ration concentration (4.04 mol/L) which provides the driving
orce for crystal growth. In general, the model-predictive con-
roller outperformed the PI controller, having both a faster initial
esponse and a less oscillation. This is not unexpected because
he MPC has considerably more information about the pro-
ess available to it than does the PI controller. However, it is
ot possible to make a definitive statement about which con-
rol methodology is better, because there is no guarantee that
ither of the controllers has been tuned in an optimal manner.
urthermore, the process engineer must make a judgment about
ig. 9. Dynamic response of the continuous crystallizer to a 20% step increase
n the feed flow rate q for PI control (- -) and MPC (—).
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Fig. 10. Dynamic response of the continuous crystallizer to a 0.01 mol/L step
increase in the feed concentration cin for PI control (- -) and MPC (—).
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ig. 11. Dynamic response of the continuous crystallizer to a 4.5% step increase
n the set-point for mu3 for PI control (- -) and MPC (—).

. Conclusions

In this contribution, we have described a new software rou-
ine for the solution of population balances in Simulink, with
pplications to crystallization. We have provided the code freely
s a web-published supplement to this manuscript, and it is
ur hope that other researchers will be able to use the code
o model population balance systems quickly and accurately,
articularly where it would be useful to employ other MAT-
AB/Simulink Toolboxes/routines, etc. as part of the research.
ur own research group will use the code to investigate more

omplex crystallization control problems in future publications.
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otz, S., Mitrović, A., Gilles, E.-D., Vollmer, U., & Raisch, J. (2003).
Modeling, simulation and H∝-control of an oscillating continuous crys-
tallizer with fines dissolution. Chemical Engineering Science, 58, 3473–
3488.

athath, P. K., & Kienle, A. (2002). A numerical bifurcation analysis of nonlinear
oscillations in crystallization processes. Chemical Engineering Science, 57,
4391–4399.
amkrishna, D. (2000). Population balances. San Diego: Academic Press.
andolph, A. D., & Larson, M. A. (1988). The theory of particulate processes.

San Diego: Academic Press.
eborg, D. E., Edgar, T. F., & Mellichamp, D. A. (2004). Process dynamics and

control (2nd ed.). Hoboken, NJ: John Wiley & Sons.

Y

cal Engineering 32 (2008) 2233–2242

hi, D., El-Farra, N. H., Li, M., Mhaskar, P., & Christofides, P. D. (2006). Pre-
dictive control of particle size distribution in particulate processes. Chemical
Engineering Science, 61, 268–281.

ollmer, U., & Raisch, J. (2002). Population balance modeling and H∞-
controller for a crystallization process. Chemical Engineering Science, 57,
4401–4414.

ard, J. D., Mellichamp, D. A., & Doherty, M. F. (2006). Choosing an
operating policy for seeded batch crystallization. AIChE Journal, 52,
2046–2054.

ulkow, M. (1996). The simulation of molecular weight distributions in polyre-
action kinetics by discrete Galerkin methods. Macromolecular Theory and
Simulations, 5(3), 393–416.

ulkow, M., Gerstlauer, A., & Nieken, U. (2001). Modeling and simulation of
crystallization processes using Parsival. Chemical Engineering Science, 56,

2575–2588.

u, S.-T., & Chang, S.-C. (1997). Treating Stiff source terms in conservation laws
by the method of space-time conservation element and solution element. In
Proceedings of the sixteenth international conference on numerical methods
in fluid dynamics


	Population balance modeling in Simulink: PCSS
	Introduction
	Computer code
	Example 1: Batch crystallization
	Mathematical model and numerical parameters
	Results and discussion

	Example 2: Continuous crystallizer with fines removal
	Mathematical model and numerical parameters
	Results

	Conclusions
	Acknowledgements
	Supplementary data
	References


