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A generalized method is developed for the design of a cantilever of circular cross-section
in flexural vibration. The dynamic rigidity of the overhang bar can be increased if the root
portion of the bar is made of high elastic modulus material while the free end portion is
composed of low density material. Hence, the method developed is for a beam composed
of two materials at different ends, but the method applies to a beam of a single material
as well. The variational statement is written, and a set of non-linear boundary value
equations are obtained. By solving these equations, the shape of the bar and the material
length ratio (length of the material at root portion over total overhang length) which would
result in a highest first mode natural frequency is determined. The optimal shape, material
length ratio and flexural rigidity of the overhang bar composed of two materials under
various constraints are discussed.

1. INTRODUCTION

Cantilever tools are widely used in practical manufacturing engineering. Boring bars and
internal grinding mandrels are two typical examples. However, the low stiffness and low
structural damping of the cantilever structures always result in the occurrence of chatter
(self-excited vibration) during cutting with the use of cantilever tools.

To increase the dynamic rigidity of cantilever tools such as those used in boring
operations, the so-called combination boring bar with the root and tool head portions
made of different materials has been studied by Rivin [1], Rivin and Kang [2], New and
Au [3]) and Takeyama et al, [4]. On the other hand, a beam of tapered shape or of different
cross-sections at the fixed and free ends is used in certain applications. Regarding the
optimum tapering of cantilever, Karihaloo and Niordson used the variational approach
to solve the problem [5]. Cantilever beams of rectangular cross-section having maximum
fundamental bending frequency under various constraints were studied extensively by
Elwany and Barr [6], and the computed resuits and profiles in each case were given. A
generalized method for the optimum design of a cantilever beam composed of two
materials is developed in this paper. From the beam equation, the variational functional
is formulated for a bar composed of two materials with end mass and rotatory inertia
under various constraints such as the bounds of cross-section and constant volume. The
variation of the functional for the deflection and shape function of the bar gives a set of
non-linear boundary value equations. By solving the set of simultanecus equations with
boundary conditions by a numerical method, the bar having the specific shape and length
ratio which results in the maximum fundamental natural frequency can be obtained.
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2. ANALYSIS

2.1. DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

Let the vibration-resistant bar be composed of two materials as shown in Figure 1. The
root portion and free end portion of the bar are made of materials 1 and 2 respectively.
These two materials meet at a distance away from the clamped position, If the bar is
regarded as a cantilever beam, then the classical Bernoulli-Euler beam theory is applicable.
The effect of rotatory inertia of the end mass is included but that of transverse shear
deformation is neglected in this analysis. The deflections, slopes, moments and shear forces
should be equal in the two sides of the bar at the location where they meet. These
assumptions are reasonably valid if the beam under consideration is vibrating in its lower
modes, and the interface of the two materials is rigid.

Let E, and p, be the Young’s modulus and density of material 1, while E; and p, are
the similar quantities for material 2, and let /{x) and A(x) be the inertia moment and
cross-section area of the bar at a location a distance x from the clamped position,
respectively. If the deflection at time ¢ is denoted as U(x, ¢}, then the equations of motion
of the bar in flexural motion can be written as (a list of nomenclature is given in the
Appendix)

6(12 [E I(x )M] o Ax )azU(x 2) =0, l<x <l (la)
;2 [EZI{) ZU(" )] 0y A(x )aU( D_0, L<x<L (1b)

For free vibration, in the normal mode, ¥/(x,¢) is a harmonic motion of time. Let
U(x, 1) = u(x)e", where @ is the vibration frequency; then substituting U(x, t) into
equations (la) and (b) gives

dz

o [E,I( )dz”(“)} g A()ou(x)=0, 0<x <L, (2a)
dd2 I:EZI(x) dzu(x):) P A0M(x)=0, L,<x <L (2b)

The boundary conditions required in solving the differential equations (2a) and (2b) are
(1) at the fixed end of the bar (i.e., x =0),

u(0) = du(0)/dx = 0, (3a,b)
and (2) at the free end of the bar (l.e., x =L)
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Figure 1. Model of the bar in the study.
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d2u(L)=Jw2du(L), i[&[(@%}%l]

E,I(L) = —Mowu(L). (3¢.d)

dx? dx dx

In these equations, J is the rotary inertia, and M is the end mass. At the interface of the
two materials (i.e., x = L)

w(Liy=u(L?),  du(Ly)dx = du(L;)dx, (4a, b)
(L) LdwLy)y  d (L)
EI(L, )T-Ezf(lq ) i E[ELI(LI )__d?l—_]
d du(LyY
:a[Ezl(L, ) l::lle ] (4c. d)

For a circular bar, if the radius at a distance x away from the clamped position is
denoted by rix), then A(x)=nri(x) and I(x)=nr'(x)/4. By introducing these two
quantities into the equations of motion and the boundary conditions, and with the
non-dimensional quantities p =E,/E,, v=p,/p., I =LjL, S=pv, X=x}/L, F=
(6 r2(x)dx/L, a(X) = [r(x)/F] and Y(X) = u{x)/u(x,), where x, is any convenient point in
the interval 0 < x, < L, equations (2a) and (2b) become

EAXYY"(X)] — SR (X)Y(X)=0, 0<X </, {5a)
[ XY (X)) — Ba(X)Y(X)=0, /<X <1, (5b)

In these equations the prime indicates differentiation with respect to the dimensionless
co-ordinate X. The frequency parameter B is defined as B? = (4p, L w)/(E 7).
The boundary conditions specified by equations (3a)-(3d) become

Y(0)=¥(0) =0, (1) Y"(1)= BT Y'(1), DY) = —B*MY(1), (6a-d)

where J = JjrF?p,L%) and M = M /(nf*p,L).
The conditions imposed at the interface of the two materials become

YI)y=Y("), YU H)=vd", (7a,b)
a¥ YY) = u? (YY" (1), XYY (I = pla® (DY (Y. (Te, d)

2.2, VARIATIONAL STATEMENT

Multiplying equation (5a) by Y(X), and equation (5b) by u¥{(X), and then integrating
the resultant equations with respect to X between their upper and lower bounds separately,
yields

) H 1 1
J- (aZY")"YdX—SBZJ a¥?dX =0, ,uj- (azY")"YdX—pBZJ 2¥*dX =0.
¥

) o H
(8a,b)
Integration by parts can be applied to the first terms of these two equations. Then,

substituting the conditions specified by equations (6a)(7d) into the sum of the two
resultant equations, and a littte manipulation, yields

jl uz(Yﬂ')Z dX +p' ji ﬂz(Y”)Z dX

Bl=——( L : L )

s f aY2dX + J aY?dX + (Y)Y + 1 J(Y (1Y
I

Q
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The condition that the volume of the bar is kept constant at some value @ in the
optimum search can be expressed as

Q= J.A(x)dx J.nr’(x)dx—n‘LJ-

Since (! equals the volume of the uniform bar of radius 7, the constraint condition becomes

2()c) dx

= 2L r a(X)dY.  (10)
0

J”amdx= 1. a1
4]

Let @ and a* be the lower and upper bounds of the cross-section; then
a(X) - & =a¥(X), a* —a(X) = b¥X), (12a, b)

where the functions a{X} and &(X) are arbitrary in the non-constant radius region of the
bar.

A variational technique can be used for the purpose of finding the function «(X’) which
maximizes the frequency parameter B while satisfying equation (11). Let a functional be

J ' 2(Y"RdX + 4 J‘l a (Y'Y dX
SY,a]= ? :

S J'ayz dX + p J.' aY2dX + uM(Y(DY + pJ(Y' (D)
3 i
+7, Ul a(X)dX — 1] + 'f' I (X[ (X) — & — a*(X)IdX
[\ ¢

+J] (XN [x* —a(X)— bAX )Y, (13)
0

where 4;, 1,(X) and A,(X) are Lagrange multipliers. 2, is an unknown constant, but i,(X)
and A,(X) are known functions. The functional f is stationary with respect to small
variations of the variables Y, o, a(X) and b(X). Let &[] be the derivative of a quantity
with respect to a particular variable. Then, with a little manipulation, and with use of
equations (6a)—(7d), the first of the Euler stationary conditions, which is df{Y, a] with
respect to Y, can be reduced to

i 1
J[(azY")”—SBzaY]éYdX+I pl(@?Y"y — B3 Y6Y dX =0. (14)
0 ]

This can be expressed as

@F") — SBY =0, 0<X </l (2?¥")—Ba¥Y=0, I<X<l.
(15a,b)

It should be noted that equations (152) and (15b) are the same as equations (5a) and (5b).
Similarly, the stationary conditions of the Euler equation with respect to « can be
reduced to

2a(Y"Y — SBAY? — 1 + AF(X) — A X) =0, (16a)
2ua(Y"Y = uB’Y - I + A2(X)~ 13 (X) =0, (16b)
where AF = —7, 8, A#(X) = A, (X)B, A3 (X) = 4;(X) and

B =s_[layz dX+,uJ-laYZdX+uﬂ7!(}"(1))2+,uf(Y’(l))2.
0

!
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The stationary conditions of the Euler equation with respect to a(X) and b(X) separately
are

—25,(X)a(X) =0,  —2i,(X)b(X)=0. (17a, b)

From equation (17a) either 4,(X)=0 or a(X)=0, and from equation (17b) either
A3(X)=0o0r b(X)=0. If a(X) = 0 then o = &, while if 5(X) =0 then « = «*. Hence these
conditions cannot hold simultaneously. In the non-constant radius region A,(X)=
A3(X) =0, and equations {16a) and (16b) are reduced to

(Y"Y —SB Y —Ar=0, 0<X </, ua(YV —uBY?—A¥=0, <X <l

(18a, b)
If Y and Y” are normalized by ./|A¥], then in the non-uniform cross-section region the
governing equations (equations (15a), (15b), (18a} and (18b)) for 0 < X < { become

(@*Y") —SB%WY =0, 2a(Y"yY-—SBY?-2A=0, (19a, b)
and for / < X < 1 they become
(@*Y")' = B*Y =0, 2ua(Y"V —uB*Y*-i=0, (20a, b)

where, in equations (19a)20b), A takes on the values +1 only.

3. NUMERICAL INTEGRATION SOLUTION

The optimal shape and length ratio of a two-material combination boring bar can be
obtained by solving equations (11} and (19a)(20b). If a function D(X) is defined as

D(X) = r a(XH)dX™, 21

then equation (11) is equivalent to D(0) = 0, and D(1) = 1. Moreover, equations (19a) and
{20a) can be written as

Y =F, F=uGle!, G'=H, H =vB%4Y, 0< X <l (22a)
Y =F, F =G/}, G'=H, H =B4Y, l<X<tl. (22b)

The problem of finding the radius distribution and the optimal length ratio for 2 maximum
frequency bar becomes that of solving the set of the above two first order equations,
together with the calculation of equations (19b) and (20b).

Specifically, the bar is divided into N (integer) equal spans along its length. Suppose that
the intersection is at a certain point. For this intersection point, the unknown parameters
B, Y"(0) and {&® Y}y _, are guessed first, and equations (22a) and (22b) are integrated with
conditions given by equations (6a), (6b) and (7a}{7d). The profile of the bar is computed
by using equations (19b) and (20b). The computed end conditions are checked with the
boundary conditions specified by equations (6¢c) and (6d). If they do not maich to within
a certain small allowance, the initial guess B is kept unchanged while the initial guesses
Y'(0) and [«*Y")y_, are modified by the adjoint method [7), and the procedures are
repeated. Once the boundary conditions are satisfied, equation (21) is evaluated. For an
arbitrary guess of B, the boundary condition D(0) =0 and D(?) =1 cannot be satisfied
simultaneously. The frequency parameter B is then adjusted and all the procedures are
repeated. The foregoing procedures are applied to different intersection points, and the

length ratio and the profile associated with the largest value of B are the final optimal
solutions.
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TABLE 1

Optimal B and X, for a cantilever beam having rectangular and
circular cross-sections for various &

Elwany and Barr [6] Present
f_‘_'_‘_‘A_‘_"_‘_'\ r—'———k—‘_—“—ﬁ
i B X B X.
1-00 3-51608 0 3-51632 0
090 421175 0-36739 421125 0-36873
0-80 4-77914 0-47831 4-77900 0-48000

0-70 5-34360 0-55295 534299 0-55500
0-60 594304 0-61090 594249 0-61250
0-50 6-61051 0-65974 660750 0-66125
0-40 7-35892 0-70336 7-38125 0-70500
0-30 8-41342 0-74400 8:33000 0-74750

4. VERIFICATION

A computer program based on the previous described procedures was written, and two
cases were studied to ascertain if the proposed method and the computer program are
correct.

4.1. CANTILEVER MADE OF SINGLE MATERIAL

In the first case a uniform cross-section cantilever which is made up of a single material
but is without an end mass is studied. It is desired to find the shape of the bar that will
result in a maximum fundamental natural frequency. To apply the method stated in the
paper, the same coefficients of the materials are input to the program for the two portions
of the compound bar. The optimal shapes of the bar under various cross-section
constraints are determined. The computed profiles are shown in Figure 2. The beam has
a tapered shape in the fixed end region, while the cross-section in the free ¢nd region
remains unchanged. The corresponding beam with a rectangular cross-section of constant
side ratio has been studied by Elwany and Barr [6]. For comparison purposes, the
corresponding frequency parameters and the length ratio of the corner (i.e., the position
at which the cross-section starts to change from uniform to tapered shape) of both beams,
denoted by X, under various cross-section constrainis are given in Table I. It can be seen
from Table 1 that the two approaches yield almost the same results. It is also noted that
for & = 0-8 the frequency parameter can be increased by a factor of 1-36 (4-78/3-52) as
compared with that of a uniform cross-section bar (& = 1 in the table). The corner is at
a length ratio of 0-48, and the dimensionless radius is 1-24 at the clamped position.

4.2. OVERHANG BAR COMPOSED OF TWO MATERIALS

A compound bar with the two sections made of different materials but with unity upper
and lower bounds of the cross-section (i.e., uniform cross-section), and with a mass
attached at the free end, was investigated. The following five combinations of the materials
were considered [1]:

(@) E,=55x10°MPa,y, = 16; E,=07x 10° MPa, y,= 27,

(b) E,=35%x10°MPa,y, =18, E,=07x 10°MPa, y,=27,

©) Ei=21x10°MPa,y,=78; E,=07x10°MPa, y,=2T;

(d) E,=55x%x10°MPa,y, = 16, E,=21x10°MPa, y,=78;

(€) E, =3-5x10°Mpa,y, =18, E, =21 x10°MPa,y,= 1748,
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Figure 2. Computed profiles for maximum first mode bending frequency for various lower bounds &

The materials corresponding to the above E and y are as follows: aluminum
(E =07 x 10° MPa, y = 2-7), steel (E =2-1 x 10° MPa, y = 7-8), heavy machinable tung-
sten alloy (E = 3-5 x 10° MPa, y = 18), and sintered carbide (E = 5-5 x 10° MPa, y = 16).

For bars with a length of 160 mm, a diameter of 18-5 mm and an end mass of 0-0215Kg
the results are given in Figure 3. The same combination bars but with each bar having
a chamber at the free end for the implementation of a damper have been studied by Rivin
[1]. Due to the difference in the siructure of the bar, these two results show small
discrepancies. However, the tendency and order of the natural frequencies of bars a, b and
¢, and d and e are the same. This comparison, together with the one given in the previous
section, may also indicate that the proposed method is valid, and that the computer
program is correct.

From Figure 3 it is obvious that the combination bars under study have a greater
dynamic rigidity than that of the single material bar, Furthermore, the higher the elastic

g & 8

g 8

Natural frequency (Hz)

0-0 02 04 06 0-8 1.0
Ly/L

Figure 3. Natural frequency ws. length ratio for various combination boring bars having uniform
cross-section.
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Figure 4. The optimal profile (only half the profile is shown) of the sintered carbide - aluminum combination
boring bar under & = (-8 and various end mass constraints.

modulus of the material in the fixed end portion, and the lower the density of the
material in the free end portion, the greater the fundamental natural frequency of the
bar. For a bar composed of sintered carbide and aluminum, the optimal material length
ratio (denoted as X, in Table 2, to follow) is about 0-72, and its fundamental natural
frequency is 864 Hz, which is {-33 times that of the bar made of sintered carbide, and
2-07 times that of the bar made of aluminum.

5. THE COMBINATION BAR WITH OPTIMAL SHAPE

For illustration purposes only a bar composed of sintered carbide and aluminum
is used to show the variation of the dynamic rigidity due to the change of the
cross-section of the overhang bar. The radius distribution for the lower bound of & = 0-8
under various end mass constraints is shown in Figure 4. The numerical results for
the frequency parameter (B), material length ratio (X,,), dimensionless radius at the
fixed and free end portions (denoted by 7, F», respectively), and upper and lower
bounds corner length ratios ((X.), and (X.),} are summarized in Table 2. The shape
is similar to that obtained in section 4.1. However, the corner with no end mass is
at a length ratio (denoted by (X ), in the table) of (0-41, and it is different from that
obtained in section 4.1. The length ratio for the specified two combination materials
is 0-62. The frequency parameter is found to be 10-45. From this figure and table it
can be readily seen that as the end mass is increased the corner shifts toward the free
end, and the portion of high modulus material is increased together with a reduction of
frequency parameter. For comparison purposes, the frequency parameter for an over-

TABLE 2

Optimal B and associated design parameters of the sintered carbide — aluminum combi-
nation boring bar under & and various constrainis

M7 B Fi{a") 7 {d) X (Xch (X,
0,0 10-45 1-33(—) 0-90 (0-8) 062 — 0-41
956 114(1.3) 0-90 (0-8) 0-63 0-34 046

01,01 886 1-30 (—) 090 (0-8) 065 — 0-44
837 1-14(1-3) 090 (0-8) 0-66 032 049

05,05 601 1-25(—) 090 (0-8) 0-83 0-51

593 1-14(1-3) 0-90 (0-8) 0-84 0-28 0-53
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Figure 5. The optimal profile (only half the profile is shown) of the sintered carbide ~ aluminum combination
boring bar under & = 0-8 and «* = 1-3 and various end mass constraints.

hang bar composed of the same materials with uniform cross-section but without end
mass was computed, and is 6-65. This value is 1-57 times less than that of the bar in
which the cross-section is allowed to be varied.

In addition to the lower bound of & =0-8, if the bar also has an upper bound,
for example with o*=13, the results for the same end mass constraints as
discussed previously are shown in Figure 5 and Table 2. From Table 2 it is observed
that the material length ratio is further increased while the frequency parameter
would be reduced further. It can also be scen from Figure 5 that between (X,), and
(X.), the bar possesses a tapered shape. When the end mass is increased, the
radius distribution varies in such a manner that (X), is decreased and (X,), is increased,
the radius distribution varies in such a manner that (X)), is decreased and (X.), is
increased.

5. CONCLUSIONS

A generalized method to solve a set of non-linear boundary value equations for the
problem stated in the paper has been established. By using this method the optimal
shapes and length ratios of an overhang bar composed of two materials under various
constraints can be determined, and their performance can be evaluated. When there are

upper, or lower, or both bounds constraints, only part of the length, instead of the whole
length of the bar, has a tapered shape.
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APPENDIX: NOMENCLATURE

A(x) cross-sectional area of the bar at location x
a(X),b(X)  arbitrary function
B frequency parameter

Dx) volume function of the bar

ELE elastic modulus of the fixed, and free, portions
SIY.a] functional

I(x) inertial moment of cross-section

J rotatory inertia

J dimensionless rotatory inertia

! L, /L dimensionless intersection of two materials
L total length of the bar

L, length of the fixed portion

M end mass

M dimensionless end mass

0 volume of the bar

r(x) radius of the cross-section at location x

F mean cross-section radius

Ry v

u(x), U(x, 1) deflection of the bar
X axial co-ordinate

X dimensionless axial co-ordinate

Y(x) dimensionless deflection

a,o* lower, upper bound of cross-section

«(X) dimensionless area of cross-section (shape function)
3] derivative of a quantity

Ay Lagrange multiplier (constant)

25(X), ,(X) Lagrange multipliers (function)

" E)[E,

v PP

w natural frequency

21, P2 density of the fixed, and free, portions



