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一、中文摘要

本計畫主要針對地表運動產生的振波
在高層結構中傳遞行為進行研究。本計畫
發展一結構中波傳 TWSF model，此模式將
考慮振波在傳遞時，遇到結構特性突變或
遇到邊界處，產生部份穿越與部份反射，
以及反射波多次返回時與入射波產生疊加
之定量描述，依此模式推導振波運動的解
析解。

關鍵詞：應力波傳、結構動力

1. Abstract

An analytical method for the analysis of 
wave propagation in non-uniform shear beam 
structures is proposed. In this study, the 
structures are modeled as stepwise shear 
beams. For the analysis, a TWSF graph 
model is developed on the base of the wave 
equations. According to the developed model, 
analytical and closed-form shear stress and 
deformation of wave propagation in the 
structures are determined using the graph 
theory. The analytical and closed-form 
frequency response of the structures is also 
obtained. Finally, a four-segment shear 
structure is calculated by the derived 
formulas are presented as illustrations.

Keywords: stress wave, structure dynamics, 
wave propagation

2. Introduction

Since high frequency excitations 

consisting of earthquake, traffic disturbance, 
and machine noise are critical in design, there 
has been much research on elastic wave 
propagation in shear beam model. Shear 
beam structures with non-uniform structural 
properties and cross-section are usually 
modeled as multi-segment stepped shear 
beams for analysis. Several methods 
including the finite element method, transfer 
matrix method and dynamic stiffness matrix 
method have been proposed. [1-4]. However, 
the classical methods are suitable for 
numerical computation. 

In this project, an analytical method 
for wave propagation in non-uniform shear 
structures is proposed. The shear structures 
are modeled as stepwise cantilever shear 
beams in the investigation. A graph model is 
developed to represent the dynamic 
characteristics of the uniform shear beam 
segments on base of the wave equation. From 
the developed graph model, the shear wave 
responses are derived.

3. Theory

Wave propagation in a multistory 
structure subjected to lateral load is 
considered as shown in Fig. 1. The structure 
includes N uniform segments, in which each 
segment i consists of ni identical stories. In 
the uniform segment i, the height of each 
story is hi, while the complex rigidity of all 
columns is EIi

*. It is assumed that the floor of 
each story is rigid. The relation between the 
total story shear fi,j and the story-to-story 
displacement of the jth story in the ith 
segment is [1]
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where ui,j is the displacement of the floor of 
the jth story in the  ith segment. If the mass 
of the floor of each story in segment i  is mi, 
the equilibrium equation will be

jiijiji umff ,,1, &&=−+ . (2)

It is reasonable to regard the system as 
a multi-segment uniform shear beam 
continuum, in which one end of the beam is 
free and the other end is subjected to 
excitations, as shown in Fig. 2. The relation 
between the shear force and the displacement 
variation of the ith segment on cross-section 
xi can be expressed as
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where ui(xi,t) is the lateral displacement at 
cross-section xi, fi(xi,t) is the shear force at 
cross-section xi, and Ai is the cross-section 
area of the ith segment. Gi

* is the equivalent 
shear modulus of the ith segment of the beam. 
The equation of motion is 
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If a sinusoidal excitation is considered, 
the displacement and the shear force of any 
section of the beam should also be sinusoidal 
with the same frequency. The relation 
between each complex amplitude of the shear 
force and displacement at both ends of 
segment i can be expressed as
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where Ui-1 and Ui are the complex amplitudes 
of the lateral displacement at both ends of the 

ith segment for xi=0 and xi=li, respectively.
According to Eqs. (5) and (6), these relations 
can be expressed as a two-way state-flow 
model as shown in Fig.3. In the graph model, 
the two variables correspond to the shear 
force and the displacement with opposite 
directions at both the upper and the lower 
ends. Moreover, the left state-flows at both 
ends are all shear forces, whose flow 
directions are all downward. The right 
state-flows at both ends are all displacements 
with upward flow directions. Thus, the 
state-flow models for each two neighboring 
segments can be connected in a series to form 
the entire graph model of the N segment 
beam. Based on the state-flow model, we 
obtain the complex frequency response 
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The displacement response at location xi of 
segment i can be expressed as the frequency 
response of the displacement at the junction 
of i and i-1 gives
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By substituting Eq.(7) into Eq. (8), the 
frequency response of the displacement at 
location xi of segment i can be expressed as
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3. Examples

A non-uniform shear structure 
modeled as a four-segment stepped shear 
beam with equal length l and identical 
structural properties *G  as well as wave 
speed c for each segment is investigated in 
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the first example. The area of segments 1, 2, 
3, and 4 is 3A, 2A, A, and 2A, respectively.

The frequency responses of 
displacement at junctions 1, 2, 3, and 4 can 
be calculated by Eq. (7) giving
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The frequency response of the 
displacement at any location of each segment 
can also be calculated by Eq. (9) giving
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4. Conclusions

A graph model of a uniform shear 
beam has been developed for the analysis of 
wave propagation in shear structures. Based 
on the graph model, the non-uniform shear 
structure, modeled as a stepped cantilever 
shear beam, subjected to excitation at the 
fixed end is investigated. The deformation 
responses at any section of each segment are 
derived and expressed as a concise form. 

Finally, an example of four-segment shear 
structure has been investigated to illustrate 
the implementation of the derived formulae. 
Although only the shear beam structure has 
been investigated, this method can be 
extended to deal with the problem of wave 
propagation in more complex systems.
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6. Figures



5


	page1
	page2
	page3
	page4
	page5

