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|. Abstract

The main purpose of this research isto ~ Undulatory Motion
simulate the undulatory locomotion of a
flexible body. When a flexible slender body
which is divided into a number of segments
undul ates, the wave passes from the nose to AUV
the tail. Reaction forces due to momentum
change, friction, as well as cross flow drag
acting on each segment are taken into
account. Equations of motion described by
the body-fixed coordinate are obtained by
taking the summation of the longitudina testbed)
force, latera force and yaw moment acting AUV
on al the segments. Equations of motion are
solved step by step in time axis and the
velocity is transferred to space-fixed
coordinate. The traectory of the flexible
body can be obtained by time integration of
the transferred velocity. Results are obtained
for the numerica model in which length,
outline dimensions of each segment are

(BAUV

similar to a test vehicle we are currently o o (Cruising &

building. The validity and limitation of the SPTiNtng) (Accelerating)

simulation method are discussed. (Maneuvering)
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Il. INTRODUCTION

There is currently an increased interest in
the use of Autonomous Underwater Vehicles
(AUVs) for oceanographic, military and
commercial missions. Existing AUVs are
small robotic submarines powered by rotary
propellers driven by electric motors. The low
efficiency of the small diameter propellers
coupled with the large fraction of the hull
volume required to hold the motor’s batteries
leads to short mission times, restricted
payloads and control problems. To emulate
the ability of easy and elegant hovering,
accurate positioning and agile turning motion
of fishes, the propulsion system of the AUV
must generate positive and inverse thrust
quickly and repeatedly. This can keep the
AUV dill in the water and maintain its
buoyant position, which is difficult for
traditional propeller propulsion systems to
achieve.

To explore the possibility of possible gains
by mimicking the design of comparably sized
biological systems, we are planning to build a
fish-like underwater vehicle as a testbed to
investigate interactions and coordination
among appearance, motion, behavior, and
perception. In order to develop such a so-
called Biomimetic Autonomous Underwater
Vehicle (BAUV) which is propelled by the
undulatory motion of a flexible hull or the
swing of paired fins, it should be helpful in
the preliminary design stage to have a
practical tool to simulate the locomotion by
the undulatory motion of aflexible body.

For ‘elongated fishes which are
geometrically characterized by dslender

cylindrical forms, Lighthill developed the
elongated-body reactive-force theory [1].
Lighthill investigated the inviscid flow
around a slender fish which makes swimming
movements in a direction transverse to its
direction of locomotion, while its cross-
section varies aong it only gradualy. Based
on the dender-body theory, Lighthill
obtained the result of thrust produced by the
fish, time-rate of work done by it, and the
rate of shedding of energy, showing that the
mean values of these quantities all depend on
the movement and body shape at the tail-end
section only, and that they will vanish with
the virtual mass of the tail. What has
primarily been implied here is that the body
cross-section varies so gradually, and its
shape is so smooth (no sharp edges), that the
cross-flow remains attached to body, leaving
no vortex sheet until the tail-end section is
reached [2].

Wu made further investigations on this
problem [3]. In order to simplify the
mathematical anaysis, Wu limited the
consideration to the ribbon-fin-type problem,
assuming that the trailing side-edges have a
gradual changein slope, but are sharp enough
to shed an oscillating vortex sheet from the
body in an undulatory swimming motion.
There are other discussions about propulsion
by median and paired fins by Blake [4][5],
the geometric mechanics of undulatory
robotic locomotion [6][7] and analysis of
swimming propulsion of a three-dimensional
waving plate with variable amplitudes[8].

In this paper, a practica simulation
method developed under dlender body
assumption will be presented. The length of
the flexible slender body is divided into a
number of segments. When the body
undulates, the wave passes from the nose to
the tail. Due to momentum change, friction
and cross flow drag, the reaction forces are
taken into account by each segment. The
equations of motions described by the body-
fixed coordinate are obtained by taking the
summation of the longitudina force, lateral
force and yaw moment acting on all the
segments, respectively. The equations of
motions are solved step by step in time axis
using the Newmark- » direct method at each



time step. The velocity described by the
body-fixed coordinate are then transferred to
the space-fixed coordinate and we can obtain
the trgectory by time integration of the

transferred velocity.
Fortran language is used for the program
design. Behavior of a BAUV testbed

currently being built will be studied.

I1l.  MATHEMATICAL MODELING

We have three coordinate systems (Figure
1): space-fixed coordinate system o- xv,
body-fixed coordinate system o- xy (global)
and segment-fixed coordinate system g, - X,
(local). Each coordinate can be transferred to
another coordinate by using the relationship

of the position and angle between two
coordinate systems.
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Figurel Definitonsof coordinae systems
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From observations of biological fishes
[10][11], the motion can be considered as
traveling waves that increase in amplitude
from the nose to the tail. A specific form of
traveling wave equation which is a dight
derivation from that originally suggested by
Lighthill [2] was developed. Let the body-
spline take the form of a traveling wave
given by:
y(x.1) = (qx+ cx%) sin(kx+wt) X1- e_%) @
where:
y=transverse displacement of body
x=displacement along main axis

= /E =body wave number

! =body wave length
q = coefficient of linear wave amplitude
envelope
c, = coefficient of quadratic wave amplitude
envelope
w=2p f =—2P_ = body wave frequency
Thoay
T=period of the initia undulating delay

cycle

This is the equation of a sinusoidal wave
traveling from right to left (i.e. from x=o0 to
x=-L) within the bounds of a second-order
(gx+c¥*) amplitude envelope [12]. The
exponential term is to simulate the initial
delay when the body starts to undulate. The
slope of the bodly is,

Ty

V(X0 = x

= [(qx+ ey X2) keos(kx+wi) + (g + 2, sin(kx+wt) [ X(1-

2
the angle between the body and the x-axis is
gotanty,

A

Figure2 Representation of body segments

Dividing the whole body into n segments
(Figure 2), then the length of each segment is
pL = /n, and the coordinates of two nodes of

the /" segment are (x, 1), (Xs1, Yisa) -

We have
lg=x%=0,
[ X% = X.1- DLcosg;., ,
:::y,» =Yi.1- DLsing;.q ,

§Gi =t yy (- Bcosqig )

g =tant y (B0
2£Ei£ n+l
2£/£n+1

2£ifEn

(©)

Next, we will derive motion eguations in
the body-fixed coordinate system, o- xy.

(i) The horizontal moving velocity vector
described by body-fixed coordinate system is
(u®, v»,0), angular velocity vector is
(0,0,5&). Assuming that the center of the /"
segment (x,y,) is the center of mass of that
segment which has mass of m, and
X = Xi+1 + X

,y,:”*lT“Ly’ . The rotating

inertial torque is /; (with center of mass as

the rotating center). Thus, the horizontal
velocity of (x,y) caused by & is:

.
~l~
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X Yy 0
and the horizontal velocity of (x,y,) caused
by undulation in x direction »o0, in y

directionis y,(x.f = M’Z 1

For fluid added mass effect, use the total
differential of y(x,9:

dy _
u
” = $=y;- uyy

Z—;—&— Vi -
Thus, we can get the horizontal velocity

and acceleration in y direction for added

mass as. (where v/ and % are for body

mass)

Vi = vEXRE Y- Uy © V- Uyy

W= 8 X0 Y- Ui 8- U (Ve U

UYxt~ 8y~ U(Yic~ UYxy)

= B Xt yyy - By - 2nyt+u2yxx -§/t &y, - 2nyt+u2y)dx(/zl+‘]z,))ﬁ‘+(m

velocities and  angular
the body-fixed

Horizontal
velocities described in
coordinate system o- xyare:

10;(0) = u(t)- yp&

'V,(t) = V(0 + X8t (3,0 - Uy(X;, 1)

| Vi (1) = U0+ Xpet v, (%, )

| T(tan* v, (%, 1)

y&(t) =)t o =)+
and horizontal accelerations and angular
accelerations are:

4

|

T8O = 8t) - 7B Ry (%, 1)+ WRY(R )

180 =80- 78 Ry, (%0

1) = 80+ 9Bt 1y (% 0) - By (3,0) - 20300 + LR yin(% D)
'ﬁf (1) = &0) + Xt i (X,,0)

'ﬁ(r) -y T L 0600) “""”ﬂ 2D - o
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In the segment-fixed coordinate system
o- xy, the horizontal velocity and the
angular velocity of the /" segment for fluid
added mass effect are:
1T, = Tj cosg; +V; sing;
'|:V/ =Vjcosg; - U;sing;
i =i =k
the horizontal acceleration and angular
acceleration are:

'ﬁ,‘- Z%cosq,+'§‘smq,
J|[§,‘=§‘cosq, ﬁan,-
i = B =y

For body masses, horizontal velocities and
accelerations are:

()

{77 © Tjcosg; +7; sing; ®
I * *

v °V cosg; - U;sing;

1 o s, + B 3ng o

1% o ® cosg,- #sing,

The representations of horizontal angular
velocity and acceleration for body masses are
the same as shown in (7).

Consider each segment as a rigid body, the
Euler-Lamb equation of the /” segment
described in the segment-fixed coordinate
system 5 - xy; IS
Lm - m P+ mgth - m, O = Ry

tm® +ma %+ m, &+ maf = R, (10)

mX/) U/ V/ - sz/
The fluid viscous forces at the right side of

the above equation are composed of friction
c;( in the x direction), and cross flow

drag c,(inthe Yy direction).
Foi =- 21 U7 xCy xS

VXj

=N

FVX/' =- Ef’l‘/-iz)‘cd)di)DL

where
s: thewet surface area of the /" segment

d;: the height of the cross-section of the /*’

segment (perpendicular to the y~axis), and
DL

=- 250 L1 (7392 4xC xd, xdll

0]
I

vzj
DL
A2 Pal

-rF?cyd;

-r&ﬁzca>«#x9%%i

In summary, we can know that forces
acting on the /" segment described in the
o - Xy, System are:



(11)
(iii) The forces acting on the /" segment
described in the body-fixed coordinate
system o- xy are:

1 F, = F cosq; - F sing;

i Fy, = Fz sing; + F~/, cosq; 12)
i

Gz =G

(iv) The forces and torques acting on the
whole body described in the body-fixed
coordinate system o- xy are:

%

|a Fy, =0

:/=1

f o

ia Fy, =0 13)
Fi=1

I n n

|O [o) — —

id Gz *taA (FyXi-Fyyi)=0

fi=1 i=1

(v) Finaly, we can get the motion equations
inthe o- xy system as.

1 At Ap e Ayt Biu+ Bov+ Big&=

| Aol Ay Bt Aocsfiet By U+ By v+ Byyfe= E,  (14)

| Ay et Agy Bt Aot By U+ By v+ Bgl= By
or,

180 i uu [
(Al & +[8l} vy =1 &y (15)
ng 1}8{) { b

where [A], [B], { E} are known vaues. One
can use a standard numerical integration
method, such as the Newmark- » method, to
obtan (&&& and (uv)®.

IV. NuUMERICAL SIMULATION
4.1 Program Description

From the derivation of the Newmark- »
integration method:
Yy =y o+ D38 + 2Dt + bDt’ (e &) (16)
The horizontal velocity in the o- xy System
described inthe o- xy systemis:
iU =ucosy - vsiny
}V:usjny + v cosy
The trgectory of
system are:
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the o- xy in theo- xvy

LRy, =-mB +myy- my B+ my, V- Lr 3 xCr xS

T ~

iRy = m-&-m—u,-f‘--my.ﬁ‘-mx,u- --—r V2 XCy xd; DL
:

i DL)*
LG5 == 15+ 3B (my,- m) Y- rF2cyxa

1l X(f) = Xo +Dt>Ug +3 D2 + bDt? (%~ (%) s
}I'Y(t)= )6+Dt><\/o+%Dt2\$%+th2(\&- %) 49
and the trgectory of the nodes of each
segment are:
1 .X(8) = X(#) +(x; cosy - y;siny)
1Y) = V() + (x siny +y; cosy )
The simulation procedure is described as
follows:
(i) Input the main characters of the model
simulated

Dimensions (total length, the width and
height of the cross-section of each segment),
friction and cross flow drag coefficients, ¢,

and c,. The parameters of wave eguation:
¢, G, k, wand T.

(i) Caculate m, mg, m,, s, d, 15 and
J, of each segment. Elliptical function was

used to represent the shape of the cross-
section.

m =rpab>xOL

my; » 0

(19)

my, =rp B DL

S » circumferenceof éllipse” DL
d =25

;= Fac” m

Jy = Fac’ my,

a+b

where Fac=1r2+1p)2 . r=
4 12

(iii) Decide how many cycles will be
calculated in the program, and how many
time stepsin one cycle.

(iv) Start the calculation

At t=0, the initial velocity and acceleration
is 0. At each time step, the vaues of the
velocity and acceleration of the previous time
step will be used to calculate the velocity and
acceleration  described by  body-fixed
coordinate of the current time step. The
trgjectory of the body are then obtained by
transferring the velocity and acceleration to
the space-fixed coordinate.

Artificial springs are applied to avoid
drifting in the y direction and over-rotating of
the angle y . The reason of using artificial
springs is that there are no input force terms
in the motion of sway and yawing. Any
accumulated error on numerical calculation
in the motion of sway and yawing may affect



the result of calculation because each time
step involved with the previous time step,
and it may cause the drifting in they
direction and over-rotating of the angle y .
Therefore, two artificial springs are added
into the motion equations of sway and
yawing.

Fac gy, = SPring ratio g, )(%)2 Xm

Fac  qy = Soring ratio )(%)2 x/

where m=3m , 1=4 mx
Thus, the motion equation of (15) becomes:
160 1 uu '| Elu i Facmaysty u
[A]l 85/ [B]| Vy = | E2y : Facs,,,achosyy
L}gp 1% lEgb FaC b
and with the application of the Newmark- »
method, equation (20) becomes:

(20)

Dt nl s?y | Elu 1 Facs,l,ayYany u i s?bu
1A+ 2 LB 8= oy [ Favua Yooy y- 18l -
W 1Bh § Py Db

(21
The values of the previous time step are
used for v and y in the right side of the
equation (21) as their initial values, then
proceed the iteration with corrected values in
each cycle until the acceleration that satisfies
the matrix equation is obtained. Then spring
forces acting on the motion of sway and
yawing take effect when the body drifts or
over-rotates.

4.2 Simulation Case

This is a case in which length, outline
dimensions of each segment are similar to the
BAUV testbed we are currently building.

(i) Model description
total length: =16 (M)
the body is divided

=22 =008 (M
s (m)

into 18 sections,

the width and the height of the cross-section
of each segment, a and p»are shown in
Table 1.

(i) Friction and cross flow drag coefficients

c; (fromITTC 1957)

0075 _ Ry

" (ogRe)-2)2  1rus

=424 103

(for 20°c water, n»10 1087/ . If assume
that u» 1’7/sec ,

L=16M)

then Re= % »16710°6  for

¢, (from Handbook of Fluid Dynamics, Fig.
13.9 and Table 13.3)

i .

i body (takenas acylinder) Cp = e =12

! 2

.i. D

Vtail (takenas a flat plate)  Cp = =20
i % rU?h

(iii) Parameters of wave equation

The amplitude of the end of the body is set
to be one-seventh of the total length, which is
three times of the amplitude of half of the
body when the maximum of undulation is
reached.

K7 uTabIe 1. Datafor the simulation case

8]t vy (Units: mm)
)|
|
ion
b, b C
nOd a | d
e
ol o 0 0 (sectio

n)

11944 85.7 79.3 1.2

2 1406' 134.5 123.0 1.2

3 1723' 175.9 154.4 1.2

4 1892' 214.4 179.9 1.2

5 1892' 230.8 194.9 1.2

6 1871' 238.0 202.6 1.2

7 1735' 239.6 209.0 1.2

8 1651' 236.4 2155 1.2

9 1459' 226.7 2155 1.2
10 1320 ' 209.0 202.6 1.2
11 1190' 178.5 175.3 1.2
12 (88.4| 1415 138.3 1.2
13 | 74.0 107.7 96.5 1.2




1462 | 1112
115471 707 | (659 | %Y
151 0 | 2004 | 1743 | 20
6] 0| 2555 | 2229 | 20
171 0 | 2093 | 2471 | 20
181 0 | 3000 | 2423 | 20

¢, and ¢, of the second-order amplitude

envelope that bounds the wave equation
were chosen to be -0.02 and 0.12,.

For body wave number « and frequency
w, we can set their values by giving body
wavelength / and period 7,4, as.

/1=32m |, k:/ﬁ
- __2p
Tbody—4SGC y W—T—
body

And the period of the exponential term
which represents the initial delay when the
body starts to undulate is given by the same
value of the body wave period:

T= Thogy
(iv) Results

First, let us see the case if the spring ratios
for the motion of sway and yawing are both
zero (i.e. without artificial springs). The
program is calculated for 30 cycles and 10
time steps per cycle.  We can see that there
is a trend of drifting in they direction and
over-rotating of the angle y, and if the
calculation is continued for as much as 40
total cycles, the motion of the body will be
unstableor not calculable. (Figure 3,4)

Figure 5 to Figure 8 show the results after
the  artificia springs are  added
(spring ratiog,,,=1 ,  spring ratio ., =1),  the
number of total calculated cycles are 40 and
10 time steps per cycle.

Ya (m)

Figure3 Thetrgectory of the body without
artificial springs

30 |
§ 20 —
E _
é 10 —
0 —
0 40 80 120
t (sec)
Figure4 Theangle y without artificial
springs
12 —
o]
.
g
S UUUSUUINUUUUSUUUUUUNEUURE S
]
8 | | | | |
5 0 5 10 15 20 25
Xa(m)
Figure5 Thetrgectory of the body with

artificial springs



psi (radian)
|

0 40 80
t(se0)

Theangle y with artificial
springs

120

Figure 6

u (m/sec)

\ \ \
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Figure7 Theveocity wvwith artificial
springs

v (m/sec)

02
\ \ \ \

0 40 80
t(sec)

Figure 8 The velocity vwith artificial springs
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V. ConNcLusiON

To study the motion of the fish-like
underwater vehicle on the undulatory
locomotion of a flexible slender body, this
paper performs a simulation study based on
the assumption of the potential theory. It is
confirmed that reasonable results can be
obtained. However, the results of the present
simulation seem to be unstable without the
added artificial springsin the motion of sway
and yawing. By observations of real motion

of fishes, the unstable condition may occur
due to there are no side fins to balance the
body. Thus, a better solution may be obtained
in the future research by adding the effects of
paired fins.
Furthermore, our theory is based on the

assumption of the potential theory. The real
motion of a fish-like body in fluid is more

|complicated with vortexes produced by the
1gmdulation of the body, and these vortexes may

also be used in the propulsion. In the future
development, it is necessary to have further
consideration on the influence of vortexes to
improve the validity of this simulation.
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