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I. Abstract

The main purpose of this research is to
simulate the undulatory locomotion of a
flexible body. When a flexible slender body
which is divided into a number of segments
undulates, the wave passes from the nose to
the tail. Reaction forces due to momentum
change, friction, as well as cross flow drag
acting on each segment are taken into
account. Equations of motion described by
the body-fixed coordinate are obtained by
taking the summation of the longitudinal
force, lateral force and yaw moment acting
on all the segments. Equations of motion are
solved step by step in time axis and the
velocity is transferred to space-fixed
coordinate. The trajectory of the flexible
body can be obtained by time integration of
the transferred velocity. Results are obtained
for the numerical model in which length,
outline dimensions of each segment are
similar to a test vehicle we are currently
building. The validity and limitation of the
simulation method are discussed.

Keywords: Undulatory locomotion, Flexible
slender body, Biomimetic AUV

中文摘要

無人水下載具在複雜的海底進行檢測
作業時，經常需要如底棲魚類那樣能低速
徘徊、準確到位、敏捷迴旋的能力，尤其
在浮遊狀態下操作機械手臂時，更是需要
極為精緻的運動操控能力。我們知道為了
使載具停止並保持浮游姿勢，必須反覆且
迅速產生正反推力，而這正是利用傳統螺
槳推進方式最為困難之處。相對於此，魚
類胸鰭的往復運動（Oscillatory Motion）以

及包含魚體和尾鰭在內的波動運動
（Undulatory Motion）則顯然能較輕易且優
雅的使魚類做到。 因此，從模仿魚類運動
著手，以期探究出提升自主式水下載具低
速徘徊運動操控性能、高速巡航推進效率
的新方法，並思索出具協調能力之 AUV群
體的基本架構，就是本群體研究計畫的動
機。而其具體目摽則是經由對魚類外型、
感知、行為、運動機制的模擬，建構出仿
生型自主式水下載具試驗機 (BAUV
testbed)。為達上述目標，本群體研究整合
了五個子計畫，分別進行仿生型 AUV的阻
力推進性能（子計畫一）、運動性能（子
計畫二）、行為控制系統（子計畫三）、
視覺感測及知覺系統（子計畫四）、幾何
外型設計與決策規劃（子計畫五）等相關
之基礎研究。
   魚類外形因生活形態之需，經長期演化
而成的最適化外形，通常是下述三種運動
性能的妥協，即巡航與衝刺 (Cruising &
Sprinting) 、 突 進 (Accelerating) 、 操 控
(Maneuvering)等三種運動性能。而前二者
主要關係到包含魚體和尾鰭在內的波動運
動（Undulatory Motion），後者則主要關係
到魚類胸鰭的往復運動（ Oscillatory
Motion），然而通常還更可能包括魚體、
尾鰭、胸鰭的同時運動與交互影響，譬如
行進中的急速迴旋運動。是故，為求建立
針對仿魚 BAUV以運動性能為基礎的最佳
化外形設計(Motion-based design)之能力，
本子計畫（子計畫二）擬以三年為期致力
於魚類運動機制的探究，如停留、轉向、
突進、急煞等運動機制之解明與再現模
擬，並進行實驗驗證。而其第一年之主要
研究目的在於建立包含魚體與尾鰭在內之
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魚類波動運動之數學模式，並蒐集運動相
關之流體動力係數，以進行魚類運動模擬
計算。
    本成果報告將敘述細長撓性體波動推
進之運動模擬，內容包括其理論推導、數
值計算方法，並以本整合型計畫建構中的
仿生自主式水下載具之外型為例進行模擬
計算之探討。

關鍵詞: 波動推進、撓性細長體、仿生自主
式水下載具

II. INTRODUCTION

There is currently an increased interest in
the use of Autonomous Underwater Vehicles
(AUVs) for oceanographic, military and
commercial missions. Existing AUVs are
small robotic submarines powered by rotary
propellers driven by electric motors. The low
efficiency of the small diameter propellers
coupled with the large fraction of the hull
volume required to hold the motor’s batteries
leads to short mission times, restricted
payloads and control problems. To emulate
the ability of easy and elegant hovering,
accurate positioning and agile turning motion
of fishes, the propulsion system of the AUV
must generate positive and inverse thrust
quickly and repeatedly. This can keep the
AUV still in the water and maintain its
buoyant position, which is difficult for
traditional propeller propulsion systems to
achieve.
  To explore the possibility of possible gains
by mimicking the design of comparably sized
biological systems, we are planning to build a
fish-like underwater vehicle as a testbed to
investigate interactions and coordination
among appearance, motion, behavior, and
perception. In order to develop such a so-
called Biomimetic Autonomous Underwater
Vehicle (BAUV) which is propelled by the
undulatory motion of a flexible hull or the
swing of paired fins, it should be helpful in
the preliminary design stage to have a
practical tool to simulate the locomotion by
the undulatory motion of a flexible body.
  For ‘elongated’ fishes which are
geometrically characterized by slender

cylindrical forms, Lighthill developed the
elongated-body reactive-force theory [1].
Lighthill investigated the inviscid flow
around a slender fish which makes swimming
movements in a direction transverse to its
direction of locomotion, while its cross-
section varies along it only gradually. Based
on the slender-body theory, Lighthill
obtained the result of thrust produced by the
fish, time-rate of work done by it, and the
rate of shedding of energy, showing that the
mean values of these quantities all depend on
the movement and body shape at the tail-end
section only, and that they will vanish with
the virtual mass of the tail. What has
primarily been implied here is that the body
cross-section varies so gradually, and its
shape is so smooth (no sharp edges), that the
cross-flow remains attached to body, leaving
no vortex sheet until the tail-end section is
reached [2].
  Wu made further investigations on this
problem [3]. In order to simplify the
mathematical analysis, Wu limited the
consideration to the ribbon-fin-type problem,
assuming that the trailing side-edges have a
gradual change in slope, but are sharp enough
to shed an oscillating vortex sheet from the
body in an undulatory swimming motion.
There are other discussions about propulsion
by median and paired fins by Blake [4][5],
the geometric mechanics of undulatory
robotic locomotion [6][7] and analysis of
swimming propulsion of a three-dimensional
waving plate with variable amplitudes [8].
  In this paper, a practical simulation
method developed under slender body
assumption will be presented. The length of
the flexible slender body is divided into a
number of segments. When the body
undulates, the wave passes from the nose to
the tail. Due to momentum change, friction
and cross flow drag, the reaction forces are
taken into account by each segment. The
equations of motions described by the body-
fixed coordinate are obtained by taking the
summation of the longitudinal force, lateral
force and yaw moment acting on all the
segments, respectively. The equations of
motions are solved step by step in time axis
using the Newmark- β  direct method at each
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time step. The velocity described by the
body-fixed coordinate are then transferred to
the space-fixed coordinate and we can obtain
the trajectory by time integration of the
transferred velocity.
  Fortran language is used for the program
design. Behavior of a BAUV testbed
currently being built will be studied.

III. MATHEMATICAL MODELING

  We have three coordinate systems (Figure
1): space-fixed coordinate system YXO − ,
body-fixed coordinate system yxo −  (global)
and segment-fixed coordinate system iii yxo ~~~ −

(local). Each coordinate can be transferred to
another coordinate by using the relationship
of the position and angle between two
coordinate systems.
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Figure 1  Definitons of coordinae systems

From observations of biological fishes
[10][11], the motion can be considered as
traveling waves that increase in amplitude
from the nose to the tail. A specific form of
traveling wave equation which is a slight
derivation from that originally suggested by
Lighthill [2] was developed. Let the body-
spline take the form of a traveling wave
given by:
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Figure 2  Representation of body segments

  Dividing the whole body into n segments
(Figure 2), then the length of each segment is

nLL =∆ , and the coordinates of two nodes of
the ith segment are ),( ii yx , ),( 11 ++ ii yx .
We have
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Next, we will derive motion equations in
the body-fixed coordinate system, yxo − .
(i) The horizontal moving velocity vector
described by body-fixed coordinate system is
( )0),(),( tvtu , angular velocity vector is
( ))(,0,0 tψ& . Assuming that the center of the ith

segment ),( ii yx  is the center of mass of that
segment which has mass of im , and
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= ++  . The rotating

inertial torque is iI  (with center of mass as
the rotating center). Thus, the horizontal
velocity of ),( ii yx  caused by ψ& is:
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  Thus, we can get the horizontal velocity
and acceleration in y direction for added
mass as: (where *

iv  and *
iv&  are for body

mass)
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  Horizontal velocities and angular
velocities described in the body-fixed
coordinate system yxo − are:
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and horizontal accelerations and angular
accelerations are:
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  In the segment-fixed coordinate system
iii yxo ~~~ − , the horizontal velocity and the

angular velocity of the ith segment for fluid
added mass effect are:
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the horizontal acceleration and angular
acceleration are:
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For body masses, horizontal velocities and
accelerations are:
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The representations of horizontal angular
velocity and acceleration for body masses are
the same as shown in (7).

Consider each segment as a rigid body, the
Euler-Lamb equation of the ith segment
described in the segment-fixed coordinate
system iii yxo ~~~ −  is:
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  The fluid viscous forces at the right side of
the above equation are composed of friction

fC ( in the x~  direction),  and cross flow
drag dC ( in the y~  direction).
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iS :  the wet surface area of the ith segment
id : the height of the cross-section of the ith

segment (perpendicular to the y-axis ), and
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  In summary, we can know that forces
acting on the ith segment described in the

iii yxo ~~~ −  system are:
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(iii) The forces acting on the ith segment
described in the body-fixed coordinate
system yxo −  are:
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(iv) The forces and torques acting on the
whole body described in the body-fixed
coordinate system yxo −  are:
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(v) Finally, we can get the motion equations
in the yxo −  system as:
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or,
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where [A], [B], {E} are known values. One
can use a standard numerical integration
method, such as the Newmark- β  method, to
obtain ),,( ψ&&&&vu  and ),,( ψ&vu .

IV.  NUMERICAL SIMULATION

4.1 Program Description

From the derivation of the Newmark- β

integration method:
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The horizontal velocity in the yxo −  system
described in the YXO −  system is:
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The trajectory of  the yxo −  in the YXO −

system are:
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and the trajectory of the nodes of each
segment are:
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The simulation procedure is described as
follows:
(i) Input the main characters of the model
simulated
  Dimensions (total length, the width and
height of the cross-section of each segment),
friction and cross flow drag coefficients, fC

and dC . The parameters of wave equation:

1c , 2c , k , ω  and T .
(ii) Calculate im , ixm , 

iym , iS , d , izI  and

zJ  of each segment. Elliptical function was
used to represent the shape of the cross-
section.

Lbam iii ∆⋅= πρ
0≈ixm

Lbm iiy ∆⋅= 2πρ

LellipseofncecircumfereSi ∆×≈

ii bd 2=

iiz mFacI ×=

iyiz mFacJ ×=

  where 
2

,
12
1

4
1 22 barLrFac +

=∆+=

(iii) Decide how many cycles will be
calculated in the program, and how many
time steps in one cycle.
(iv) Start the calculation
  At t=0, the initial velocity and acceleration
is 0. At each time step, the values of the
velocity and acceleration of the previous time
step will be used to calculate the velocity and
acceleration described by body-fixed
coordinate of the current time step. The
trajectory of the body are then obtained by
transferring the velocity and acceleration to
the space-fixed coordinate.
  Artificial springs are applied to avoid
drifting in the y  direction and over-rotating of
the angle ψ . The reason of using artificial
springs is that there are no input force terms
in the motion of sway and yawing. Any
accumulated error on numerical calculation
in the motion of sway and yawing may affect
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the result of calculation because each time
step involved with the previous time step,
and it may cause the drifting in the y

direction and over-rotating of the angle ψ .
Therefore, two artificial springs are added
into the motion equations of sway and
yawing.
  mratiospringFac swaysway ⋅⋅= 2)

2
(
ω
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2

(
ω

where ∑ ∑== 2, iii xmImm
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and with the application of the Newmark- β

method, equation (20) becomes:
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  The values of the previous time step are
used for Y  and ψ  in the right side of the
equation (21) as their initial values, then
proceed the iteration with corrected values in
each cycle until the acceleration that satisfies
the matrix equation is obtained. Then spring
forces acting on the motion of sway and
yawing take effect when the body drifts or
over-rotates.

4.2 Simulation Case

  This is a case in which length, outline
dimensions of each segment are similar to the
BAUV testbed we are currently building.
(i) Model description
total length: 6.1=L  (m)
the body is divided into 18 sections,

089.0
18

6.1
==∆L  (m)

the width and the height of the cross-section
of each segment, a  and b are shown in
Table 1.
 (ii) Friction and cross flow drag coefficients

fC  (from ITTC 1957)

  3
2

2
12

1024.4
)2(log(Re)

075.0 −×==
−

=
SU

R
C f

F
ρ

(for co20  water, sec
6 2100.1 m−×≈ν .  If assume

that sec1mU ≈ ,  then 6106.1Re ×≈=
ν

LU   for
6.1=L m)

dC  (from Handbook of Fluid Dynamics, Fig.
13.9 and Table 13.3)
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(iii) Parameters of wave equation
  The amplitude of the end of the body is set
to be one-seventh of the total length, which is
three times of the amplitude of half of the
body when the maximum of undulation is
reached.

Table 1. Data for the simulation case
(Units: mm)

sect
ion
nod

e

a ub lb dC

0 0 0 0 (sectio
n)

1 94.4 85.7 79.3 1.2

2 146.
0 134.5 123.0 1.2

3 173.
2 175.9 154.4 1.2

4 182.
9 214.4 179.9 1.2

5 182.
9 230.8 194.9 1.2

6 181.
7 238.0 202.6 1.2

7 175.
3 239.6 209.0 1.2

8 164.
0 236.4 215.5 1.2

9 149.
5 226.7 215.5 1.2

10 130.
2 209.0 202.6 1.2

11 110.
9 178.5 175.3 1.2

12 88.4 141.5 138.3 1.2
13 74.0 107.7 96.5 1.2
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14 54.7 146.2
(70.7)

111.2
(65.9) 2.0

15 0 209.4 174.3 2.0
16 0 255.5 222.9 2.0
17 0 299.3 247.1 2.0
18 0 309.0 242.3 2.0

       
1c and 2c  of the second-order amplitude

envelope that bounds the wave equation
were chosen to be -0.02 and 0.12,.
  For body wave number k  and frequency
ω , we can set their values by giving body
wavelength λ  and period bodyT  as:

=λ 3.2 m  ,    
λ
π2

=k

=bodyT 4 sec  ,  
bodyT

πω 2
=

  And the period of the exponential term
which represents the initial delay when the
body starts to undulate is given by the same
value of the body wave period:

=T bodyT

(iv) Results
First, let us see the case if the spring ratios

for the motion of sway and yawing are both
zero (i.e. without artificial springs). The
program is calculated for 30 cycles and 10
time steps per cycle.  We can see that there
is a trend of drifting in the y  direction and
over-rotating of the angle ψ , and if the
calculation is continued for as much as 40
total cycles, the motion of the body will be
unstable or  not calculable. (Figure 3,4)
  Figure 5 to Figure 8 show the results after
the artificial springs are added
( swayratiospring =1 , yawratiospring =1), the
number of total calculated cycles are 40 and
10 time steps per cycle.

-4 0 4 8 12 16
Xa (m)

-4

-2

0

2

4

6

Ya
(m

)

Figure 3  The trajectory of the body without
artificial springs
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20
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Figure 4  The angle ψ  without artificial
springs
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8
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Figure 5  The trajectory of the body with
artificial springs
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 Figure 6  The angle ψ with artificial
springs
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Figure 7  The velocity u with artificial
springs

0 40 80 120 160
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-0.2
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Figure 8 The velocity v with artificial springs

V.  CONCLUSION

  To study the motion of the fish-like
underwater vehicle on the undulatory
locomotion of a flexible slender body, this
paper performs a simulation study based on
the assumption of the potential theory.  It is
confirmed that reasonable results can be
obtained. However, the results of the present
simulation seem to be unstable without the
added artificial springs in the motion of sway
and yawing. By observations of real motion

of fishes, the unstable condition may occur
due to there are no side fins to balance the
body. Thus, a better solution may be obtained
in the future research by adding the effects of
paired fins.
  Furthermore, our theory is based on the
assumption of the potential theory. The real
motion of a fish-like body in fluid is more
complicated with vortexes produced by the
undulation of the body, and these vortexes may
also be used in the propulsion. In the future
development, it is necessary to have further
consideration on the influence of vortexes to
improve the validity of this simulation.
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