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We consider in this progress report three-dimensional acoustic wave propagation in fluid-
elastic media. These equations are parabolized since only outgoing wave propagation is permit-
ted. This facilitates the analysis, shortens computing time, and reduces disk storage. To couple
working equations in fluid and elastic layers, we demand continuity of the normal displacement
and normal stress. In addition, physical reasoning requires that shear stresses vanish on the
interface for the present analysis, which is formulated under the inviscid flow assumption. We
approximate spatial derivatives using the second-order accurate centered scheme. The result-
ing ordinary differential equation is solved implicitly to render also second-order prediction
accuracy in the range direction. With numerical scheme, it is highly desirable to demonstrate

the applicability of the code to tie individual fluid and elastic layer. We have also verified
that the code is applicable to analysis of wave propagation in water and elastic layers, across

which there is an interface.

1. Introduction

Early work on the subject of underwater wave
propagation dates back to the work of Tappert
and McCoy. Wales and McCoy further compared
different parabolic theories for modeling the elas-
tic wave propagation in linearly elastic solids. Re-
cently, the fluid-elastic interface problem gradu-
ally became the focal research attent on aimed at
gaining a better understanding of the underwater
acoustic wave propagation. Early development
in this area resorted to idealizations in order to
make the problem tractable.

Hudson was among the very few authors who
considered three-dimensional elastic propagation
problems. He derived working equations, writ-
ten in terms of displacement variab es, but had
no attempt to implement them into the numeri-
cal computation. More recently, Nagem et al. [1]

formulated a set of elastic parabolic equations,
paving the way for the later derivation of a three-
dimensional coupled fluid-elastic model.

In this report, we develop a space-marching
code for equations governing the wave propaga-
tion in fluid-elastic medium. It is best hoped that
this newly developed computer code provides an
alternative to a simulation which has the abil-
ity to account for shear wave propagation on the
fluid-elastic interface.

2. Mathematical model

In the elestic mediurn, the stress tensor T can be
expressed as a function of the displacement vector
u and Lame’ constants :

r=AV-wI+p(Vut@w). (1)

On physical grounds, displacement vectors are
continuous across the interface of two media.



Thus, continuity of normal displacement implies
that
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Another interface condition is derived by consid-
ering normal stress components. Physical reason-
ing dictates continuity of normal stresses between
layers of different media:

%L

8%yy
Ordz

18¢,

r 8z

%4,
822

1 8%y,
: 898:) ' @)

~pwipr=-Ak] ¢2+2m (

Given that the liquid above the irterface is in-
viscid, two shear components tangential to the
horizontal interface must vanish. This gives the
following interface conditions needec to blend two
adjacent layers having different maerial proper-
ties:
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To make the mathematical model well posed
for the simulation of acoustic wave propagation
in the fluid-elastic environment, it is also impor-
tant to demand satisfaction of the divergence-free
equation on the interface.

3. Space Marching Solution
Algorithm

We discretize spatial derivatives with respect to
z and @ using the centered scheme to render
second-order accuracy. Having discretized equa-
tions, the finite difference solutions can then be
solved plane-by-plane fashion, start:ng from the
plane r = rg. The analysis is followed by forward
marching in the direction of an increesing value of
r. Within each marching step Ar, the solutions
at the solution plane are computed irom
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4. Numerical Results
4.1 Validation in the water layer

The problem was chosen to verify the code, which
is only applicable to a water layer [2]. In this
study, material properties and flow conditions are
H = 100em, py = 1g/em®, p2 = 1.97g/cm?,

c1 = 1507.5m/s, agz = 1725m/s, vi = 1500m/s,
f = 68.03Hz, d = 25m, B2 = 1530m/s. In the
rectangular physical domain, all the calculations
were performed on uniform grids of different grid
resolutions. As is evident from Table 1, the com-
puted solutions compare favorably with the cor-
responding exact solutions.

4.2 Validation in the elastic layer -

To verify the applicability of the code to simula-
tion of equations in the elastic bottom, we con-
sidered the wave propagation in an unbounded
three-dimensional elastic layer. The problem cho-
sen was considered by Lee et al. [3]. In this
study, we start the computation at the range
value r = 200m and terminate the analysis at
the range value r == 210m using a range incre-
ment Ar = 1Im. The physical parameters are
p = 2400kg/m3, w == 1000rHz and Af = 1°. As
Table 2 shows, our finite-difference solutions for
dependent variables compare well with the ana-
lytic solutions.

4.3 Validation in the fluid-elastic
layer

Having verified the code in both water and elastic
layers, we can proceed to verify the code devel-
oped for modeling the fluid-elastic equations used
together with the physically sound interface con-
ditions. To our best knowledge, a closed-form
solution to this coupled system of equations is
still lacking. Therefore, we assign a priori an ex-
plicit source vector to make the resulting equa-
tion to be amenable to exact solutions given by
¢ (r,z,0) = 22563 + ir?:%0%, where ¢ stands for
r, AL, BI, B, B}, A, B,, B,, and B.

For completeness, we also plot field variables at
@ = 5° and z = 50m against 7. As Figs. 1-5 show,
the computed solutions were in good agreement
when corapared to the analytic data.

(7)

5. Concluding Remarks

We have presented a finite difference scheme to
solve a parabolized set of fluid-elastic equations.
On the horizontal interface, we demand continu-
ity of the normal displacement and the normal
stress. In addition, physical reasoning requires
that the shear stresses vanish on the interface for
the present analysis which is formulated under



the inviscid flow assumption. We cliscretize spa-
tial derivatives using the second-order centered
scheme. The resulting ordinary diffarential equa-
tion has been solved using the imr plicit Crank-
Nicolson marching scheme to render second-order
prediction accuracy. Three analytic test prob-
lems were chosen to demonstrate the applicability
of the code to the fluid, elastic, and fluid-elastic
layers.
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A =5m

A =4m

Rate

201

5.8624E-10

4.6002E-10

1.0866E+-00

202

1.1415E-09

9.1712E-10

9.8113E-01

203

1.6692E-09

1.3737E-09

8.7307E-01

204

2.1740E-09

1.8322E-09

7.6669E-01

205

2.6621E-09

2.2942E-09

6.6648E-01

206

3.1403E-09

2.7609E-09

5.7697E-01

207

3.6163E-09

.2329E-09

5.0215E-01

208

4.0973E-09

3.7098E-09

4.4519E-01

209

4.5902E-09

4.1905E-09

4.0825E-01

210

5.1005E-09

4.6730E-09

3.9230E-01

B

A =5m

A =4m

Rate

201

3.9480E-08

2.7723E-08

1.5843E+00

202

7.9668E-08

5.4048E-08

1.7387E+00

203

1.1982E-07

7.9425E-08

1.8428E-+00

204

1.5910E-07

1.0455E-07

1.8814E+00

205

1.9661E-07

1.3021E-07

1.8465E4-00

206

2.3156E-07

1.5709E-07

1.7389E4-00

207

2.6326E-07

1.8554E-07

1.5679E+00

208

2.9123E-07

2.1556E-07

1.3483E+00

209

3.1521E-07

2.4672E-07

1.0979E+-00

210

3.3516E-07

2.7824E-07

8.3407E-01

By

A=5m

A =4m

Rate

No. 2, 1997, 157-176.

Table 1 The computed Lo —error notms for the test
problem, given in Section 4.1, at different marching

locations.

201

2.8169E-09

1.9465E-09

1.6563E+00

202

5.4409E-09

3.6959E-09

1.7330E+-00

203

8.0940E-09

5.4037E-09

1.8106E+00

204

1.0682E-08

7.0983E-09

1.8315E+00

A

A =10m

A =625m

A =5m

205

1.3141E-08

8.82538E-09

1.7840E+-00

1001

3.7511E-05

3.6895E-05

3.6781E-05

206

1.5416E-08

1.0622E-08

1.6693E+4-00

1002

7.4993E-05

7.3886E-05

7.3654E-05

207

1.7465E-08

1.2506E-08

1.4966E+-00

1003

1.1256E-04

1.1097E-04

L.1062E-04

208

1.9257E-08

1.4471E-08

1.2804E+-00

1004

1.5011E-04

1.4812E-04

L.4766E-04

209

2.0780E-08

1.6485E-08

1.0375E+-00

1005

1.8774E-04

1.8541E-04

[.8477E-04

210

2.2035E-08

1.8497E-08

7.8430E-01

1006

2.2556E-04

2.2279E-04

2.2203E-04

1007

2.6346E-04

2.6021E-04

2.5937E-04

B,

1008

3.0140E-04

2.9776E-04

2.9680E-04

A =5bm

A =4m

Rate

1009

3.3947E-04

3.3539E-04

3.3437E-04

201

4.3425E-10

2.9452E-10

1.7399E+00

1010

3.7765E-04

3.7313E-04

3.7204E-04

202

8.7138E-10

5.8465E-10

1.7883E+00

1011

4.1615E-04

4.1097E-04

1.0984E-04

203

1.3047E-09

8.7533E-10

1.7886E+00

1012

4.5514E-04

4.4889E-04

L A47TTE-04

204

1.7265E-09

1.1722E-09

1.7354E+00

1013

4.9477E-04

4.8692E-04

1.8581E-04

205

2.1292E-09

1.4802E-09

1.6290E+00

1014

5.3528E-04

5.2509E-04

5.2394E-04

206

2.5053E-09

1.8024E-09

1.4755E+00

1015

5.7683E-04

5.6338E-04

5.6215E-04

207

2.8488E-09

2.1387E-09

1.2848E+-00

1016

6.1951E-04

6.0178E-04

15.0037E-04

208

3.1553E-09

2.4857TE-09

1.0689E+00

1017

6.6338E-04

6.4028E-04

15.3867E-04

209

3.4223E-09

2.8370E-09

8.4053E-01

1018

7.0845E-04

6.7890E-04

5.7689E-04

210

3.6493E-09

3.1838E-09

6.1147E-01

1019

7.5476E-04

7.1761E-04

7. 1498E-04

Table 2 The computed L, — error norms for
A, B, By, B,, at different locations r for the test
problem given in Section 4.2. ""he rates of

log(S2rL )
convergence,—x3+—, are also computed.
103( Az )
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Figure 1: The computed ratios between the numeri-
cal and exact solutions for the field variable u against
r for the problem considered in Section 4.3
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Figure 2: The computed ratios betwe:n the
cal and exact solutions for the field variable A against
r for the problem considered in Section 4.3.
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Figure 3: The computed ratios between the numeri-
cal and exact solutions for the field variable B, against
r for the problem considered in Section 4.3.
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Figure 4: The computed ratios between the numeri-
cal and exact solutions for the field variable By against
T for the problem considered in Section 4.3.
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Figure 5: The computed ratios between the numeri-
cal and exact solutions for the field variable B, against
r for the problem considered in Section 4.3.



