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Abstract

We consider in this progress report for solving the steady-state Navier-Stokes
equations for incompressible fluid flows using velocities and vorticity as working
variables. The method involves solving a second-order differential equation for the
velocity and a convection-diffusion equation for the vorticity. The key to the
success of the numerical simulation of this class of flow equations depends largely
on proper simulation of vorticity transport equation subject to proper vorticity
boundary condition. While the derivation of the proposed integral vorticity
boundary condition is more elaborate and is more difficult to solve than
conventional local approaches, we will demonstrate its significant advantages by

virtue of benchwork tests.
Keywords: finite difference, incompressible, Navier-Stokes, velocity-vorticity
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1. Introduction

The traditional approach to the numerical solution for incompressible
Navier-Stokes equations has been to solve working equations in velocity-pressure
variables. A serious problem which was encountered while performing the
primitive variable formulation is owing to the absence of pressure in the continuity
equation. In addition, discretization of pressure gradients in the incompressible
equations on curvilinear grids presents considerable difficulties owing to the fact
that the approximation of pressure gradient operator should be irrotational [1].
While this difficulty can be effectively resolved on staggered grids [2], special care
is needed when grids are non-uniformly and non-orthogonally laid on the flow [1].
It is the added grid c omplexity that c omplicates further the incompressible flow
analysis. Another popular approach to numerical solution of the Navier-Stokes
equations is the velocity-vorticity approach. This formulation is the most
appropriate choice for solving the vortex dominated flow. The reason lies in the fact
that the advection of vorticity is the most important process determining the flow
dynamics. Additionally, it appears that studying incompressible Navier-Stokes
equations in terms of vorticity and velocity is closer to physical reality [3]. For the
present spatial discretization on collocated grids, we abandon the DC problem and
confine ourselves to the second-order Poisson equations to solve for velocity
components. Another second-order differential equation for the vorticity scalar
must be solved subject to proper boundary conditions, which are the subject of the
present study. An accurate prediction of the transport of vorticity is another
consideration. We will address this issue in the use of an exponential compact
scheme for the flux discretization.



2. Mathematical model

The traditional approach to the numerical solution of incompressible Navier-Stokes
equations has been the primitive-variable formulation. Using the kinematic

definition of the vorticity o=V xu, the resulting transport equation is derived as

E'VQ—Q'VE=LV29 (1
Re

The vorticity stretching term,-Vu, represents the generation or destruction of

vorticity due to the stretching or compression of the vortex line. As the space
dimension decreases by one, the vortex stretching term vanishes in
two-dimensional cases, and the resulting vorticity transport equation is reduced to a
scalar equation for the vorticity component which is normal to the planar motion of
the flow :

g-V9=éV29 2

The working equations for the velocity components can also be obtained by taking

the curl of the definition ©=Vxu and by using the continuity equation. The

resulting second-order Poisson equations for velocity components u and v are
derived, respectively, as

Viu=-o, 3)
Viv=o,

The theoretical equivalence between this classical second-order velocity-vorticity
formulation and the velocity-pressure formulation has been given. For the details

we refer to the paper by Daube et al. [4].



3. Vorticity integral condition

The key element in the vorticity-velocity formulation is to obtain the a priori
unknown boundary values of the vorticity for the second-order transport equation
(1). The theory behind our derivation of the vorticity boundary condition is the
Green's identity, which relates two scalar potentials and  as follows:

o
Vi —yV2dA = d(p ¥ -y 2
[oviv-wvieda=do -y _D)ds 4)
Provided that the scalar potential 1s assigned as the stream function, the
following two equations ensure satisfaction of mass conservation :
u=%
%)
y=-
0x

Now, let be the scalar potential which satisfies the Laplace equation. The
boundary value of  is enforced to be zero everywhere except at one point where
the value is one :

V=0 inQ 6)
0, =ESij on Q)

We can get

Ld)codA: dsbu, ds+ L(v%—u%)dA

where u, = —%;':—lm.

This completes the derivation of the vorticity integral equation for the transport
equation (1). It is worth noting that the assignment of =1 leads to

La)dAchmut ds



4. Numerical results

4.1 Lid-driven cavity flow problem

We present a two-dimensional simulation for the fluid flow in a square cavity
defined by B:D=1:1. The Reynolds numbers chosen for this study was 1000, which
were computed based on the lid speed, the width of the cavity, and the kinematic
viscosity of the fluid. In this study, the solutions were computed on uniform grids
of 131x131 for Re=1000. For comparison purposes, the velocity profiles of Ghia et
al. [5] are also plotted in Fig. 1.



4.2 Backward-facing step problem

Expansion flows in straight channels with have been another focus of intensive
study over the last few decades and have been the subject of an international
workshop [7]. Although this flow represents one of the simplest expansion flows,
the physics involved are rather complex due to the formation of recirculating
vortices and flow reversals downstream of the step. We consider this problem to be
computationally important because of the availability of experimental data [5, 6]
and the simplicity of the geometry.

Several Reynolds numbers, Re=100, 200, 400, 500 and 800, were considered in this
study. Among the basic features pertinent to the problem, as illustrated in Fig. 2, is
the flow separation from the step corner. As in many real flows, separation of a
boundary layer is followed by downstream reattachment to a solid wall.
Determining the reattachment location, as measured from the step, is, thus, the
primary focus of this study. It is also important to see the separation-reattachment
eddy on the channel roof.

Notwithstanding, the importance of eddy formation in the channel, we plot
reattachment lengths of the primary eddy behind the step in Fig. 3 for cases with
different Reynolds numbers. We compared our results with measurement data [8] as
well as other numerical data [9, 10] for the sake of completeness. We also plot the
separation length of the roof eddy in Fig. 14 and compare results with experimental
[8] and numerical [9] data for the Reynolds numbers considered in this study. Fig. 4
plots the reattachment location of the roof eddy together with data given by Armaly
et al. [8] and Gartling [9]. From this comparison, it is now considered that our
compact scheme is applicable to Navier-Stokes flow simulations of the vertical

flow structure.



5. Concluding remarks

The goal for the present study w as t o s imulate i ncompressible viscous flows by
means of the velocity-vorticity formulation. In order for the solutions to be
accurately predicted, it is important to develop a theoretically rigorous framework
which can provide us with boundary vorticity without using field variables outside
of the physical domain. The equation governing the boundary vorticity is derived in
integral form. Thus, boundary vorticities are simultaneously solved from the matrix
equation. The solution algorithm involves a scalar transport equation for the
vorticity variable and two Poisson equations for velocity components. Specific to
our flux discretization scheme is that the coefficient matrix of the compact
nine-point stencil scheme is classified as an irreducibly diagonal dominant
M-matrix. To better understand the compact finite difference scheme developed
here, we have conducted computational exercises. In the Navier-Stokes flow
analyses, we have considered the lid-driven cavity and backward-facing step
problems. The results demonstrate that the integral approach designed to provide
the boundary vorticity is applicable to simulation of fluid flows which are vortical

1n nature.
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Fig. 1: Velocity profiles plotted on the centerlines for the case Re=1000 (a) u-y plot
at x=0.5; (b) v-x plot at y=0.5.

Fig. 2: Schematic of the backward-facing step problem considered in Section 4.2.
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