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一、中文摘要 

 

本計畫以TWSF method 進行黏彈阻尼

結構波動與高頻振動問題之基礎性研究。

本計畫預計分兩年進行，本年度計畫將根

據黏彈阻尼材料力學特性，分析結構具非

傳統黏彈阻尼邊界，其應力波動傳遞特性。 

 

關鍵詞：黏彈阻尼邊界、波動傳遞、結構

動力 

 

1. Abstract 
 

This study presents a novel method to 
analyze the vibration of an viscoelastically 
mounted concentrated mass supported on the 
joint of crossed beams with viscoelastic 
foundation. The frequency responses of the 
displacement of the mounted mass and every 
beam are derived. Moreover, the force 
transmissibility from the vibrating mass to 
the foundation and the frequency equation 
are obtained. The derived results are 
expressed in both analytical and closed 
forms. 
Keywords: viscoelastic structures, wave 

propagation, structure dynamics 
 

2. Introduction 
 The vibration behavior and 
transmissibility of a concentrated mass 
mounted on single and multiple 
degree-of-freedom lumped isolator systems 
have received considerable interest [1]. 
Analytical and numerical methods for 
obtaining the fundamental frequency and 
mode shape of a single beam carrying a 

concentrated mass in free and forced 
vibrations have also been presented [2-4]. 
Although previous studies commonly 
considered the single beam structure, 
vibrating engines supported by multiple 
crossed beams are normally used in practical 
design. The vibration behavior of a system is 
affected by the dynamic interaction not only 
between the mounted mass and supported 
beams but also between one beam and 
another. Moreover, the flexibility of the 
foundation for each beam is combined into 
the dynamics of a system.[5]  
 In this project, forced vibration 
analysis of crossed beams with flexible 
boundary carrying an viscoelastically 
mounted mass is investigated using a graph 
method [6]. Viscoelastically foundation for 
the support of these beams is also considered. 
 

3. Theory 
 An viscoelastical mounted concentrated 
mass (the primary system) supported on the 
joint of N symmetrically crossed beams 
structure is considered. As assumed herein, 
each beam is uniform and joined at the 
midpoint. The ends of each beam are 
supported by viscoelastic foundation, which 
is modeled as the combination of the linear 
spring and dashpot damper. For the ith 
beam, since no load acts between the 
midpoint and the end of each beam, the 
governing equation for small amplitude 
vibration of the beam is given by [7] 
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where wi(t) is the beam’s displacement at the 
cross-section xi, Ei is Young’s modulus of 
beam i, Ii is the moment of inertia of the 
beam, mi is the mass per unit length of the 
beam, and bi is the half length of the beam. 
The solution of Eq. (1) can be calculated by 
separation of variables. Thus, the amplitude 
of the response of the beam can be expressed 
in the following form: 
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where Wi is the complex amplitude of the 
displacement response at location xi. ai,1, ai,2, 
ai,3, and ai,4 depend on the boundary 
conditions, and ai is a function of the forced 
frequency ω given by 4/12 )/( iiii IEma ω= . 
Notably, the slope at the midpoint of the 
beam is zero since the vibration response of 
the beam is symmetric. In addition, only 
translational flexibility for both ends of the 
beam is considered, while the reaction 
moment at both ends is zero.Moreover, the 
shear force around the center of the beam 
equals half of the summation forces acted by 
the primary system and other beams, denoted 
as fc,i(t). If the complex amplitude of the 
displacement at the end of the beam Wb,i is 
given, the constants ai,1, ai,2, ai,3, and ai,4 in 
Eq. (2) can be expressed by Wb,i and Fc,i  
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where ci, si, chi, and shi are the symbols of 
cos(aibi), sin(aibi), cosh(aibi), and sinh(aibi), 
respectively.  
 Substituting Eqs. (3)-(6) into Eq. (2) 
yields the displacement response of the beam. 
According to the results, the complex 
amplitude of the displacement response at the 

center of the beam can be represented by Wb,i 
and Fc,i. The boundary condition at the end of 
the beam reveals that the shear force at the 
end of the beam equals the force acted by the 
flexible foundation fb,i(t). Thus, the complex 
amplitudes Fb,i and Fc,i are expressed as 
follows: 
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According to Eqs. (7) and (8), the 
relationships between Fb,i, Fc,i, Wb,i and Wc 
can be described by a two-way state-flow 
graph model as shown in the upper part of 
Fig. 1.  For the flexible foundation, a 
combined model of massless spring and 
dashpot damper is assumed. The relationship 
between the displacement and the force 
response is given by  
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Equation (9) can also be represented as a 
graph model as shown in the lower portion of 
Fig. 1.  
 The graph model of beam i and its 
supports shown in Fig. 1 indicate that the 
paths following the state flow form a 
closed-loop. There are two forward paths 
from Wc to Fc,i. Although one forward path 
touches the loop, the other one does not. 
Thus, the ratio of the complex amplitude of 
the displacement response Wc to the force 
response Fc,i, denoted as 

icc FWH
,, , can be 

obtained as [6] 
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 When all of N crossed beams are 
considered, the force acting on the spring and 
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the damper of the primary system Fc equals 
the summation of the force acting on all 
beams. Thus, all the transfer functions 

icc FWH
,,  can be combined by directly 

summation. The reduced graph model 
contains only two loops. For the combined 
model, there is only one forward path from 
Fe to Wd. This forward path touches one of 
the loops. Thus, the complex amplitude of 
the displacement response of the mass of the 
primary leads to 
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 In the same manner, the response of 
the displacement at the joint Wc can be 
calculated. There is only one forward path 
from Fe to Wc. This forward path touches 
both loops in the combined graph model. 
Thus, the complex amplitude of the 
displacement Wc is 
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 In order to calculate the response of 
each beam, the graph model of the total 
system can be rearranged by combining two 
cascade models: the dynamic coupling of all 
components of the system and the uncoupling 
dynamics of each beam and its constraints. 
From the rearranged model, Wb,i  and Fb,i 
can be obtained 
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If responses Wb,i and Fb,i as shown in 
Eqs.( 20) and (14) are substituted into Eqs. 
(3)-(6), the coefficients of ai,1, ai,2, ai,3, and 
ai,4 can be calculated. Thus, the response at 
each location of the beam is known. 
 
3. Examples 
 Two identical crossed simply 
supported beams carrying an elastically 
mounted mass subjected to force load 
Fesinωt on the mass is considered in the 
example. The damping ratio and the natural 
frequency of the primary system are 0.05 and 
100 rad/sec, respectively. The mass ratio of 
the mounted mass to each of beam, 

)2/( bmmd  is 0.5. If the parameter of each 

beam IEmb /2  equals g/1 , the 

frequency variable ba  equals g/ω . 
The complex amplitude of the displacement 
of concentrated mass can be calculated by 
equation (11). Figure 2 presents the 
magnitude of the non-dimensional dynamic 
response of the mounted mass Y, defined as 

edd FmWY /2ω= . 
 
4. Conclusions 
 This work studies the dynamic 
interaction of an viscoelastically mounted 
mass supported on the beams with a 
viscoelastic foundation. Analytical and 
closed form results of the frequency response 
of the displacement of each component of the 
system, the force transmissibility, and the 
frequency equation are derived. Numerical 
examples reveal the ease in calculating the 
dynamic response using the derived 
formulas. 
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Fig. 2 Magnitude of  non-dimensional
dynamic response of the system. 

Fig. 1 Graph model for beam i and its
viscoelastic support. 


