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Abstract -- To improve the performance
of a glider in the shallow water
operations, we will develop methods to
improve the transient behavior of gliders.
The accuracy of parameters in a
vehicle’s dynamic model strongly affects
the dynamic performance of its control
system. An optimal input design
technique for vehicle parameter
estimation is presented in this study. The
idea is the combination of a dynamic
programming method with a gradient
algorithm for the optimal input synthesis.
Motion data were analyzed with a
least-squares technique so that values of
parameters could be estimated. The
estimated values are compared with
arbitrary input signals that are used in
system identification. This algorithm for
selecting optimal inputs is found to be
efficient and robust to noises. This work
validated the analysis used to develop
the optimal input design, and

1. Mathematical Model

Dynamic system models are often used in
system and control architectures, to enhance the
system performance. Identification of system
parameters is a well-studied problem. Various
effective algebraic and numerical solution techniques
have Dbeen developed to solve for unknown

parameters using dynamic system models [1], [2], [3].

demonstrated the feasibility and
practical utility of the optimal input
design technique. This report is the

mid-term report of the second year.

Keywords: underwater gliders, ocean observation
network, underwater vehicles
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These include techniques based on pseudo-inverses,
sliding mode observers, Kalman observers, and
others. Kim et al. [4] estimated the hydrodynamic
coefficients based on two nonlinear observers, the
SMO (Sliding Mode Observer) and the EKF
(Extended Kalman Filter). Liu [5] discuss about the
estimation of surge motion model of ship and using
identification technique to derive the model’s
unknown hydrodynamic coefficients. However, the



accuracy/quality of the identified system parameters
is a function of both the excitation imposed on the
system as well as the measurement noise (sensor
noise). The importance of input selection for system
identification has been recognized for a long time.
Mehra et al. [6] considers the design of optimal
inputs for identifying parameters in linear dynamic
systems. The criterion used for optimization is the
sensitivity of the system output to the unknown
parameters as expressed by the weighted trace of the
Fisher information matrix. Morelli et al. [7], [8]
considered the design of optimal inputs for airplane’s
linear model equations form the point of view of
Cramér-Rao lower bound and its inverse, the Fisher
information matrix. Numerical simulations of three
types of sea trials are performed to obtain the
sensitivities of motions to hydrodynamic coefficients
[9]. Jauberthie et al. [10] presented the design of
optimal inputs for aircraft nonlinear controlled
dynamic models. Graver et al. [11] described the
development of feedback control for autonomous
underwater gliders, and derived a nonlinear dynamic
model of a nominal glider complete with
hydrodynamic forces and coupling between the
vehicle and the movable internal mass. Also, Graver
et al. [12] identified the model parameters to match
the steady glides in new flight test data from the
SLOCUM glider.Graver [11] model the underwater
glider as a rigid body with fixed wings and tail
immersed in a fluid with buoyancy control and
controlled internal moving mass. We assign a
coordinate frame fixed on the vehicle body to have
its origin at the CB and its axes aligned with the
principle axes of the ellipsoid. Body axes are
illustrated in Fig.1. The different masses and position

vectors are illustrated in Fig. 2. 1, =(Ipy, Moy, Fpg)'
denotes the position vector of movable mass. Here
the m, is the uniformly distributed hull mass, m,,
is point mass for nonuniform hull mass distribution,
and r, is the position vector from CB to m,. m,

is the variable mass located at CB. m is the
movable point mass. The total mass of the glider is
m,=m,+m,+m, +m.

Fig. 1 Frame assignment on underwater
glider

Fig. 2 Glider mass definitions

Fig. 3 Glider position and orientation
variables

The position of the glider b=(xy,2)"
is the vector from the origin of the inertial
frame to the origin of body frame as shown
in Fig. 3. The vehicle moves through the
fluid with translational velocity



V= (V,,V,, V)" and angular velocity

Q=(Q,Q,,Q,)", expressed with respect to

the body frame. In this section, we present a
mathematical model that describes the

longitudinal dynamics of underwater gliders.

Following the discussions in Graver [11],
the equations of motion for the gliding
vehicle restricted to the vertical plane are

X=V,C0s6+V,sind (1)
y =-Vv,Sin@+v,cosé (2)
0=0Q, (3)

. 1 _
Qz = J_z((ms - m1)V1V3 - mg(rPl cosé (4)

+1pg sin 0) +M DL rPSPPl + rPIPPS)

.1 .
v, = E(—m?)an2 — P, Q2, —m_gsiné (5)

+Lsina-Dcosa —P,,)

. 1
Vs = m_s(mlvlﬂz + PPlQZ (6)

+m,g cos @ — Lcosa — Dsina - P.,)

, 1
Ipy = % Poy

_Vl_rPSQZ (7)

. 1
Ips = % PP3 —V;t rP1Q2 (8)

where m, and m, are the sum of body and

added mass, along the € and e, direction.

J, is the sum of the inertia of stationary

mass and added inertia matrix in € —¢
plane. m,g presents the weight of the

glider. B, and P,, denote linear

momentum in body coordinate along the ¢
and e, direction. @ is the pitch angle of

glider. Here, « is the angle of attack, D
is drag, L is lift and My is the viscous

moment as shown in Fig. 4. Lift and drag
forces are assumed to act at the glider
center of buoyancy. These forces and
moment are modeled as

L=(K,+ KLa)VZ
D = (Kog + Ko V? (9)
Mp, = (Ky, + KMa)V2

where the K s are the hydrodynamic
coefficients. The aim for parameter
identification is to estimate those constant
coefficients.

Fig. 4 Lift and Drag on the Glider

As shown in Fig. 4, we denote the glider
speed V =,/(v,’ +V;”), and attack angle

v
a=tan(=2).
Vl

2. ldentification Results

In this section, simulation results obtained by
using the optimal input design algorithm are
presented. A glider with fore and aft buoyancy
engines was modeled. The conception of the double
buoyancy engines is used to replace the moveable
mass in Fig. 2 for shifting the center of gravity. Fig. 5
shows the configuration of the buoyancy engines.
The mass m, =5kg, m,=70kg, m,=40kg, m, =1kg,

m =9kg, and internal J,=12 kg m?are assumed in
the simulation.



Fore Ballast

Aft Ballast

Fig. 5 Fore and Aft Buoyancy Engines

In Fig. 5, m; and m,, are the mass of ballast
mass in the fore and aft buoyancy engines, and r;,

I, present their position vector from CB. Thus, the
variable mass of the glider in Fig. 3.2 becomes

m, =my, + My (10)

Here we assume that the variable m, and m,
used to turn the center of gravity aside are equivalent

to move m in Fig. 5. In addition, we consider the
movable mass is constrained in the longitudinal

direction e . The equation between this replacement
becomes

mr,, + m,r, Myt e + Myaloa + ML,

= (11)
m,+m,+m +m m, +m,+(m,+m,)+m
The position vector r,, isthen derived as,
mbf I’bf + mba r-ba
PP = (12)

m

In Eq. (9), K s are unknown parameters.
However, the lift is nearly linear only at low attack
angles. Thus the constraint of attack angle was

specified by |a|<20° . To make dynamic

programming applicable, the simulation experiment
is split into stages. In order to avoid a long
computational time, the test is split into four stages.
At the initial condition, assume the glider is under
steady state: the glider speed V =0.4 m/s, the attack

angle a =1.62", the pitch angle 6=-27.43", the
angular velocity Q, =0.
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Fig.6 Dynamic Programming Diagram

The simulation variables in this dynamic
programming procedure are shown in Fig. 6. All
composition of those different variables must be
calculated in the optimization process. The variables
include the maximum input change rate, the
amplitude of square input signal, the time of stage,
and the input command choice of absorb or drainage
in each stages. Optimal input that makes the cost
function minimized can be calculated. The simulation
of optimal input is compared with the conventional
input. Fig. 7 and Fig. 8 show the optimal input and
conventional input signals for the fore and aft
buoyancy engines, respectively. This conventional
input is used to compare with optimal input, and it is
a regular signal which makes the glider ascends and
dives, repeatedly. The capacity of each buoyancy
engines is assumed 1kg. In these figures, the dash
line represents the command input signal and the
solid line corresponds to actual input response of the
buoyancy engines. The rate of change of the ballast
mass is constrained by the buoyancy engine, and this
limit is also determined by the dynamic programming
principle. It can be seen that the input signals change
very slowly and bounded. They could be applied as
input signals for real underwater glider system.

Following Egs. (4)-(6), we can establish the
sensitivity differential equation of (€,, v, v3)T to

hydrodynamic  coefficients. Then the output
sensitivities were solved from the sensitivity
differential equation by Runge-Kutta algorithm of
order 4. The quality of the identified parameter can



be evaluated by the sensitivity analysis of the
observation  process. Figs.9-26 compare the
sensitivities of square inputs and optimal inputs for
the parameters. In these figures, the dash-dot line
represents the square inputs and the solid line
corresponds to optimal inputs, respectively.
Obviously, the output sensitivities to K, during

optimal input have larger variation than conventional
input.

To estimate the parameters, Least Squares
method is designed using the dynamic model of Egs.
(4) -(6). In these equations, the observations are
given by (Q,, v,, v,)". The hydrodynamic forces

and moment in Egs. (4) -(6) can be written as

L sina@ —-cosa O
D |[=|cosa sina O
M, 0 0 1

. |as
My, +mMyV,Q, + PoQ, +m gsind+ Py,

—m.v, +mV,Q, + P, Q, +m_gcosd—P.,
J,Q, — (M, —m,)V,v, + Mg (r,, oS & + I, sin 6)

+ rPSPPl - rPlpPB |

The relation between unknown parametersto L, D
and M, from Eq (9) can also be expressed in

matrix form as

V2 av? 0 0 0 0

0 0 V2 a% 0 0 POl=| D
2 2 KD

0 0 0 0 V2 oV Mo,
K

(14)

Substitute Egs. (14) into Eq (13), a solution of
unknown parameters K s can be identified. The
estimated and true parameters are compared in Table
1. This result is calculated from 10 times
identification in each case. The error and standard

error are used to evaluate the quality of identification.

In Table 1, it is shown that K_, K, have errors

larger than other parameters. Due to the output
sensitivities to K, during optimal input are very

large, the accuracy of K identification in optimal

input is better than squae input. At the same time of
the sensitivity analysis, a number of states of the
glider were also computed from Egs. (3)-(8). Fig. 27
and Fig. 28 show the time history of attack angle and
Euler angles. The trajectory of the glider during
optimal input and conventional input for parameter
identification in the vertical plane can be calculated
from Egs. (1), (.2), and it was presented in Fig. 29.
The measurement states including velocities and
angular velocity were plotted in Figs. 30-32.
Generally speaking, the time history of sensitivity
varies with the output response. The sensitivities of
angular velocity to parameters are generally very
similar between those two inputs. That is because the
time histories of angular velocity in the two cases
have little difference in Fig. 30. In addition, due to
the terms of K_, K, and K,, in Eq (9) increase

with attack angle «, the change of attack angle
under optimal inputs is more violent than square
inputs. The lift in Eq (9) only allows low attack angle.
That is the reason why the output sensitivities to K

are larger than others in the optimal inputs. In a
word, although the identified results in Table 1 using
optimal inputs only have smaller error to the
parameters K,,, K,, the accuracy of K, has

much higher quality. The standard errors of K,
Koor Ko Ky, inoptimal input were smaller than
the square input.

3. Conclusion

In this report we provide a summary on an
optimal input design algorithm developed based on
sensitivity analysis for underwater vehicle parameter
identification. The main contribution of this work is
the design method of optimal input which provides
better performance for glider parameter identification.
The optimization procedure developed in this work
provides optimal inputs by minimizing a cost
function. Pulse-like inputs were selected utilizing a
dynamic programming technique by evaluating
output sensitivities to model parameters. A glider



with fore and aft buoyancy engines was modeled.

Successful  implementations

of a
technique on a Slocum glider

least-squares
confirms the

applicability of the parameter identification process.
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Table 1 Identification for Parameters of a Glider

Parameter | True | Identificatio | Standard Error Identificatio | Standard Error
value | n with Error n with Error

Optimal Conventiona

Input | Input
K
Lo 0 0.4979 0.001356 0.4979 | 0.25182 0.000432 | 0.25182
K
- 132.5 113.57 0.683944 | 18.93001 | 117.2841 0.675519 | 15.21587
K
B0 2.15 2.14177 | 0.00000321 | 0.00823 | 2.01355 0.0000835 | 0.13645
K
P 25 27.95711 0.592654 | 2.95711 | 42.56143 2.821345 | 17.56143
K
Mo 0 -0.13341 | 0.0000926 | 0.13341 | -0.07062 0.000215 | 0.07062
K
M -100 -94,9997 0.070849 | 5.00035 | -95.8451 0.026218 | 4.15486

4587835 6.231842

Avg. Error
Cost Function 21.0126 87.1188
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