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Abstract -- To improve the performance 
of a glider in the shallow water 
operations, we will  develop methods to 
improve the transient behavior of gliders. 
The accuracy of parameters in a 
vehicle’s dynamic model strongly affects 
the dynamic performance of its control 
system. An optimal input design 
technique for vehicle parameter 
estimation is presented in this study. The 
idea is the combination of a dynamic 
programming method with a gradient 
algorithm for the optimal input synthesis.  
Motion data were analyzed with a 
least-squares technique so that values of 
parameters could be estimated. The 
estimated values are compared with 
arbitrary input signals that are used in 
system identification. This algorithm for 
selecting optimal inputs is found to be 
efficient and robust to noises. This work 
validated the analysis used to develop 
the optimal input design, and 

demonstrated the feasibili ty and 
practical util i ty of the optimal input 
design technique. This report is the 
mid-term report of the second year.  
 
Keywords: underwater gliders, ocean observation 
network, underwater vehicles 
 

摘要 
 

正確的重要運動方程式參數為水下滑翔機運動

路徑推算及自動控制之必備條件。本報告提出一個

用來鑑定水下滑翔機系統參數的模式，藉由一組最

佳化輸入函數，控制本計畫所發展的具前後浮力引

擎之水下滑翔機，以鑑定出其運動方程式之參數。

此報告為第二年之期中報告，內容包含方程

式介紹、鑑定方法、以及參數鑑定之主要結

果。  
 

關鍵詞：水下滑翔機、海洋觀測網路、水下載具 
 

1.  Mathematical Model 
 

    Dynamic system models are often used in 
system and control architectures, to enhance the 
system performance. Identification of system 
parameters is a well-studied problem. Various 
effective algebraic and numerical solution techniques 
have been developed to solve for unknown 
parameters using dynamic system models [1], [2], [3]. 

These include techniques based on pseudo-inverses, 
sliding mode observers, Kalman observers, and 
others. Kim et al. [4] estimated the hydrodynamic 
coefficients based on two nonlinear observers, the 
SMO (Sliding Mode Observer) and the EKF 
(Extended Kalman Filter). Liu [5] discuss about the 
estimation of surge motion model of ship and using 
identification technique to derive the model’s 
unknown hydrodynamic coefficients. However, the 
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accuracy/quality of the identified system parameters 
is a function of both the excitation imposed on the 
system as well as the measurement noise (sensor 
noise). The importance of input selection for system 
identification has been recognized for a long time. 
Mehra et al. [6] considers the design of optimal 
inputs for identifying parameters in linear dynamic 
systems. The criterion used for optimization is the 
sensitivity of the system output to the unknown 
parameters as expressed by the weighted trace of the 
Fisher information matrix. Morelli et al. [7], [8] 
considered the design of optimal inputs for airplane’s 
linear model equations form the point of view of 
Cramér-Rao lower bound and its inverse, the Fisher 
information matrix. Numerical simulations of three 
types of sea trials are performed to obtain the 
sensitivities of motions to hydrodynamic coefficients 
[9]. Jauberthie et al. [10] presented the design of 
optimal inputs for aircraft nonlinear controlled 
dynamic models. Graver et al. [11] described the 
development of feedback control for autonomous 
underwater gliders, and derived a nonlinear dynamic 
model of a nominal glider complete with 
hydrodynamic forces and coupling between the 
vehicle and the movable internal mass. Also, Graver 
et al. [12] identified the model parameters to match 
the steady glides in new flight test data from the 
SLOCUM glider.Graver [11] model the underwater 
glider as a rigid body with fixed wings and tail 
immersed in a fluid with buoyancy control and 
controlled internal moving mass. We assign a 
coordinate frame fixed on the vehicle body to have 
its origin at the CB and its axes aligned with the 
principle axes of the ellipsoid. Body axes are 
illustrated in Fig.1. The different masses and position 
vectors are illustrated in Fig. 2. 1 2 3( , , )T

P P P Pr r r r=  
denotes the position vector of movable mass. Here 
the hm  is the uniformly distributed hull mass, wm  
is point mass for nonuniform hull mass distribution, 
and wr  is the position vector from CB to wm . bm  
is the variable mass located at CB. m  is the 
movable point mass. The total mass of the glider is 

v h w bm m m m m= + + + . 
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Fig. 1 Frame assignment on underwater 
glider 
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Fig. 2 Glider mass definitions 
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Fig. 3 Glider position and orientation 
variables 

 
The position of the glider ( , , )Tb x y z=  

is the vector from the origin of the inertial 
frame to the origin of body frame as shown 
in Fig. 3. The vehicle moves through the 
fluid with translational velocity 
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1 2 3( , , )Tv v v v=  and angular velocity 

1 2 3( , , )TΩ = Ω Ω Ω ,  expressed with respect to 
the body frame. In this section, we present a 
mathematical model that describes the 
longitudinal dynamics of underwater gliders.  
Following the discussions in Graver [11], 
the equations of motion for the gliding 
vehicle restricted to the vertical plane are 
 

1 3cos sinx v vθ θ= +         (1)                                      

1 3sin cosy v vθ θ= − +         (2) 

2θ = Ω              (3) 

2 3 1 1 3 1
2

3 3 1 1 3

1 (( ) ( cos

sin ) )

P

P DL P P P P

m m v v mg r
J

r M r P r P

θ

θ

Ω = − −

+ + − +
  (4) 

1 3 3 2 3 2
1

1

1 ( sin

sin cos )

P o

P

v m v P m g
m

L D P

θ

α α

= − Ω − Ω −

+ − −

  (5) 

3 1 1 2 1 2
3

3

1 (

cos cos sin )

P

o P

v m v P
m

m g L D Pθ α α

= Ω + Ω

+ − − −

  (6)     

1 1 1 3 2
1

P P Pr P v r
m

= − − Ω       (7)                                    

3 3 3 1 2
1

P P Pr P v r
m

= − + Ω      (8)                                     

where 1m  and 3m  are the sum of body and 
added mass, along the 1e  and 3e  direction. 

2J  is the sum of the inertia of stationary 
mass and added inertia matrix in 1 3e e−  
plane. om g  presents the weight of the 
glider.  1PP  and 3PP  denote linear 
momentum in body coordinate along the 1e  
and 3e  direction. θ  is the pitch angle of 
glider. Here, α  is the angle of attack, D  
is drag, L  is l ift  and DLM  is the viscous 
moment as shown in Fig. 4. Lift and drag 
forces are assumed to act at the glider 
center of buoyancy. These forces and 
moment are modeled as 

 

2
0

2 2
0

2
0

( )

( )

( )

L L

D D

DL M M

L K K V

D K K V

M K K V

α

α

α

= +

= +

= +

        (9)    

where the K s are the hydrodynamic 
coefficients.  The aim for parameter 
identification is to estimate those constant 
coefficients. 
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Fig. 4 Lift and Drag on the Glider 

 

As shown in Fig. 4, we denote the glider 
speed 2 2

1 3( )V v v= + ,  and attack angle  

1 3

1

tan ( )v
v

α −= .  

 

2. Identification Results 

    In this section, simulation results obtained by 
using the optimal input design algorithm are 
presented. A glider with fore and aft buoyancy 
engines was modeled. The conception of the double 
buoyancy engines is used to replace the moveable 
mass in Fig. 2 for shifting the center of gravity. Fig. 5 
shows the configuration of the buoyancy engines. 
The mass 1m =5kg, 3m =70kg, hm =40kg, om =1kg, 
m =9kg, and internal 2J =12 kg • m2 are assumed in 
the simulation. 
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Fig. 5 Fore and Aft Buoyancy Engines 

 

In Fig. 5, bfm  and bam  are the mass of ballast 
mass in the fore and aft buoyancy engines, and bfr , 

bar  present their position vector from CB. Thus, the 
variable mass of the glider in Fig. 3.2 becomes 

 
b ba bfm m m= +            (10)  

                        
Here we assume that the variable bfm  and bam  
used to turn the center of gravity aside are equivalent 
to move m  in Fig. 5. In addition, we consider the 
movable mass is constrained in the longitudinal 
direction 1e . The equation between this replacement 
becomes 
 

1

( )
bf bf ba ba w wP w w

h w b h w ba bf

m r m r m rmr m r
m m m m m m m m m

+ ++
=

+ + + + + + +
  (11)         

The position vector 1Pr  is then derived as, 

1
bf bf ba ba

P

m r m r
r

m
+

=              (12)                  

    In Eq. (9), K s are unknown parameters. 
However, the lift is nearly linear only at low attack 
angles. Thus the constraint of attack angle was 
specified by 20α < ° . To make dynamic 
programming applicable, the simulation experiment 
is split into stages. In order to avoid a long 
computational time, the test is split into four stages. 
At the initial condition, assume the glider is under 
steady state: the glider speed V = 0.4 m/s, the attack 

angle 1.62α = , the pitch angle 27.43θ = − , the 
angular  velocity 2 0Ω = . 
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Fig.6 Dynamic Programming Diagram 

The simulation variables in this dynamic 
programming procedure are shown in Fig. 6. All 
composition of those different variables must be 
calculated in the optimization process. The variables 
include the maximum input change rate, the 
amplitude of square input signal, the time of stage, 
and the input command choice of absorb or drainage 
in each stages. Optimal input that makes the cost 
function minimized can be calculated. The simulation 
of optimal input is compared with the conventional 
input. Fig. 7 and Fig. 8 show the optimal input and 
conventional input signals for the fore and aft 
buoyancy engines, respectively. This conventional 
input is used to compare with optimal input, and it is 
a regular signal which makes the glider ascends and 
dives, repeatedly. The capacity of each buoyancy 
engines is assumed 1kg. In these figures, the dash 
line represents the command input signal and the 
solid line corresponds to actual input response of the 
buoyancy engines. The rate of change of the ballast 
mass is constrained by the buoyancy engine, and this 
limit is also determined by the dynamic programming 
principle. It can be seen that the input signals change 
very slowly and bounded. They could be applied as 
input signals for real underwater glider system. 
    Following Eqs. (4)-(6), we can establish the 
sensitivity differential equation of ( 2Ω , 1v , 3v )T to 
hydrodynamic coefficients. Then the output 
sensitivities were solved from the sensitivity 
differential equation by Runge-Kutta algorithm of 
order 4. The quality of the identified parameter can 
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be evaluated by the sensitivity analysis of the 
observation process. Figs.9-26 compare the 
sensitivities of square inputs and optimal inputs for 
the parameters. In these figures, the dash-dot line 
represents the square inputs and the solid line 
corresponds to optimal inputs, respectively. 
Obviously, the output sensitivities to DK  during 
optimal input have larger variation than conventional 
input. 

To estimate the parameters, Least Squares 
method is designed using the dynamic model of Eqs. 
(4) -(6). In these equations, the observations are 
given by ( 2Ω , 1v , 3v )T. The hydrodynamic forces 
and moment in Eqs. (4) -(6) can be written as 
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(13) 

The relation between unknown parameters to L , D  
and DLM  from Eq (9) can also be expressed in 
matrix form as 
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(14) 

Substitute Eqs. (14) into Eq (13), a solution of 
unknown parameters K s can be identified. The 
estimated and true parameters are compared in Table 
1. This result is calculated from 10 times 
identification in each case. The error and standard 
error are used to evaluate the quality of identification. 

In Table 1, it is shown that LK , DK  have errors 
larger than other parameters. Due to the output 
sensitivities to DK  during optimal input are very 
large, the accuracy of DK  identification in optimal 
input is better than squae input.  At the same time of 
the sensitivity analysis, a number of states of the 
glider were also computed from Eqs. (3)-(8). Fig. 27 
and Fig. 28 show the time history of attack angle and 
Euler angles. The trajectory of the glider during 
optimal input and conventional input for parameter 
identification in the vertical plane can be calculated 
from Eqs. (1), (.2), and it was presented in Fig. 29. 
The measurement states including velocities and 
angular velocity were plotted in Figs. 30-32. 
Generally speaking, the time history of sensitivity 
varies with the output response. The sensitivities of 
angular velocity to parameters are generally very 
similar between those two inputs. That is because the 
time histories of angular velocity in the two cases 
have little difference in Fig. 30. In addition, due to 
the terms of LK , DK  and MK  in Eq (9) increase 
with attack angle α , the change of attack angle 
under optimal inputs is more violent than square 
inputs. The lift in Eq (9) only allows low attack angle. 
That is the reason why the output sensitivities to DK  
are larger than others in the optimal inputs.  In a 
word, although the identified results in Table 1 using 
optimal inputs only have smaller error to the 
parameters 0DK , DK , the accuracy of DK  has 
much higher quality. The standard errors of 0LK , 

0DK , DK , 0MK  in optimal input were smaller than 
the square input.  
 
 
3. Conclusion 
 

In this report we provide a summary on an 
optimal input design algorithm developed based on 
sensitivity analysis for underwater vehicle parameter 
identification. The main contribution of this work is 
the design method of optimal input which provides 
better performance for glider parameter identification. 
The optimization procedure developed in this work 
provides optimal inputs by minimizing a cost 
function. Pulse-like inputs were selected utilizing a 
dynamic programming technique by evaluating 
output sensitivities to model parameters. A glider 
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with fore and aft buoyancy engines was modeled. 
Successful implementations of a least-squares 
technique on a Slocum glider confirms the 
applicability of the parameter identification process.  
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Fig 7 Optimal Inputs of a Glider 
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Fig 8 Conventional Inputs of a Glider 
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Fig 9 Time history of sensitivity. ( 0LK  to angular 

velocity Ω ) 
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Fig 10 Time history of sensitivity. ( 0LK  to velocity 

1v ) 
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Fig.11 Time history of sensitivity. ( 0LK  to velocity 

3v ) 
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Fig. 12 Time history of sensitivity. ( LK  to angular 

velocity Ω ) 
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Fig. 13 Time history of sensitivity. ( LK  to velocity 

1v ) 
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Fig. 14 Time history of sensitivity. ( LK  to velocity 

3v ) 
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Fig. 15 Time history of sensitivity. ( 0DK  to angular 

velocity Ω ) 
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Fig.16 Time history of sensitivity. ( 0DK  to velocity 

1v ) 
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Fig. 17 Time history of sensitivity. ( 0DK  to velocity 

3v ) 
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Fig. 18 Time history of sensitivity. ( DK  to angular 
velocity Ω ) 
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Fig. 19 Time history of sensitivity. ( DK  to velocity 

1v ) 
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Fig. 20 Time history of sensitivity. ( DK  to velocity 

3v ) 
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Fig. 21 Time history of sensitivity. ( 0MK  to angular 
velocity Ω ) 
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Fig. 22 Time history of sensitivity. ( 0MK  to velocity 

1v ) 
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Fig. 23 Time history of sensitivity. ( 0MK  to velocity 

3v ) 
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Fig. 24 Time history of sensitivity. ( MK  to angular 
velocity Ω ) 
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Fig. 25 Time history of sensitivity. ( MK  to velocity 

1v ) 
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Fig. 26 Time history of sensitivity. ( MK  to velocity 

3v ) 
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Fig. 27 Time history of attack angle. 

0 50 100 150 200 250
-60

-50

-40

-30

-20

-10

0

10

20

Time (sec)

de
gr

ee

The pitch angle of Glider

 

 

Optimal Input
Conventional Input

 

Fig. 28 Time history of Euler angle. 
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Fig. 29 The 2D Trajectory of the Glider for 
Parameter Identification. 
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Fig. 30 Time history of angular velocity. 
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Fig. 31 Time history of velocity ( 1v ). 
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Fig. 32 Time history of velocity ( 3v ). 
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Table 1 Identification for Parameters of a Glider 

Parameter True 
value

Identificatio
n with 
Optimal 
Input 

Standard 
Error 

Error Identificatio
n with 
Conventiona
l Input 

Standard 
Error 

Error 

KL0 0 0.4979 0.001356 0.4979 0.25182 0.000432 0.25182 

KL 
132.5 113.57 0.683944 18.93001 117.2841 0.675519 15.21587

KD0 2.15 2.14177 0.00000321 0.00823 2.01355 0.0000835 0.13645 

KD 
25 27.95711 0.592654 2.95711 42.56143 2.821345 17.56143

KM0 0 -0.13341 0.0000926 0.13341 -0.07062 0.000215 0.07062 

KM 
-100 -94.9997 0.070849 5.00035 -95.8451 0.026218 4.15486 

 
Avg. Error 

4.587835 6.231842

 
Cost Function 21.0126 87.1188

 


