雙相複合材料之彈性常數

ELASTIC MODULUS OF TWO-PHASE MATERIALS

謝錦隆† 段維新*

Chin-Lung Hsieh Wei-Hsing Tuan

[†]博士候選人 ^{*}教授 國立台灣大學材料科學與工程學系 [†]Ph.D. candidate ^{*}Professor Department of Materials Science and Engineering, National Taiwan University, Taipei, Taiwan 10617, R.O.C.

Abstract

The experimental data of the elastic modulus of a twophase material, Al₂O₃-NiAl, are compared with various theoretical models. The NiAl content in the composites varies from 0 to 100vol%. The composites were prepared by mixing Al₂O₃ and NiAl powders together then densified by using hot-pressing. The ultrasonic technique was used to determine the elastic modulus. Several theoretical models were used to compare the experimental results. The Hashin-Shtrikman lower bound and Reuss model match the experimental data well, though these models show relatively little sensitivity to microstructural features.

Keywords: elastic modulus, composite, NiAl, Al₂O₃.

摘要

本研究經由分析含NiAl組成由 0 至 100 體積分率之 Al₂O₃-NiAl雙相複合材料,經由真空熱壓燒結成緻密之試 片,應用超音波技術量測其彈性係數與體積分率之關係, 所得之Al₂O₃-NiAl複合材料相對密度均在 98% 以上,並將 所得的實驗結果與彈性係數預測之理論模式作比較,得知 Hashin-Shtrikman下限及Reuss曲線等理論模式是較符合 0 ~ 100vol% NiAl之Al₂O₃-NiAl複合材料之彈性係數分佈。

關鍵詞: 彈性係數、複合材料、鎮鋁介金屬、氧化鋁。

1. 前 言

雙相複合材料的特性通常會比其組成成分中任 何一種單相成分材料具有更優異的機械、物理或電性 性質 [1]。文獻上已建立了許多以複合材料組成中的 第二相成分之體積分率為基礎的理論模式,用以預測 兩相複合材料的彈性係數 [2~12]。提高陶瓷材料的韌 性或增加金屬材料之強度,以及設計製造以符合特殊 需求,如耐高溫差或高壓差、耐高磨耗等使用環境之 傾斜性機能材料 (FGMs),為開發陶瓷基 (CMC)或 金屬基 (MMC) 複合材料的目的之一,經由微結構與 性質關係之研究以便掌控材料適用之極限條件,而複 合材料之彈性行為便是重要之材料設計資訊之一。對 於顆粒或纖維增強複合材料之彈性係數,因受限於非 均匀之相分佈、不規則幾何形狀之組成,及各相之間 交互影響等因素,僅能獲得近似之預測值。複合材料 彈性行為在當有異相加入基體材料時所量得之彈性 係數實驗值並非呈現簡單之混合定律 (Rule of mixture)關係,基於探討此影響現象之研究,已有相當多的模式或方法被提出 [3~6],建立通用或求出特定適用材料之彈性行為預測數學式,表1列出本研究中使用到及一些代表性之雙相複合材理論模式,有些是直接求得彈性係數、有些則是經由剪力係數 (shear modulus)及體積係數 (bulk modulus) 再計算出彈性係數、或是預測某一分佈邊界範圍,提供較為縮小之預測範圍。

本實驗以真空熱壓燒結製備Al₂O₃-NiAl複合材 料,以超音波測試 [13] 此項複合材料各種NiAl體積 分率的彈性係數,再與文獻上針對預測兩相複合材料 的彈性係數理論模式進行比較,除了能夠完整地了解 Al₂O₃-NiAl複合材料之基本物理性質外,藉由本研究 Al₂O₃-NiAl系統之體積分率變化範圍由 0 至 100 NiAl vol%所得之彈性係數以找出適當之預測緻密結構之 兩相複合材料理論模式。

理論模式	預測公式								
Voigt	$G_{\rm C} = G_{\rm m} V_{\rm m} + G_{\rm p} V_{\rm p}$	$K_{\rm C} = K_{\rm m} V_{\rm m} + K_{\rm p} V_{\rm p}$							
Reuss	$G_{m} = G_{m} E_{p}$	$K_{c} = \frac{K_{m}E_{p}}{K_{m}E_{p}}$							
	$G_{C} = \frac{1}{G_{m}V_{p} + G_{p}V_{m}}$	$K_C = K_m V_p + K_p V_m$							
Hashin-Shtrikman	$K_{c}^{1} = K_{m} + \frac{V_{p}}{2}$	$G_{p}^{1} = G_{p} + \frac{V_{p}}{V_{p}}$							
Bounds	$\frac{1}{K_{p} - K_{m}} + \frac{3V_{m}}{3K_{m} + 4G_{m}}$	$\frac{1}{G_{p} - G_{m}} + \frac{6(K_{m} + 2G_{m})V_{m}}{5G_{m}(3K_{m} + 4G_{m})}$							
	$K_{c}^{u} = K_{n} + \frac{V_{m}}{V_{m}}$	$G_{c}^{u} = G_{c} + \frac{V_{m}}{V_{m}}$							
	$\frac{1}{K_m - K_p} + \frac{3V_p}{3K_p + 4G_m}$	$\frac{1}{G_{p} - G_{p}} + \frac{6(K_{p} + 2G_{p})V_{p}}{5G_{p}(3K_{p} + 4G_{p})}$							
D1	$F^{2} + (F - F^{2})V^{2/3}$	-m -p -p - p - p - p - p							
Paul	$E_{\rm C} = \frac{E_{\rm m} + (E_{\rm m} E_{\rm p} - E_{\rm m}) V_{\rm p}}{E_{\rm m} + (E_{\rm p} - E_{\rm m}) V_{\rm p}^{2/3} (1 - V_{\rm p}^{1/3})}$								
Davishandran	$(CE + E^2)(1 + C)^2 - E^2 + E^2$	$[F, F] + F^{2}(1+C)^{2} - F^{2}(1+C)$							
Kavichanulan	$E_{C}^{1} = \frac{(CE_{m}E_{p} + E_{m})(1 + C) - E_{m} + E_{p}E_{m}}{(CE_{p} + E_{m})(1 + C)^{2}}$	$E_{C}^{u} = \frac{C_{p} - m_{m}}{(E_{p} - E_{m})C + E_{m}(1 + C)^{3}}$							
	$C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}^{1/3} = 1$								
	$C = \left\lfloor \frac{V_p}{V_p} \right\rfloor$								
Halpin-Tsai	$\frac{K_{c}}{K_{c}} = \frac{1 + \xi_{K} \eta_{K} V_{p}}{1 - \xi_{K} \eta_{K} V_{p}}$	$\frac{G_c}{G_c} = \frac{1 + \xi_G \eta_G V_p}{1 + \xi_G \eta_G V_p}$							
(Particulate)	$K_{m} = I - \eta_{K} V_{p}$ $(K_{m} / K_{m}) = 1$	$G_{\rm m} = 1 - \eta_{\rm G} V_{\rm p}$							
	$\eta_{\rm K} = \frac{({\rm K}_{\rm p} / {\rm K}_{\rm m}) - 1}{({\rm K}_{\rm p} / {\rm K}_{\rm m}) + \xi_{\rm K}}$	$\xi_{\rm K} = \frac{40 \rm m}{3 \rm K m}$							
	$n_{\rm m} = -\frac{(G_{\rm p}/G_{\rm m}) - 1}{(G_{\rm p}/G_{\rm m}) - 1}$	$z = \frac{7-5v_{\rm m}}{2}$							
	$(G_p/G_m) + \xi_G$	$G = 8 - 10 v_{\rm m}$							
Walpole bounds	$\frac{K_{c}^{u} - k_{p}}{(K_{c} - K_{c})} = \frac{V_{p}}{(K_{c} - K_{c})V}$	$\frac{G_c^u - G_p}{G_c^u - G_p} = \frac{V_m}{G_c^u - G_c^u}$							
	$\left(\frac{K_{m}}{m}, \frac{K_{p}}{m} \right)^{2} \frac{1 + \frac{(K_{m}}{m}, \frac{K_{p}}{m})^{2} \frac{1}{p}}{K_{m} + \frac{4}{m} G}$	$(G_m - G_p) = \frac{1 + \frac{(G_m - G_p)V_p}{2}}{2}$							
	m 3 - m	$G_p + \frac{1}{2} \left(\frac{G_m}{G_m} + \frac{1}{9K_m + 8G_m} \right)$							
	$\frac{K_{C}^{i} - K_{p}}{(K_{m} - K_{n})} = \frac{V_{m}}{(K_{m} - K_{n})V_{n}}$	$\frac{G_c^l - G_p}{G_c - G_p} = \frac{V_m}{(G_c - G_p)V_m}$							
	$(\mathbf{m} \mathbf{p}) 1 + \frac{(\mathbf{m} \mathbf{p}) \mathbf{p}}{(\mathbf{K}_{p} + \frac{4}{3} \mathbf{G}_{p})}$	$(G_m - G_p) = \frac{1}{1 + \frac{(G_m - G_p)V_p}{1 - \frac{3}{2} \left(\frac{1}{10} + \frac{10}{10}\right)^{-1}}$							
	ν <u>3</u> ν	$G_p + \frac{1}{2} \left(\frac{1}{G_p} + \frac{1}{9K_p + 8G_p} \right)$							
Mori-Tanaka	$Kc = Kp + \frac{V_m}{V_m}$	$Gc = Gp + \frac{V_m}{(K + 2C)}$							
	$\frac{1}{K - K} + \frac{3V_p}{3K + 4Gp}$	$\frac{1}{G_m - G_p} + \frac{\sigma(\kappa_p + 2G_p)v_p}{5G_p(3K_p + 4Gp)}$							
Kerner	$K_{m}(3K_{p} + 4K_{m}) + 4G_{m}V_{p}(K_{p} - K_{m})$	шррсрт							
Kerner	$Kc = \frac{1}{(3K_{p} + 4G_{m}) + 3V_{p}(K_{m} - K_{p})}$								
	$G_{c} = \frac{G_{m}[(7-5v_{m})(G_{m}+V_{p}G_{p}-V_{p}G_{m})+(8-10v_{m})G_{p}]}{(7-5v_{m})(G_{m}+(8-10v_{m})(G_{m}+V_{p}G_{m})+(8-10v_{m})G_{m})}$								
D :00	$(7 - 30_{\rm m}) 0_{\rm m} + (8 - 100_{\rm m}) (0_{\rm p} + v_{\rm p})$	$J_{\rm m} = V_{\rm p} O_{\rm p}$							
Differential method	(K_p, I)	$15(1-\upsilon_m) Vp\left(\frac{G_p}{G_m}-1\right)$							
	$K_{C} = K \times \left[1 + \frac{V_{P} \left(\frac{1}{K_{m}} - 1 \right)}{1 + \frac{V_{P} \left(\frac{1}{K_{m}} - 1 \right)}$	$Gc = G_m \times [1 + \frac{1}{7 - 5u} + 2(4 - 5u)] \frac{G_p}{G_p}$							
	$1 + \frac{(K_p - K_m)}{(\Lambda_p)}$	G_m							
	$\left[\left(K_m + \frac{4}{3}G_m \right) \right]$								
Lielens	$Kc = \frac{1}{1}$	$G_{c} = \frac{1}{1}$							
	$\frac{1-f}{rr} + \frac{f}{rr}$	$\frac{1-f}{1-f} + \frac{f}{1-f}$							
	$K_{H-S} K_{H-S}$	$G_{H-S}^{\text{hower}} = G_{H-S}^{\text{oppen}}$							
	$f = \frac{Vp + V_p^2}{2}$								
Wu	$\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}^2$	$(\lambda_{WC-C_0} = 2.4, \lambda_{N(A1,A120)} = 2.0)$							
	$1 \qquad \left \qquad 1 \qquad \left(\frac{1}{E_m} - \frac{1}{E_p} \right) \qquad \right _{V} \qquad V_p$	(****C-C0 -*****NIAI-AI2O3 -**)							
	$\overline{Ec} = \left \frac{\overline{E_m}}{\overline{E_m}} - \frac{1}{\lambda \left(\frac{1}{\overline{E_m}} + \frac{V_m}{\overline{V_m}} \right)} \right ^{V_m} + \frac{1}{\overline{E_p}}$								
	$\begin{bmatrix} E_m & V_p E_m \end{bmatrix}$								

表1 雙相複合材理論模式

_

(E:彈性係數,K:體積係數(bulk modulus),G:剪力係數 (shear modulus),V:體積分率,c:複合材料,m:基底,
 p:第二相或增強相,u:上邊界,l:下邊界)

37

2. 實驗步驟

本研究所使用之原料性質:(a)含 0.25wt% Fe 之 鎳鋁粉末 (Product Code 251, Xform Inc., New York, U.S.A.),平均粒徑為 5.89µm,(b)氧化鋁粉末 (TM-DAR, Taimei, Chemical Co. Ltd., Tokyo, Japan), 平均粒徑為 0.23µm,純度為 99.99%。

試片之製備:(a)粉末均匀混合:將Al₂O₃與NiAl 粉末以0到100 體積分率配製後,置入於攪磨機中加 入純度95%酒精以轉速300rpm攪磨一小時。(b) 真空 熱壓燒結:真空度為5×10⁻³torr,燒結溫度為1450°C、 壓力為24.5MPa,持溫時間:一小時。(c)所得之燒結 體大小約為直徑50mm厚度6mm,相對密度均大於 98%,密度與NiAl組成關係如圖1所示,複合材料密 度隨NiAl含量之增加而減少。

使用超音波測量方式評估Al₂O₃-NiAl彈性係數, 測量條件如下: (a) 試片直徑為 50mm, (b) 超音波信 號發射器 (Pulser Receiver 模式 5055PR) 頻率: 5MHz, (c) 超音波探頭 (縱、橫波) 直徑:6.4mm。(d) 超音波數位示波器 (LeCroy 9314L):記錄超音波在試 片內行進所需時間。

3. 結果與討論

應用式(1),分別將二倍之試片厚度 (T) 除以超音波量測時間求出超音波縱波波速 (v_L)及橫波波速 (v_s),並以NiAl體積含量為X-軸做圖,如圖1所示。

$$v_L = 2T / t_L \quad , \quad v_S = 2T / t_S \tag{1}$$

其中:t_L、t_s分別為量測所得之縱波及橫波來回所需時間。

圖 1 Al₂O₃-NiAl 複合材料之密度與超音波速度 對NiAl體積分率之關係圖

在圖 1 中顯示Al₂O₃-NiAl複合材料之縱波及橫波 波速約呈線性關係下降,密度則隨著NiAl含量之增加 呈線性關係上升,在波速値方面:純的Al₂O₃之縱波及 橫波波速各為 10887.4 及 6398.1m/sec,而純的NiAl 之縱波及橫波波速各為 6619.1 及 3458.0m/sec,在密 度値方面:純的Al₂O₃及純的NiAl之密度分別各為 3.964 及 5.862g/cm³,當加入密度值較大之NiAl會使得 Al₂O₃-NiAl複合材料之密度呈線性關係上升增加,而 超音波速呈下降之趨勢,即超音波速隨彈性係數値上 升而下降。

以掃描式電子顯微鏡觀察Al₂O₃-NiAl複合材料之 相分佈,圖2為含40 vol% NiAl之複合材料微結構照 片,NiAl顆粒在熱壓後呈現扁平狀不規則分佈於Al₂O₃ 基底。

經由超音波測量所得之縱波波速 (ν_L)、橫波波速 (ν_s) 與所含不同NiAl體積分率之試片密度 (ρ),應用 公式(2),計算出之彈性係數 (彈性係數, E) 及泊松 比 (Poisson Ratio):

彈性係數 = $\rho v_s^2 (3 v_L^2 - 4 v_s^2) / (v_L^2 - v_s^2)$ (2)

泊松比 =
$$(v_L^2 - 2v_s^2)/2(v_L^2 - v_s^2)$$
 (3)

本研究所得之純的Al₂O₃與純的NiAl之彈性係數分別 各為401GPa與186GPa,泊松比分別各為0.24與0.31。

經由超音波量測計算所得含 0 至 100 NiAl vol% 之Al₂O₃-NiAl複合材料的彈性係數與泊松比對NiAl 體積含量分析做圖,如圖 3,圖中所標示黑點代表實 驗數據,顯示在NiAl含量約在 50 vol%以下時有明顯 向下彎曲之趨勢,即相對於混合定律 (rule of mixtures) 之曲線,Al₂O₃因NiAl的增加導致彈性係數開始時會顯 著的降低,當NiAl到達 50 vol%以上時,則呈現較平 穩變化之趨勢。

圖 2 含 40 vol% NiAl 之Al₂O₃-NiAl 複合材料電 子顯微鏡照片

圖 3 Voigt-Reuss 及 Hill 預測曲線與實驗數據之 比較圖

經由文獻蒐集,以複合材料組成中的第二相成分 之體積分率,用以預測隨組成分體積分率變動的彈性 性質的理論模式已經由許多位學者研究推導出 [2~12],這些理論方法推導的假設均基於對所含的每 一相材料之分佈情形、含量與微結構形狀、以及各相 介面間交互影響等材料微觀性質進行理論推導巨觀 之整體複合材料的彈性係數,然而這些理論模式,均 缺乏完整之實驗數據予以驗證,本研究之目的為探討 含兩相之緻密燒結複合材料且相含量在 0~100 vol% 分佈之間,參考實驗數據找出相關之理論模式,故引 用的理論方法之要件必須為:包含有兩相的複合材 料、各相之體積分率及其彈性係數為關係所建立之模 式,以預測複合材料彈性係數為主要比較的理論模 式,將理論模式預測數值與實驗數據相互比較,評估 出最適當之理論模式,因本研究Al₂O₃-NiAl系統之體 積分率變化範圍由 0 至 100 NiAl vol %,所以藉由本 研究所找出之理論模式應可以應用於預測其他具有 相同緻密結構之兩相複合材料。

對於均質等向性材料文獻的理論模式多數是導 出複合材料之體積係數 (bulk modulus, K) 及剪力係 數 (shear modulus, G) 後,再應用式(4)及(5)求得複 合材料之彈性係數 (E) 及泊松比。

彈性係數 =
$$\frac{9KG}{3K+G}$$
 (4)

泊松比 =
$$\frac{3K - 2G}{6K + 3G}$$
 (5)

將兩相複合材料之理論模式預測之彈性常數與 實驗數據比較分析如下: (1) Voigt 與 Reuss 邊界及 Hill 平均值

對於均向複合材料之彈性係數彈性係數為應力 與應變的的比值,Voigt 與 Reuss 模式,是分別假設 在相等應力或應變之下,推導均質等相材料之彈性係 數,其關係是分別如式(7)、(8)所示,Voigt 平均值即 是一般較常直接使用於預測複合材料性質之混合定 律 (rule of mixtures),當組成的兩相材料本身之彈性 係數相差較大時,所求出的結果會較實驗結果差距更 大,所以 Hill 首先將上述兩者結果予以算術與幾何平 均,得到了更接近多相複合材料彈性係數之實驗值, 雖然 Hill 平均並未對理論問題加以處理,但其結果與 後來廣為應用之 self-consistent 方法相近 [7]。

$$Voigt: K_C = K_m V_m + K_p V_p \qquad G_C = G_m V_m + G_p V_p \quad (7)$$

Reuss:
$$K_C = \frac{K_m E_p}{K_m V_p + K_p V_m}$$
 $G_C = \frac{G_m E_p}{G_m V_p + G_p V_m}$ (8)

將Voigt and Reuss 上下邊界與 Hill平均值等計 算所得的Al₂O₃-NiAl 之彈性係數及實驗結果做圖,如 圖 3 所示:Voigt與 Hill 平均值均在實驗值上方,而 Reuss邊界則大部分在實驗值下方。當NiAl體積分率 在 30 vol%以下時,Reuss 邊界幾乎與實驗結果相 近,而當NiAl體積分率在 60 至 100 vol%則與Hill平 均之結果相近,Voigt與Reuss邊界和Hill平均值計算值 與 0~100 vol% NiAl-Al₂O₃實驗結果之所有統計標準 偏差平均分別為 8.10%、3.17% 及 3.89%,如表 2 所 示。

(2) Hashin-Shtrikman 上下邊界

Hashin-Shtrikman是以variational 原理來推導複 合材料之彈性性質,探討當第二相材料加入基材時所 導致的應變能變化來推導複合材料之彈性係數的上 下邊界範圍,其推導基於假設複合材料於巨觀具有均 向性質、第二相材料為呈任意幾何形狀之顆粒狀、並 指以第二相材料之體積分率為變數,如式(9)至(12), 其中V_p為第二相材料之體積分率,因為Hashin-Shtrikman 邊界比起Voigt與Reuss邊界之範圍要窄的 許多,更接近實驗結果曲線,其彈性係數及實驗結果 做圖,如圖4所示,Hashin-Shtrikman 上下邊界曲線, 對於彈性係數均在實驗值上方且曲線為向下略彎 曲,當NiAl體積分率在60至100 vol%則與實驗結 果幾乎接近,Hashin-Shtrikman 上下邊界計算值與0~ 100 vol% NiAl-Al₂O₃實驗結果之所有統計標準偏差平 均各為4.65%及3.65%,如表2所示。

表 2 實驗數值及各種彈性係數與理論預測模式之誤差值

模式	NiAl 體積分率 / (%)									平均		
	0	10	20	30	40	50	60	70	80	90	100	誤差値
Wu ($\lambda = 25$)	1.8	1.6	2.9	4.3	5.0	2.2	5.2	0.2	1.3	2.9	0.0	2.6
Ruess	0.0	3.3	4.5	5.7	6.4	0.9	6.2	1.0	0.7	2.5	0.0	3.2
Walpol Lower	0.0	1.4	1.0	1.1	0.8	7.4	0.2	4.8	5.4	5.3	0.0	3.6
Hashin-Shtrikman 下邊界	0.0	1.3	0.8	0.9	0.6	7.6	0.0	5.0	5.6	5.4	0.0	3.7
Shukla-Padial	0.0	0.7	0.0	0.0	0.1	8.2	0.2	5.0	5.4	5.3	0.0	3.7
Hill's 平均	0.0	0.6	0.3	0.4	0.6	8.7	0.7	5.4	5.6	5.3	0.0	3.9
logarithm mixing rule	0.0	1.2	0.5	0.4	0.0	8.4	0.8	5.8	6.3	5.9	0.0	4.1
Mori-Tanaka	0.0	0.5	0.6	1.0	1.5	9.9	2.0	6.8	6.9	6.2	0.0	4.6
Hashin-Shtrikman 上邊界	0.0	0.4	0.6	1.0	1.5	10.0	2.0	6.8	6.9	6.2	0.0	4.7
Walpol Upper	0.0	0.4	0.8	1.2	1.7	10.2	2.3	7.1	7.1	6.3	0.0	4.8
Kerner	0.0	0.0	0.8	1.3	1.8	10.4	2.4	7.2	7.2	6.4	0.0	4.9
Halpin-Tsai	0.0	0.3	0.8	1.3	1.8	10.4	2.4	7.2	7.2	6.4	0.0	4.9
Ravichandran 上邊界	0.0	0.3	1.9	2.4	2.9	11.2	2.8	7.2	6.8	5.7	0.0	5.0
Paul	0.0	0.4	2.3	3.3	4.3	13.3	5.2	10.0	9.5	7.8	0.0	6.6
Ravichandran 下邊界	0.0	0.4	2.3	3.3	4.3	13.3	5.2	10.0	9.5	7.8	0.0	6.6
Voigt	0.0	2.1	5.0	6.5	7.5	16.5	7.7	11.8	10.6	8.2	0.0	8.1

圖 4 Hashin-Shtrikman (HS) 預測曲線與實驗數 據之比較圖

$$K_{C}^{l} = K_{m} + \frac{V_{p}}{\frac{1}{K_{p} - K_{m}} + \frac{3V_{m}}{3K_{m} + 4G_{m}}}$$
(9)

$$K_{C}^{u} = K_{p} + \frac{V_{m}}{\frac{1}{K_{m} - K_{p}} + \frac{3V_{p}}{3K_{p} + 4G_{m}}}$$
(10)

$$G_{C}^{l} = G_{m} + \frac{V_{p}}{\frac{1}{G_{p} - G_{m}} + \frac{6(K_{m} + 2G_{m})V_{m}}{5G_{m}(3K_{m} + 4G_{m})}}$$
(11)

$$G_{C}^{u} = G_{p} + \frac{V_{m}}{\frac{1}{G_{m} - G_{p}} + \frac{6(K_{p} + 2G_{p})V_{p}}{5G_{p}(3K_{p} + 4G_{p})}}$$
(12)

(3) Ravichandran 模式

Ravichandran 假設兩相材料具有相近之微結構及 應力、應變,以兩種簡單的unit cell幾何排列方式來推 導兩相複合材料之彈性係數,對於相與相之間的介面 作用則忽略之,推導公式如式(13)至(16), Ravichandran 推導的結論覺得其理論模式當用在計 算兩相複合材料之彈性係數相差較大時,所求出的結 果優於Hashin-Shtrikman 邊界。其彈性係數及實驗結 果做圖,圖 5 為Ravichandran 模式上下邊界範圍與實 驗結果,Ravichandran 下邊界適用NiAl體積分率在 40% 位置及 60% 以上,Ravichandran上下邊界結果均 在實驗値上方,計算值與 0~100 vol% NiAl-Al₂O₃實 驗結果之所有統計標準偏差平均各為為 6.55% 及 4.99%。

$$E_{C}^{l} = \frac{(CE_{m}E_{p} + E_{m}^{2})(1+C)^{2} - E_{m}^{2} + E_{p}E_{m}}{(CE_{p} + E_{m})(1+C)^{2}}$$
(13)

$$E_{C}^{u} = \frac{\left[E_{p}E_{m} + E_{m}^{2}\left(1 + C\right)^{2} - E_{m}^{2}\right]\left(1 + C\right)}{\left(E_{p} - E_{m}\right)C + E_{m}\left(1 + C\right)^{3}}$$
(14)

$$G_{C}^{l} = \frac{(CG_{m}G_{p} + G_{m}^{2})(1+C)^{2} - G_{m}^{2} + G_{p}G_{m}}{(CG_{p} + G_{m})(1+C)^{2}}$$
(15)

$$G_{C}^{u} = \frac{\left[G_{p}G_{m} + G_{m}^{2}(1+C)^{2} - G_{m}^{2}\right](1+C)}{\left(G_{p} - G_{m}\right)C + G_{m}(1+C)^{3}}$$
(16)

$$\boldsymbol{C} = \left[\frac{1}{V_p}\right]^{1/3} - 1 \tag{17}$$

圖 5 Ravichandran 預測曲線與實驗數據之比較圖

(4) Halpin-Tsai 模式

Halpin-Tsai 公式是應用 Hill 所發展的「selfconsistent micromechanics methods」以半經驗方程 式,調整與材料組成相之排列幾何、晶粒形狀等參數 來推導複合材料之彈性係數,以廣泛地被使用,公式 如式(18)及(19),其彈性係數及實驗結果做圖,對於彈 性係數,當NiAl體積分率在 60 vol%以上時會與實驗 結果相近,如圖 6 所示,Halpin-Tsai 公式結果均在實 驗値上方,計算值與 0~100 vol% NiAl-Al₂O₃實驗結 果之所有統計標準偏差平均為 4.87%。

$$\frac{\overline{K}}{K_m} = \frac{1 + \xi \eta \phi}{1 - \eta \phi}, \quad \nexists \psi, \quad \xi = \frac{4G_m}{3K_m}, \quad M_R = \frac{K_p}{K_m}, \quad \eta = \frac{M_R - 1}{M_R + \xi}$$
(18)

(5) Paul 與 Lielens 模式

Paul應用彈性原理的能量理論推導複合材料之彈 性係數,理論模式如式(20),而Lielens修正Hashin-Shtrikman 邊界,圖 7 繪出Paul與Lielens預測彈性係 數及實驗結果,Paul 模式同Voigt 模式對本實驗之 Al₂O₃-NiAl系統均較差,而Lielens則在NiAl體積分率 在 60vol%以上與實驗結果相近,此兩者結果均在實 驗 値 上 方,Paul 模 式計算 值 與 0 ~ 100 vol% NiAl-Al₂O₃實驗結果之所有統計標準偏差平均為 6.55%。

圖 6 Halpin-Tsai 預測曲線與實驗數據之比較圖

圖 7 Paul 與 Lielens 預測曲線與實驗數據之比較圖

Paul:
$$E_C = \frac{E_m^2 + (E_m E_p - E_m^2)V_p^{2/3}}{E_m + (E_p - E_m)V_p^{2/3}(1 - V_p^{1/3})}$$
 (20)

(6) Shukla-Padial 模式與對數平均

除Voigt的混合律 (rule of mixtures) 及Hill的算術 與幾何平均外,在此亦將一般常用的對數平均混合律 及Shukla-Padial應用的調和平均來計算複合材料之彈 性係數,兩者結果相近均適用在NiAl體積分率在 60vol%以上時,其彈性係數及實驗結果做圖,如圖 8 所示,對於其彈性係數,Shukla-Padial模式與對數平 均結果均在實驗值上方,計算值與 0 ~ 100 vol% NiAl-Al₂O₃實驗結果之所有統計標準偏差平均各為 6.55% 及 3.68%。

圖 8 Shukla-Padial 及 Logarithmic 預測曲線與實 驗數據之比較圖

(7) Walpol 模式

Walpol應用單一平均方式推導材料之彈性係數, 因雙重平均 (如Hill平均)等均未對理論基礎調整修 改,而僅是將已具有理論基礎的結果經過再一次的平 均計算,以使結果較合於實驗值,而Walpol使用 extremum原理,所得之上下邊界範圍較Voigt-Reuss 邊界窄,均在實驗值上方,可用於估計具任意結晶方 向複合材料之彈性係數。其彈性係數及實驗結果做 圖,如圖 9,得知對於其Young's moduli,Walpol 下 邊界與NiAl體積分率在 60 vol%以上時結果相近,計 算值與 0~100 vol% NiAl-Al₂O₃實驗結果之所有統計 標準偏差平均各為 3.55% 及 4.79%。

圖 9 Walpol 預測曲線與實驗數據之比較圖

(8) Morti-Tanaka 模式

Morti-Tanaka 模式是根據Eshelby's 等效原理及 平均應力觀念,假設第二相形狀為橢圓形進行材料之 彈性係數之推導。其彈性係數及實驗結果做圖,圖 10 得知,對於其彈性係數,Morti-Tanaka 模式與NiAl 體積分率在 60 vol%以上時結果相近,計算值與 0 ~ 100 vol%NiAl-Al₂O₃實驗結果之所有統計標準偏差平 均為 4.64%。

圖 10 Mori-Tanaka 預測曲線與實驗數據之比較圖

(9) Kerner 模式

Kerner 模式假設第二相形狀為圓形之顆粒,進行 材料之彈性係數之推導。其彈性係數及實驗結果做 圖,如圖 11 得知,對於其彈性係數,Kerner模式與 NiAl體積分率在 70 vol%以上時結果相近,計算值與 0~100 vol% NiAl-Al₂O₃實驗結果之所有統計標準偏 差平均為 4.87%。

圖 11 Kerner 預測曲線與實驗數據之比較圖

(10) Wu 模式

基於兩相材料之組織微結構分佈情況不易完全 獲得,雖然已有多人提出許多彈性係數預測之模式, 公式如式(21),Wu認為距得到精確的結果還是有差 距,基於所有實驗數據分佈情形均具有相當高之再現 性與曲線平滑性,將這些分佈效應歸納成一個可變動 之參數,藉以調整預測模式,當此參數為1時等於Paul 模式,當此參數為無限大時則等於Reuss模式,本實 驗調整參數為25時,如圖12所示,整體標準偏差為 2.55%。

圖 12 Wu 預測曲線及統計回歸分析與實驗數據 之比較圖

(11) 統計回歸分析

根據實驗數據進行統計回歸分析,得到Al₂O₃-NiAl 彈性係數與剪力係數之多項式回歸分析式(22)及 (23),繪製曲線如圖 12 所示,整體標準偏差小於 2%。

$$E = 400.6 - 626.4 V_p + 1772.3 V_p^2$$

- 3480.2 $V_p^3 + 3327.6 V_p^4 - 1208.3 V_p^5$ (22)
(R-Square = 0.99303, p 値 0.0001)

$$G = 161.9 - 225 V_p + 529.5 V_p^2 - 1012.7 V_p^3 + 976.2 V_p^4 - 359 V_p^5$$
(23)

(R-Square = 0.99343, p 值 0.0001)

5. 結 論

文獻所提之理論模式相當多,均缺乏完整之實驗 數據,經由本研究分析其優劣點,找出最佳預測之理 論模式,因為本研究之實驗數據為Al₂O₃-NiAl系統, 所採取之體積分率變化範圍由 0 至 100 NiAl vol%,所 以藉由本研究所找出之理論模式應可以應用於預測 其他具有相同緻密結構之兩相複合材料,作爲往後對 其他複合材料之elastic modulus 的預測依據。

將上述理論模式估計值與實驗值,採用整體統計 標準平均偏差小於 5% 整理列於表 2 與表 3 中,可以 了解對不同NiAl體積分率含量,其較適當之理論模式 為何,其中具有理論基礎之模式而能涵蓋整體NiAl體 積分率含量從 0 到 100%,最適合者以Hashin-Shtrikman 下邊界為最佳,因Hashin-Shtrikman模式是 其推導基於假設複合材料於巨觀具有均向性質、第二 相材料為呈任意大小幾何形狀之顆粒狀 [2],與本研 究所採用真空熱壓燒結製備Al₂O₃-NiAl複合材料所得 之微結構較為相近,也與一般實際情況以顆粒狀製備 兩相複合材料所形成之結構體較為相同,所以若已知 任 意 兩 種 成 分 之 彈 性 係 數 ,則 可 以 應 用 Hashin-Shtrikman模式來預測此兩種成分所形成之複 合材料的彈性係數。

樟式 s	NiAl content / (vol%)										
依式 3	0	10	20	30	40	50	60	70	80	90	100
Wu ($\lambda = 25$)											
Hashin-Shtrikman 上邊界											
Hashin-Shtrikman 下邊界									•		
Lielens											
logarithm mixing rule											
Hill's arithmetic/ geometric mean											
Reuss											
Walpol 上邊界											
Walpol 下邊界											
Shukla-Padial											
Ravichandran 上邊界	•								•	•	•
Ravichandran 下邊界								•	•		
Mori-Tanaka											
Halpin-Tsai 式											
Kerner											
Behrens											
Paul											
Voigt											

表 3 預測Al₂O₃-NiAl複合材料之適當理論模式 (以▲符號表示)

符號與統計誤差計算說明

- E:彈性係數 (Young's modulus)。
- K:體積係數 (bulk modulus)。
- G:剪力係數 (shear modulus)。
- V:體積分率。
- v : 泊松比 (Poisson ratio)。

下標

- c: 複合材料。
- m: 基底。
- p:第二相或增強相。
- *u*:上邊界。
- 1:下邊界。
- v:超音波波速。

實驗數據與理論模式之統計誤差計算方式:將各 NiAl 體積分率之彈性係數實驗數據與理論模式預測 値之差值:(1)取平方:(2)所有平方值相加:(3)相 加後取平均值:(4)將平均值取均方根,即得統計誤 差值,計算公式如式(24):

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (X_i - P_i)^2}{n}}$$
(24)

其中:X_i代表第i項實驗數據、P_i代表相對於第i項理論 模式預測值、n為實驗數據數量。

參考文獻

 D. Fang, H. Qi, S. Tu, "Elastic and palstic properties of metal-matrix composites: geometric effects of particles," *Comp. Mat. Sci.*, Vol. 6, 1996, pp. 303–309.

- [2] Z. Hashin, "Analysis of composite materials—A survey," J. Appl. Mech., Vol. 50, 1983, pp. 481–505.
- [3] J. P. Watt, G. F. Davies and R. J. O'Connell, "The elastic properties of composite materials," *Reviews of Geophysics and Space Physics*, Vol. 14, No. 4, 1976, pp. 541–562.
- [4] J. C. Halpin and J. L. Kardos, "The Halpin-Tsai A: Review," *Poly. Eng. Sci.*, Vol. 16, No. 5, 1976, pp. 344–352.
- [5] Y. L. Shen, M. Finot, A. Needleman and S. Suresh, "Effective elastic response of two-phase composites," *Acta Metall. Mater.*, Vol. 42, No. 1, 1994, pp. 77–79.
- [6] Y. Benveniste, "A new approach to the application of Mori-Tanaka's theory in composite materials," *Mech. Mater.*, Vol. 6, 1987, pp. 147–157.
- [7] R. Hill, "Elastic properties of reinforced solids: some theoretical principles," *J. Mech. Phys. Solids*, Vol. 11, 1963, pp. 357–372.
- [8] K. S. Ravichandran, "Elastic properties of twophase composites," J. Am. Ceram. Soc., Vol. 77, No. 5, 1994, pp. 1178–1184.
- [9] N. Ramakrishnan and V. S. Arunachalam, "Effective elastic moduli of porous ceramic materials," *J. Am. Ceram. Soc.*, Vol. 76, No. 11, 1995, pp. 2745–2752.
- [10] A. P. Roberts and E. J. Garboczi, "Elastic properties of model porous ceramics," *J. Am. Ceram. Sci.*, Vol. 83, No. 12, 2000, pp. 3041–3048.
- [11] N. Katsube, "Estimation of effective elastic moduli for composites," *Int. J. Solids Struc.*, Vol. 32, No. 1, 1995, pp. 79–88.
- [12] T. T. Wu, "On the parametrization of the elastic moduli of two-phase materials," *J. Appl. Mech.*, Vol. 32, 1965, pp. 211–214.
- [13] W. H. Tuan and Y. P. Pai, "Mechanical properties of Al₂O₃-NiAl composites," *J. Am. Ceram. Soc.*, Vol. 82, No. 6, 1999, pp. 1624–1626.
- [14] J. Krautkramer, H. Krautkramer, Ultrasonic Testing of Materials, Berlin, Springer-Verlag, 1990.

謝 錦 隆 (Chin-Lung Hsieh) 民國 52 年生,台灣大學材料科學與工程學系博士候選 人,行政院原子能委員會核能研究所助理研究員,90 年度行政院原能會委託研究計畫優 良計畫主持人獎,83 年高考一級核子工程科及格錄取。

投 維 新 (Wei-Hsing Tuan) 目前為台灣大學材料科學及工程學系教授,研究興趣為 陶瓷材料的製程開發,微結構設計及性質評估。

收稿日期 92 年 6 月 24 日、修訂日期 92 年 10 月 5 日、接受日期 92 年 10 月 9 日 Manuscript received June 24, 2003, revised October 5, 2003, accepted October 9, 2003