
Materials Science and Engineering A 393 (2005) 133–139

Elastic properties of ceramic–metal particulate composites
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Abstract

In the present study, the experimental data on the elastic properties of several ceramic–metal systems, Al2O3–NiAl, SiC–Al, WC–Co and
glass–W, are compiled and compared with several theoretical predictions. These theoretical predictions offer upper and lower bounds on the
elastic constants. The elastic moduli of the ceramic–metal composites fall well within the Voigt–Reuss bounds and Hashin–Shtrikman (H–S)
bounds. Though most the Poisson’s ratio of ceramic–metal composites falls within the modified H–S bounds, the values of the composites
with low second-phase concentration deviate from model predictions. The deviation shows strong dependence on the interconnectivity of
each phase in the composites.
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. Introduction

The elastic properties of monolithic materials (ceramics
r metals) depend strongly on their bonding characteristics

1]. For example, the elastic modulus of monolithic ceramics
eflects their cation-oxygen bonding length and strength un-
er tension[2]. The bending strength of inter-atomic bonds
etermines the magnitude of shear modulus. Among these
lastic constants, Koester and Franz suggested that the Pois-
on’s ratio provided more information about the character of
he bonding forces[3]. Furthermore, the elastic constants are
ensitive to the composition change. The presence of solute
an alter the bonding characteristics as well as the elastic
onstants of materials[2].

The bonding characteristics of ceramics are different from
hose of metal. The addition of ceramic into metal or vice
ersa introduces heterogeneous interfaces. To be demon-
trated later, the elastic properties of the two-phase materials
ften deviate from the prediction made by using the rule of
ixtures. It may be related to the presence of heterogeneous

nterface.

Though the properties of ceramics and metals are d
ent, the combination of two materials to form composite
hibits many potential applications. For example, the hard
of tungsten carbide (WC) is very high; nevertheless, the
tering between WC particles is not possible below 1500◦C.
Metallic cobalt can bond WC particles strongly togethe
a relatively low temperature[4]. The WC–Co composite ca
thus be applied as cutting tool. The addition of Al into SiC
result in improved thermal stability[5]. The addition of NiA
improves the toughness of Al2O3 [6]; the presence of ZrO2
particles enhances the high temperature strength of NiA[7].

The knowledge about the elastic properties of two-p
systems is essential for designing new composites and
tionally graded materials[8–13]. With the knowledge of th
elastic modulus, other properties such as hardness and
resistance can then be estimated[14,15]. There are man
theoretical models available to predict the elastic cons
of two-phase materials[16–38]. Some models contain one
two adjustable variables that have to be determined ex
mentally[19–23,25–38]. Some models need only the pro
erties of the two constituents to predict the elastic cons
∗ Corresponding author. Tel.: +886 2 23659800; fax: +886 2 23634562.
E-mail address:tuan@ccms.ntu.edu.tw (W.H. Tuan).

[8,16–18,24]. Among these models, several models can offer
fixed values for the elastic properties of two-phase materials
[8,19–21]. Several models propose upper and lower bounds
instead[8,16,17,19–21,32–36]. All these models claim that

d.
921-5093/$ – see front matter © 2004 Elsevier B.V. All rights reserve
oi:10.1016/j.msea.2004.10.009



134 C.L. Hsieh, W.H. Tuan / Materials Science and Engineering A 393 (2005) 133–139

they can match the experimental data well. However, the pre-
existed experimental data cover only part of the composition
range for a certain composite. A recent study reported the
elastic constants of Al2O3-NiAl system for whole range of
composition[37], which makes comparison between experi-
mental data and theoretical predictions possible. Apart from
the data of Al2O3–NiAl system, the available data for other
ceramic–metal composites, SiC–Al, WC–Co and glass–W,
are also compared in the present study to verify the model
predictions.

2. Theoretical models

Most theoretical models are made under the assumptions
of perfect bonding at the interface, strain compatible and neg-
ligible elastic interaction between particles[16–38]. These
models further employed simplified geometries, as shown
in Fig. 1, to derive their mathematical equations. In the
present study, experimental data are compared with the the-

F
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oretical predictions. A comprehensive data collection on the
ceramic–metal composites has been carried out. These ex-
perimental data vary within a range instead of a specific
point. The model predictions that can provide upper and
lower bounds to cover the experimental data seem more plau-
sible. Therefore, the following three models are chosen: (1)
Voigt–Reuss, (2) Hashin–Shtrikman (H–S) and (3) Ravichan-
dran models.

2.1. Voigt–Reuss bounds

Fig. 1(a) shows the case that the strain of the two phases in
the composite under an external load is the same. The loading
direction is parallel to the interface. The elastic modulus of
the composite,Ec, as proposed by Voigt[16] is

Eu
c = EmVm + EpVp (1)

withVm +Vp = 1,Vm andVp are the volume fraction of matrix
and particle, respectively. Eq.(1) follows the rule of mixtures.
When the composite is under an iso-stress state as proposed
by Reuss[17], as shown inFig. 1(b), the elastic modulus is
expressed as

El
c = EmEp

EmVp + EpVm
(2)
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ig. 1. The unit cell proposed in (a) iso-strain (Voigt) state and (b) iso-stress
Reuss) state. The geometrical models employed by (c) Hashin–Shtrikman
H–S) and (d) Ravichandran models. The arrows indicate the direction of
he external load.
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he superscripts u and l denote upper and lower bou
espectively. As pointed out by Hill[22], neither iso-strain no
so-stress assumption is realistic. The tractions at interfac
ot at equilibrium under the Voigt condition; the interfa
ould not remain bonded under the Reuss condition. Th
he equality in Eq.(1) is true only when the Poisson’s ratios
he two phases are the same; the values predicted by E(1)
nd(2) are widely treated as the upper and lower bound

he elastic modulus of any two-phase materials, respec
5]. The Voigt–Reuss bounds are thus used in the pr
tudy to compare the experimental data.

Each value of elastic modulus (E), shear modulus (G),
ulk modulus (K) and Poisson’s ratio (ν) can be calculate
y knowing any two elastic constants. However, it shoul
oted that it is not suitable to calculate the Poisson’s
nder the iso-strain and iso-stress assumptions.

.2. Hashin–Shtrikman (H–S) bounds

Hashin and Shtrikman treated the two-phase system
osing of one randomly distributed particulate phase
ne continuous matrix phase,Fig. 1(c). The model provide
ounds for the elastic constants of a two-phase materia
random isotropic distribution of phases from the prope
nd volume fraction of each phase[19–21,36]. The “mini-
um energy” principle was employed to show the bound

he bulk modulus and shear modulus as

l
C = Km + Vp

(1/Kp − Km) + (3Vm/3Km + 4Gm)
(3)
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Ku
C = Kp + Vm

(1/Km − Kp) + (3Vp/3Kp + 4Gm)
(4)

Gl
C = Gm + Vp

(1/Gp − Gm)

+ (6(Km + 2Gm)Vm/5Gm(3Km + 4Gm))

(5)

Gu
C = Gp + Vm

(1/Gm − Gp)

+(6(Kp + 2Gp)Vp/5Gp(3Kp + 4Gp))

(6)

The lower and upper bounds on the elastic modulus can
be estimated by using the following equations as

El
c = 9Kl

cG
l
c

3Kl
c + Gl

c
(7)

Eu
c = 9Ku

cG
u
c

3Ku
c + Gu

c
(8)

The bounds on the Poisson’s ratio as modified by Zimmerman
are[38]

νl
c = 3Kl

c − 2Gu
c

6Kl + 2Gu
(9)
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Table 1
Elastic properties of the constituent phase in the ceramic–metal composites

Elastic modulus/GPa Poisson’s ratio

Al2O3 401 0.24
NiAl 186 0.31
SiC 450 0.22
Al 70 0.34
WC 700a 0.19
Co 207 0.31
Glassb 81 0.20
W 355 0.24

a Extrapolated from the values of WC–Co composites[4].
b A borosilicate glass.

where

C =
[

1

Vp

]1/3

− 1 (15)

Ravichandran suggested that his model was suitable for
the two-phase system with very different elastic constants
[8], and has successfully verified it by comparing with several
experimental data sets. However, his model failed to predict
the Poisson’s ratio of WC–Co and polymer–glass systems.

3. Experimental data

The experimental data of four ceramic–metal systems,
Al2O3–NiAl, SiC–Al, WC–Co and glass–W, are compiled
in the present study. These four systems are prepared by us-
ing the conventional powder processing technique, so these
composites can be categorized as particulate composites. The
elastic properties of these composites thus show little depen-
dence on orientation. The properties of the constituent phase
in these four systems are listed inTable 1. The elastic con-
stants are mainly determined either by static methods[15],
such as the measurement of longitudinal deformation, or by
dynamic methods[39,40], such as the method by applying
u the
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The lower and upper bounds are established with the s
nd harder phases as the matrix respectively. The H–S m
as received wide popularity[8,11,52,59–61,67]; however
avichandran suggested that the model could only app

he composite system with small difference in elastic c
tants[8].

.3. Ravichandran’s bounds

Ravichandran modified the iso-strain and iso-stress
ell to propose a unit cell, as shown inFig. 1(d), composing o
continuous matrix and isolated particles[8]. He suggeste

hat the elastic properties of the unit cell could be expre
s

l
C = (CEmEp + E2

m)(1 + C)2 − E2
m + EpEm

(CEp + Em)(1 + C)2
(11)

u
C = [EpEm + E2

m(1 + C)2 − E2
m](1 + C)

(Ep − Em)C + Em(1 + C)3
(12)

l
C = 1

(1 + C)2

[
(νpEm + CνmEp)

(CEp + Em)
+ νm(1 + C)2 − νm

]

(13)

u
C = νpEm + CνmEp + Emνm(2C + 3C2 + C3)

CEp + Em(1 + 2C + 3C2 + C3)
(14)
ltrasonic waves. The dynamic method can determine
lastic constants and Poisson’s ratio at the same time
tatic methods usually reported only elastic modulus du
he difficulties involved in the measurement of the transv
train[3].

.1. Al2O3–NiAl system

The Al2O3 content in the Al2O3–NiAl composites varie
rom 0 to 100%[6]. This system is the only ceramic–me
ystem that the reported elastic constants cover the full
osition range. The composites were prepared by hot pre
t a temperature of 1450◦ C, which was lower than the meltin
oints of the two constituents. Both Al2O3 and NiAl are con

inuous phases from 30%Al2O3 to 70%Al2O3. The Al2O3
nd NiAl are weakly bonded together[6]; furthermore, no
eaction phase at the interface was observed[41].
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3.2. SiC–Al system

The SiC–Al composites were prepared by raising the pro-
cessing temperatures above the melting point of Al alloy;
however, SiC remains in its solid state[40,42–53]. The SiC
particles are thus not strongly bonded together due to the
processing temperature is far too low to result in sintering
between SiC particles. Most the SiC content in the data col-
lected from various literatures varies from 5 to 60%, a hand-
ful data from 60 to 74%. The wetting of Al melt on SiC
is rather poor[54–56]. The surface of SiC particles is fre-
quently coated with another phase to improve its wettability.
The coated material may dissolve into Al matrix to form al-
loy. To avoid the complexity of choosing datum for Al matrix,
only the data without the coating are reported in the present
study.

3.3. WC–Co system

The wetting angle of Co melt on WC is low for their mutual
solubility [57]. The WC–Co composites are prepared by a
liquid phase sintering route[58–61]. The WC content in the
reported literature varies mainly between from 50 to 98%.
Only three data points vary from 10 to 35%. It may be due to
the fact that the specimen shape may be seriously distorted
a
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Fig. 2. Normalized elastic moduli of the ceramic–metal composites as func-
tion of ceramic content. The Voigt–Reuss bounds are shown for comparison.

Fig. 3 shows the comparison between the experimental
data and the H–S bounds. Most experimental data also fall
within the H–S bounds. Since the H–S bounds are relatively
closer to each other than those of the Voigt–Reuss bounds, the
H–S model offers closer bounds on the estimation of elastic
moduli for ceramic–metal composites.

Fig. 4 shows the comparison between the experimental
data and the Ravichandran bounds. Though the Ravichan-
dran bounds are the closest pairs among three pairs; many
experimental data fall outside the bounds.

F func-
t

s the Co amount is too high.

.4. Glass–W system

Different from the above systems, the elastic modulu
he metal W is higher than that of ceramic in the glass
omposite[62]. The W particles are spherical in shape
he wetting angle of the borosilicate glass on W is low[63].
he glass amount in the composites varies from 50 to 9
ost W particles are isolated to each other within the g
atrix.

. Comparison

.1. Elastic modulus of ceramic–metal composites

Fig. 2 shows all the available experimental data on
lastic modulus of the ceramic–metal systems as a fun
f ceramic content. The Voigt–Reuss bounds are shown
gure for comparison. The Voigt–Reuss bounds are clo
ach other as the elastic moduli of the two phases in the
osite are similar in values, such as the cases of Al2O3–NiAl
omposites. Therefore, the experimental data of the com
tes are close to the prediction made by the rule of mixt
Eq. (1)]. However, for other composites with two phase
ifferent elastic modulus, such as SiC–Al and WC–Co c
osites, the upper and lower bounds are widely apart. In
ase, all the experimental data of the ceramic–metal com
tes fall within the Voigt–Reuss bounds.
ig. 3. Normalized elastic moduli of the ceramic–metal composites as
ion of ceramic content. The H–S bounds are shown for comparison.
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Fig. 4. Normalized elastic moduli of the ceramic–metal composites as func-
tion of ceramic content. The Ravichandran’s bounds are shown for compar-
ison.

4.2. Poisson’s ratios of ceramic–metal composites

The experimental data collected from various literatures
are shown inFig. 5. The reported data on the Poisson’s ratio
are much less than those of the elastic modulus. The exper-
imental data on Poisson’s ratio for the SiC–Al and WC–Co
systems cover only a small composition range, from 5 to
30% SiC for the SiC–Al system and from 63 to 95% WC for
WC–Co system, as shown inFig. 5. The only experimental
data set covering the whole composition range is the data
set of the Al2O3–NiAl system. Furthermore, the data for the
SiC–Al system scatter significantly even when the composi-
tion is the same.

F of ce-
r

Fig. 6. Poisson’s ratio of the ceramic–metal composites as function of ce-
ramic content. The Ravichandran’s bounds are shown for comparison.

Fig. 5 shows the comparison between the experimental
data of Poisson’s ratio and H–S bounds. The theoretical
bounds are close to each other as the difference between
the Poisson’s ratios of the two phases in the composite is
smaller, as the case of the Al2O3–NiAl composites. Most
experimental data of SiC–Al and WC–Co composites fall
within the H–S bounds. However, the experimental data of
the Al2O3–NiAl composite with low second-phase concen-
tration fall outside of the bounds. Comparison is also made
between the experimental values and Ravichandran’s bounds
(Fig. 6). Though Ravichandran bounds are the closest pair,
many experimental data fall outside the bounds.

5. Discussion

The Voigt–Reuss model treats a laminated system. Each
layer (phase) in the system is separated by another layer
(phase). The microstructure of the particulate composites is
very much different from those shown inFig. 1(a) and (b). The
H–S and Ravichandran models treats the system composing
a continuous matrix and an isolated phase,Fig. 1(c) and (d).
The interactions between each strain field around one particle
are assuming none or negligible. Therefore, strictly speaking,
the H–S and Ravichandran models should apply to the sys-
t s, the
e the
p ds.

ep-
a icles
a ost
m in
t re of
W one
ig. 5. Poisson’s ratio of the ceramic–metal composites as function
amic content. The H–S bounds are shown for comparison.
em with low second-phase concentration. Nevertheles
lastic moduli of all ceramic–metal systems collected in
resent study fall within the Voigt–Reuss and H–S boun

In the WC–Co composites, the metallic Co matrix s
rates the WC particles from each other. The SiC part
re not sintered together in the SiC–Al composite. M
etallic particles are isolated within the glassy matrix

he glass–W composites. Therefore, the microstructu
C–Co, SiC–Al and glass–W systems is close to the
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assumed in the H–S model. However, both phases are con-
tinuous as Al2O3 content varies from 30 to 70% in the
Al2O3–NiAl composites[37]. The two phases in the compos-
ites within this composition range form an interpenetrating
microstructure; which is quite different from that of SiC–Al,
WC–Co and glass–W system. However, the Voigt–Reuss and
H–S bounds can be applied to estimate the elastic modu-
lus of the composites with interpenetrating microstructure. It
demonstrates that the models on elastic modulus show little
dependence on microstructure features.

The Ravichandran model shows closest bounds; how-
ever, the bounds fail to describe the elastic moduli of most
ceramic–metal particulate composites. It suggests that the
model is sensitive to microstructural variation.

The Poisson’s ratio of the SiC–Al and WC–Co composites
and the Al2O3–NiAl composites with interpenetrating mi-
crostructure falls within the H–S model,Fig. 5. However, the
Poisson’s ratios of the Al2O3-rich and NiAl-rich Al2O3–NiAl
composites fall outside the H–S bounds.

Though the Poisson’s ratio of WC–Co system falls within
the H–S bounds, it should be noted that fully dense WC could
not be prepared without the presence of liquid Co phase. The
Poisson’s ratio for pure WC is calculated by extrapolating
the experimental data of WC–Co composites to 100% WC
[4]. It may lead to the underestimation of the value for pure
W ed
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then follows the theoretical predictions for two-phase mate-
rials.

The deviation between experimental data and theoreti-
cal predictions is frequently attributed to the microstructural
complexity of real composites in previous studies[13,64–68].
Therefore, some theoretical models employed numerical
analysis, included the finite element or boundary element
methods to adopt the shape irregularity. However, to the best
of our knowledge, none of the theoretical models has ever
taken the interconnectivity and interface characteristics into
account. It may have something to do with the fact that a
data set that covers full composition range was not previ-
ously available. It is also noted that the Al2O3–NiAl sys-
tem is the only system that is sintered at its solid state. The
Al2O3–NiAl interface is weakly bonded[41]. The presence
of weak interface may render the existence of the continuous
skeleton more influential. In any case, it suggests that un-
like the case for elastic modulus, the Poisson’s ratio depends
strongly on the microstructural characteristics. Furthermore,
it indicates that there are needs on the analysis of the Pois-
son’s ratio for two-phase material. Though attempt has been
made to analyze the deviation as a function of microstructure
characteristics, no progress can be reported at this stage.
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C. For the SiC–Al composites, Al matrix is always alloy
ith other elements. The reported values on the Poisson

ios of Al-matrix alone scatter significantly,Fig. 5. It results
n difficulties of estimating the H–S bounds for the co
osites. An average value of all the data for Al-matrix
sed, uncertainty thus exists near the Al-rich side com

ion. Therefore, more attention should be given to the c
arison between the model prediction and the experim
ata of Al2O3–NiAl system.

The theoretical predictions fail to describe the Poiss
atio of the Al2O3–NiAl composites with only one continuo
hase,Fig. 5. From the figure, it is noted that the Poisso
atio of the composites is similar to that of the monolit
aterials as a small amount of second phase is adde

he matrix. Contrary to the assumption adopted by mos
retical models[16–38], the Al2O3 and NiAl are not bonde
erfectly. The interface is relatively weak instead[41]. As a

oad is applied on the composite with the presence of we
onded isolated particles, the load is mainly sustaine

he matrix alone. The strains along and perpendicular t
oading direction are thus close to those of matrix alon
ther words, the existence of the second phase affects

o the strain of the matrix. The composite thus respond
he external load as if no second phase is present at a
he Poisson’s ratio of the composites remains more or
he same. However, as the two phases form an inter
rating microstructure, one phase is closely constraine
he other one though they do not bond strongly toge
he elastic behavior of the matrix is thus affected by
resence of the interpenetrating second phase. The Poi
atio of the composite with interpenetrating microstruc
s

. Conclusions

The comparison between experimental data on elastic
tants and several model predictions is made in the pr
tudy. The experimental data cover the full composition ra
f ceramic–metal composites. The model predictions
pper and lower bounds to compensate the scatter of the
he following conclusions can be drawn from the pre
tudy.

1) The elastic modulus of the ceramic–metal compo
can be described by using Voigt–Reuss bounds and
bounds. However, the H–S bounds are relatively cl
to each other.

2) The Voigt–Reuss and H–S bounds on elastic moduli s
little dependence on the microstructural characteristi
ceramic–metal composites.

For the Poisson’s ratio of the ceramic–metal compos
he following conclusions can be made.

1) The Poisson’s ratio of the composites shows strong
pendence on microstructural characteristics.

2) The interconnectivity of each phase in a composite
affect the value of Poisson’s ratio of composites.

3) The bonding characteristics of interface may also a
the Poisson’s ratio of composites.
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