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Poisson’s ratio of two-phase composites
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Abstract

In the present study, a model to predict the upper and lower bounds for the Poisson’s ratio of two-phase composites is proposed. Only the
elastic modulus and Poisson’s ratio of each component are needed in order to carry out the prediction. Experimental data from other studies
were collected and compared with the prediction; reasonable agreement has been found.
© 2005 Elsevier B.V. All rights reserved.
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. Introduction

To predict the elastic constants of composites by us-
ng only the elastic constants of each component has at-
racted much attention[1–19]. However, most the predic-
ions offer upper and lower bounds for the elastic constants
4–6,8–15,18]. It is mainly due to that the elastic constants
epend on the shape of each phase[6,8,10,16], phase conti-
uity [17] and interface integrity[12–16]of composites. The
resence of defects, such as pores, cracks, can also affect the
lastic constants of the composites.

Poisson’s ratio describes the extent of transverse strain as
body is under an external force. Among the available theo-

etical models on the elastic constants[1–19], the Poisson’s
atio has attracted much less attention[15,18]. One may ar-
ue that the Poisson’s ratio (ν) can be calculated by knowing

he bulk modulus (K) and shear modulus (G) as

= 3K − 2G

6K + 2G
(1)

However, care has to be taken by using the above equation

misleading, as demonstrated inFig. 1. The following equa
tions should be used instead to obtain the correct upper b
(denoted with a superscript u) and lower bound (denoted
a superscript l) for the Poisson’s ratio[18].

νu
c = 3Ku

c − 2Gl
c

6Ku
c + 2Gl

c
(2)

νl
c = 3Kl

c − 2Gu
c

6Kl
c + 2Gu

c
(3)

FromFig. 1, though the Poisson’s ratio can be calcula
by using the above equations, the upper and lower boun
widely apart. It demonstrates that further refinement on
estimation of Poisson’s ratio is needed. In the present s
a model is proposed to estimate the upper and lower bo
for the Poisson’s ratio of two-phase materials.

2. Modeling

Previous models on elastic modulus often assumed

o calculate the upper and lower bounds for Poisson’s ratio.
s pointed out by Zimmerman[18], if the upper bound for
oth bulk modulus and shear modulus are used in Eq.(1)

o calculate the upper bound for Poisson’s ratio, the result is

62.

plicitly that the Poisson’s ratio of two phases are either 0
(no transverse constraint) or 0.5 (both phase incompressible)
[1,2]. Owen and Koller had proposed a simple model to takes
the transverse constraint into account[19]. Such constraint
i r, the
m two-
p ology
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s essential to the estimation of Poisson’s ratio. Howeve
odel was used only to estimate the elastic modulus of
hase composite. In the present study, the same method
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Fig. 1. The upper and lower bounds of Poisson’s ratio as function of volume
fraction. It assumes that theKp/Km =Gm/Gp = 20,νp = νm = 0.25. The solid
lines are plotted by using Eqs.(2) and (3). The dotted lines are obtained by
using upper bounds for both bulk and shear moduli in Eq.(1) or by using
lower bounds for both moduli. Note that the two dotted lines cross each
other.

is adopted to estimate the Poisson’s ratio, the often-neglected
issue.

Assuming that a two-phase unit is located within the ma-
trix of a composite (Fig. 2). The matrix is a homogeneous
medium that has the average properties of the composite.
As a tensile stress,σ, is applied on the composite in thez-
direction, both the matrix (denoted with a subscript m) and
particle (denoted with a subscript p) share the applied stress
as

σ = σ̄m
z Vm + σ̄

p
z Vp (4)

F neous
m

whereV is the volume fraction. The strain,ε, in thez-direction
can be described as

ε = ε̄m
z Vm + ε̄

p
zVp = ε̄z (5)

σ̄ andε̄ are the average stress and average strain, respec-
tively. Though there is no stress in thex- andy-directions
as,

σx = σ̄m
x Vm + σ̄

p
xVp = 0 (6)

the transverse strain in thex- andy-direction is still existed
as,

εx = ε̄m
x Vm + ε̄

p
xVp = ε̄x (7)

The transverse strain is the same in thex- andy-directions.
For each two-phase unit,Fig. 2, the transverse strain is

ε̄m
x = 1 − νm

Em
σ̄m

x − νm

Em
σ̄m

z (8)

ε̄
p
x = 1 − νp

Ep
σ̄

p
x − νp

Ep
σ̄

p
z (9)

whereE is the elastic modulus. The strains for each phase of
the unit inz-direction are

ε̄m
z = −2νm

Em
σ̄m

x + 1

Em
σ̄m

z (10)
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ν
ig. 2. One unit of two-phase material embedded in average homoge
aterial and loaded by a tensile stress inz-direction.
¯p
z = −2νp

Ep
σ̄

p
x + 1

Ep
σ̄

p
z (11)

The Poisson’s ratio is the ratio of strain in the direc
ithout load to that of the direction with load as

= − ε̄x

ε̄z

= − ε̄y

ε̄z

(12)

By using Eqs.(5) and(7), the above equation can be m
fied as

c = − ε̄m
x Vm + ε̄

p
xVp

ε̄m
z Vm + ε̄

p
zVp

(13)

Then insert Eqs.(8)–(11)into the above equation, the fo
owing equation is obtained,

c = −

((1 − νm/Em)σ̄m
x − (νm/Em)σ̄m

z )Vm

+ ((1 − νp/Ep)σ̄p
x − (νp/Ep)σ̄p

z )Vp

((−2νm/Em)σ̄m
x + (1/Em)σ̄m

z )Vm

+ ((−2νp/Ep)σ̄p
x + (1/Ep)σ̄p

z )Vp

(14)

In the above equation, the subscript c denotes comp
he stress in the matrix and particle of the two-phase u

he same as

¯m
z = σ̄

p
z , σ̄m

x = σ̄
p
x = 0 (15)

Therefore it is an iso-stress case. Eq.(14)can be simplified
s

c = νmVmEp + νpVpEm

VmEp + VpEm
(16)
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Table 1
Elastic constants of the matrix and particle of several composites

Systems
(matrix–particle, m–p)

Em Ep Ep/Em νm νp Reference

Co–WC 207 700 3.4 0.31 0.19 [20]
Epoxy–glass fiber 3.5 73 21 0.35 0.22 [21]
Polymer–glass 1.7 76 41 0.44 0.21 [22]

All the previous models assumed that the two phases are
bonded together perfectly. By adopting the same assumption,
the strain at the interface is therefore the same as

ε̄m
x = ε̄

p
x (17)

It thus is an iso-strain case. Since the stress inx-direction
is zero,σx = 0, Eq.(6) can thus change to

σ̄
p
x = −(Vm/Vp)σ̄m

x (18)

and the stress inz-direction is the same as the external stress.
From Eqs.(8) and (9), σ̄m

z andσ̄
p
z can be expressed as the

following equation

σ̄m
z = σ̄

p
z = (1 − νm)EpVp + (1 − νp)EmVm

(νmEp − νpEm)Vp
σ̄m

x (19)

By inserting Eq.(19) into Eq.(14), then,

νc =

[(1 − νp)Em − (1 − νm)Ep]Vm + (νmVmEp

+ νpVpEm)X

2(νpEm − νmEp)Vm + (VmEp + VpEm)X
(20)

In the above equation,X is

X = (1 − νm)EpVp + (1 − νp)EmVm
(21)
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Fig. 3. Poisson’s ratio of the Co–WC composites as function of WC content.
TheEp/Em ratio of the system is 3.4.

The upper and lower bounds proposed in the present study
are also compared with other theoretical models. The most
popular theoretical model to estimate the elastic modulus
is the Hashin–Shtrikman (H–S) model[4]. However, the
model only provided the bounds for bulk and shear mod-
uli. The bounds on the Poisson’s ratio can only be estimated
by using Eqs.(2) and (3). The upper and lower bounds
predicted by the modified H–S bounds are also shown in
the figures. Both the predictions proposed in the present
study and that of the H–S model cover most the experi-
mental data. It demonstrates that the validity of both models.
However, one should also note that the separation between
the upper and lower bounds increases with the increase of
Ep/Em ratio.

As theEp/Em ratio is lower than 10, the separation be-
tween the upper and lower bounds proposed in the present

F ion of
g

(νmEp − νpEm)Vp

. Comparison

Eq. (16) implies that the transverse strain in the m
rix and in the particulate of a two-phase unit is indep
ent of each other. Though it is only true that the P
on’s ratio of the particle is the same as that of the
rix, it also leads to the upper bound for the predict
o be demonstrated later, the upper bound is indeed
o the phase with higher Poisson’s ratio. Eq.(20) takes
he stress–strain coupling at interface into account.
quation can thus be treated as the lower bound fo
omposites.

The experimental data are collected from various stu
20–22]. These systems were chosen for their elastic mod
atio,Ep/Em, covers a wide range, from 3.4 of the Co–W
ystem to 41 of the polymer–glass system (Table 1). The
pper and lower bounds as calculated by using Eqs.(16) and
20), respectively, are compared with the experimental
Figs. 3–5).
ig. 4. Poisson’s ratio of the epoxy–glass fiber composites as funct
lass fiber content. TheEp/Em ratio of the system is 21.
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Fig. 5. Poisson’s ratio of the polymer–glass composites as function of glass
content. TheEp/Em ratio of the system is 41.

study is slightly wider than those predicted by the H–S model
(Fig. 3). However, the upper and lower bounds as proposed
in the present study can cover all the experimental data. As
the Ep/Em ratio is higher than 20, the separation between
the upper and lower bounds proposed in the present study
is slightly narrower than those predicted by the H–S model
(Figs. 4 and 5). Though the collection of experimental data is
not comprehensive, it demonstrates that the proposed model
can be applied to predict the Poisson’s ratio of the two-phase
composite with lowEp/Em ratio. As theEp/Em ratio is large,
the present model and H–S model can only offer bounds with
large separation.

The deviation between theoretical prediction and experi-
mental data is till existed. Owen and Koller proposed that the
stress concentration should be included into the model[19].
Our recent study demonstrates that the Poisson’s ratio is more
sensitive to the minor change in the microstructure charac-
teristics[23]. It all demonstrates that further refinement on
the model is still needed.

4. Conclusions

A model on the estimation of the Poisson’s ratio of com-
posite is proposed in the present study. The experimental data
of three composite systems are compared with the model pre-
diction. Agreement between the model prediction and the ex-
perimental data has been found. Comparison has also been
made with the modified Hashin–Shtrikmam (H–S) bounds on
Poisson’s ratio. Similar to the H–S bounds, the present model
can offer close bounds on the composite with lowEp/Em ratio.
However, as theEp/Em ratio is large, the separation between
the upper and lower bounds is also large.
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