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Abstract

In the present study, a model to predict the upper and lower bounds for the Poisson’s ratio of two-phase composites is proposed. Only th
elastic modulus and Poisson'’s ratio of each component are needed in order to carry out the prediction. Experimental data from other studie
were collected and compared with the prediction; reasonable agreement has been found.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction misleading, as demonstratedkig. 1 The following equa-
tions should be used instead to obtain the correct upper bound
To predict the elastic constants of composites by us- (denoted with a superscript u) and lower bound (denoted with
ing only the elastic constants of each component has at-a superscript l) for the Poisson'’s rafit8].
tracted much attentiofil—19]. However, most the predic- u |
3K¢ — 2G,

tions offer upper and lower bounds for the elastic constants )Y — (2)
[4-6,8-15,18] It is mainly due to that the elastic constants 6K¢ + 2G¢
depend on the shape of each phis8,10,16] phase conti- 3K _ 2GuY
nuity [17] and interface integritj1 2—16]of composites. The v'C = —= < (3)

6KL + 2GY

presence of defects, such as pores, cracks, can also affect the c c
elastic constants of the composites. FromFig. 1, though the Poisson’s ratio can be calculated

Poisson’s ratio describes the extent of transverse strain ady using the above equations, the upper and lower bounds are
a body is under an external force. Among the available theo- widely apart. It demonstrates that further refinement on the
retical models on the elastic constafits19], the Poisson’s  estimation of Poisson'’s ratio is needed. In the present study,
ratio has attracted much less attentjh,18] One may ar- a model is proposed to estimate the upper and lower bounds
gue that the Poisson’s ratio)(can be calculated by knowing  for the Poisson’s ratio of two-phase materials.
the bulk modulusK) and shear moduluss) as

3K - 2G
V= —————(——
6K + 2G

However, care has to be taken by using the above equation  previous models on elastic modulus often assumed im-

to calculate the upper and lower bounds for Poisson’s ratio. plicitly that the Poisson’s ratio of two phases are either 0
As pointed out by Zimmermafi8], if the upper bound for  (no transverse constraint) or 0.5 (both phase incompressible)

both bulk modulus and shear modulus are used in(Ep.  [1,2]. Owen and Koller had proposed a simple model to takes

to calculate the upper bound for Poisson’s ratio, the result is the transverse constraint into acco{i]. Such constraint

is essential to the estimation of Poisson’s ratio. However, the

* Corresponding author. Tel.: +886 2 23659800; fax: +886 2 23634562, Model was used only to estimate the elastic modulus of two-
E-mail addresstuan@ccms.ntu.edu.tw (W.H. Tuan). phase composite. In the present study, the same methodology

Q) 2. Modeling

0921-5093/$ — see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.msea.2005.01.029



C.L. Hsieh, W.H. Tuan / Materials Science and Engineering A 396 (2005) 202—-205 203

05T T T T T T T T T whereVis the volume fraction. The strain,in thez-direction
can be described as

8:E?Vm+§ng=8_Z (5)

o ands are the average stress and average strain, respec-
tively. Though there is no stress in tle andy-directions
as,

Poisson’s ratio
o
N

01 the transverse strain in the andy-direction is still existed
as,
° £x = &MV + 60V = & (7
o EE N S S S N S S S The transverse strain is the same inthandy-directions.
0 10 20 30 40 50 60 70 80 90 100 For each two-phase unkjg. 2, the transverse strain is
Particle content / (Vol%) 1—y
-m _ m—m Ym—m
. . . . & = Ox — 7 0; (8)
Fig. 1. The upper and lower bounds of Poisson’s ratio as function of volume Em Em
f_raction. It assumes th_at th&y/Km = Gm/Gp =20, vp = vm = 0.25. The_ solid 1—v v
lines are plotted by using Eqé2) and (3) The dotted lines are obtainedby ~ gP — = PP _pgf 9)
using upper bounds for both bulk and shear moduli in @y or by using Ep Ep
lower bounds for both moduli. Note that the two dotted lines cross each . . .
other. whereE is the elastic modulus. The strains for each phase of
the unit inzdirection are
—2v 1
is adopted to estimate the Poisson’s ratio, the often—neglecteof_?gn = E—m oy + E—E{“ (10)
issue. " "
Assuming that a two-phase unit is located within the ma- e = ﬂgf + igf (11)
trix of a composite Fig. 2). The matrix is a homogeneous Ep Ep

medium that has the average properties of the composite.
As a tensile stress;, is applied on the composite in tlze
direction, both the matrix (denoted with a subscript m) and

The Poisson’s ratio is the ratio of strain in the direction
without load to that of the direction with load as

Ex Ey

particle (denoted with a subscript p) share the applied stressy = — =% — 2 (12)

as & &

By using Eqs(5) and(7), the above equation can be mod-
0 =0"Vm+0tVp (4  ffiedas
eMVin + 84V
ve=—— P (13)
5 EZ Vm + &z Vp
G,=0 Then insert EqY8)—(11)into the above equation, the fol-
lowing equation is obtained,
(1= vm/Em)o — (vm/Em)ol™) Vi
, +((1 = vp/Ep)at — (vp/ Ep)at) Vp
o Vo = — —n —n (14)
//’f ((_zvm/Em)Ux + (1/Em)az )Vm
. .‘_._,h-»""_'f___,. o, + ((—2vp/ Ep)g;‘cJ +(1/ Ep)E?) Vo
j NGV In the above equation, the subscript ¢ denotes composite.
i The stress in the matrix and particle of the two-phase unit is
# the same as
/, - E;n:gf’ a"=aot=0 (15)
% Therefore itis aniso-stress case. Bdt)can be simplified
y o, as

. . ) . vmVmEp + vpVpEm
Fig. 2. One unit of two-phase material embedded in average homogeneousye = (16)
material and loaded by a tensile stresg-tfirection. VmEP + VpEm
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Table 1 04 T T T T T T T T
Elastic constants of the matrix and particle of several composites
Systems Em Ep Ep/Em vm vp  Reference 0.35 1 _
(matrix—particle, m—p)
Co-WC 207 700 3 0.31 0.19 [20]
Epoxy—glass fiber 5 73 21 0.35 0.22 [21] 2
Polymer—glass I 76 41 0.44 0.21[22] S
c
o
1]
L
S 015 g
. o -— Eq.(16)
All the previous models assumed that the two phases are —Eq(20)
bonded together perfectly. By adopting the same assumption, o1 | |----- |-2|-OSmodeI -
the strain at the interface is therefore the same as o 129
0.05 .
-m _ P
Ex = &x (17) oL v v e ey e e
0 10 20 30 40 50 60 70 80 90 100

It thus is an iso-strain case. Since the stressdirection
is zero,o, = 0, EQ.(6) can thus change to

ot = —(Vm/ Vp)o" (18)

and the stress indirection is the same as the external stress.
From Eqs(8) and (9) o7 anda?® can be expressed as the
following equation

—m
o, =0; = o
z (UmEp - UpEm)Vp .

Z

(19)

By inserting Eq(19) into Eq.(14), then,
[(A —vp)Em — (1 — vm)Ep] Vi + (vmVmEp
+vpVpEm)X

(20)

Vo =

In the above equatiorX is

_ (L= vm)EpVp + (1 — vp) EmVm

X (21)

3. Comparison

Eq. (16) implies that the transverse strain in the ma-
trix and in the particulate of a two-phase unit is indepen-
dent of each other. Though it is only true that the Pois-
son’s ratio of the particle is the same as that of the ma-
trix, it also leads to the upper bound for the prediction.

To be demonstrated later, the upper bound is indeed close

to the phase with higher Poisson’s ratio. Eg80) takes

the stress—strain coupling at interface into account. The
equation can thus be treated as the lower bound for the
composites.

The experimental data are collected from various studies
[20—-22] These systems were chosen for their elastic modulus
ratio, Ep/Em, covers a wide range, from 3.4 of the Co-WC
system to 41 of the polymer—glass systefalle ). The
upper and lower bounds as calculated by using Bdg.and
(20), respectively, are compared with the experimental data
(Figs. 3-5.

WC Content / (vol%)

Fig. 3. Poisson’s ratio of the Co—~WC composites as function of WC content.
The Ep/En, ratio of the system is 3.4.

The upper and lower bounds proposed in the present study
are also compared with other theoretical models. The most
popular theoretical model to estimate the elastic modulus
is the Hashin—-Shtrikman (H-S) modpl]. However, the
model only provided the bounds for bulk and shear mod-
uli. The bounds on the Poisson’s ratio can only be estimated
by using Egs.(2) and (3) The upper and lower bounds
predicted by the modified H-S bounds are also shown in
the figures. Both the predictions proposed in the present
study and that of the H-S model cover most the experi-
mental data. It demonstrates that the validity of both models.
However, one should also note that the separation between
the upper and lower bounds increases with the increase of
Ep/Enm ratio.

As the Ep/En, ratio is lower than 10, the separation be-
tween the upper and lower bounds proposed in the present

O ST T 1T T 1T T T "1
04 F L eeemmmmTmmmmee .
- _.D_d_._ __0o___ ——— “\\
9o o Y
£03 [ o 2,
s F X
K N -— Eq. (16 y
< . a. (16) \
3 b ——Eq. (20) j
& 0.2 [ L H-S model o]
. o [22] e
01 -
0 L L 1 L 1 1 1 L 1 L 1 _n__l_ L 1 1 1 1 |
0 10 20 30 40 50 60 70 80 90 100

Glass fiber content / (Vol%)

Fig. 4. Poisson’s ratio of the epoxy—glass fiber composites as function of
glass fiber content. ThEy/Er, ratio of the system is 21.
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0SS 7T T T T T T T 4. Conclusions

e A model on the estimation of the Poisson’s ratio of com-
TN posite is proposed in the present study. The experimental data
A of three composite systems are compared with the model pre-
' diction. Agreement between the model prediction and the ex-
H perimental data has been found. Comparison has also been
-— Eq.(16) b made with the modified Hashin—Shtrikmam (H-S) bounds on
. Eq.(20) Poisson’s ratio. Similar to the H-S bounds, the present model
can offer close bounds on the composite with EpMEr, ratio.
However, as th&p/En, ratio is large, the separation between
the upper and lower bounds is also large.
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