PREPARATION AND MAGNETIC PROPERTIES OF (Co,Zn)-DOPED γ-Fe₂O₃ PARTICLES

C.H. Lin

Dept. of Materials Science, Tsing Hua Univ., Hsinchu, Taiwan P.C.Kuo & J.A. Chen,
Institute of Materials Science, Taiwan Univ., Taipei, Taiwan Y.D. Yao,

Institute of Physics, Academic Sinica, Taipei, Taiwan.

Abstract—Oxidation temperatures and times of Fe $_3$ O $_4$ to produce (Co,Zn)-doped τ -Fe $_2$ O $_3$ particles were examined in this study to relate these two parameters to void, particle size, saturation magnetization, coercivity, and squareness. The effect of Zn/Co ratio on magnetization and coercivity of the particles was also studied.

The partial substitution of Zn for Co in Co- γ -Fe₂O₃ increased the σ value and environmental stability, but decreased the ${}_1H_c$ and the squareness of γ -Fe₂O₃.

TNTRODUCTTON

CO- τ -Fe₂O₃ particles, which find extensive application in high desity recording media, are produced by the dehydration, reduction, and oxidation of wet-chemically prepared α -FeOOH. The addition of Zn, which was produced by absorbing Co and Zn ions on the surface of τ -Fe₂O₃^[1-2], has been found to be capable of increasing the stability of Co- τ -Fe₂O₃ particles. A preliminary study^[3], in which Co and Zn ions were initially absorbed on the surface of α -FeOOH instead of τ -Fe₂O₃ and then through the dehydration, reduction, and oxidation processes, has shown that (Co,Zn)- τ -Fe₂O₃ particles have some interesting magnetic properties. In this article a further study is undertaken on the preparation of (Co,Zn)-doped τ -Fe₂O₃ particles by the oxidation of (Co,Zn)-Fe₃O₄ and their magnetic properties.

EXPERIMENTAL

Acicular (Co,Zn)-doped Fe $_3O_4$ particles containing 5 and 8 wt% of of Co and Zn ions in total (Co+Zn+Fe) and having various 2n/Co ratios were produced by first wet-chemically synthesizing α -FeOOH particles. This was next followed by adding Co and Zn ions onto the surface of the α -FeOOH particles, dehydrating α -FeOOH to form α -Fe $_2O_3$, and reducing α -Fe $_2O_3$ to form Fe $_3O_4$ by hydrogen. The details of the preparative procedures are reported elsewhere⁶³.

Various temperatures and times were used to oxidize (Co, Zn)- Fe_3O_4 particles. Because DTA analysis indicated that the complete oxidation temperature of γ - Fe_3O_4 is 252°C, oxidation temperatures ranging from 320 to 420°C were selected.

After the preparations of the particles, XRD, TEM, and \mbox{VSM} were used to examine the particles.

RESULTS AND DISCUSSION

The σ value (saturation magnetization) of τ -Fe₂O₃ indicated in Figure 1 and 2 was found to decrease with increases of both the oxidation temperature ranging from 310°C to 420°C for 1.5 hrs and oxidation time ranging from 1 to 53 hrs at 350°C. XRD analysis indicates that this phenomena occurred because some of the τ -Fe₂O₃ was transformed into α -Fe₂O₃. The σ value of τ -Fe₂O₃ illustrated in Figure 3 was found to

increase with the Zn/Co ratio ranging from 0 to 0.7 since cobalt zinc ferrite has higher magnetic moments than pure cobalt ferrite. The σ value of lowest curve in Figure 1 and Figure 2, which contained no zinc ion, decreased more rapiely than other (Co,Zn)- τ -Fe₂O₃ at high temperature region. This would imply the effect of zinc is to increase the high temperature stability of Co- τ -Fe₂O₃, i.e., the resistance of τ -Fe₂O₃ to α -Fe₂O₃ transformation. The σ values of (Co,Zn)- τ -Fe₂O₃(8wt%) given in Figure 3 were always slightly smaller than those of (Co,Zn)-doped τ -Fe₂O₃(5wt%). This phenomena is difficult to explain since the σ values of pure COO·Fe₂O₃(80 emu/g) is larger than that of pure τ -Fe₂O₃(76 emu/g)¹⁴. It may be due to some nonmagnetic phase, which can not be detected by XRD analysis, existing in the (Co,Zn)-doped τ -Fe₂O₃.

The "Hc (coercivity) of (Co,Zn)-doped 1-Fe2O3 (Figure 4 and Figure 5) increased with a higher oxidation temperature or longer oxidation time of Fe₃O₄ because more Co diffuses inside $\gamma\text{-Fe}_2\text{O}_3$ and forms more cobalt ferrite which has higher coercivity than pure 7-Fe₂O₃. A trace amount of α-Fe₂O₃, which was produced either at a higher oxidation temperature or a longer oxidation period, might introduce a stress field in the sample and subsequently increase the *He value of T-Fe203. The removal of pores (Figuire 6) at a higher oxidation temperature removes the demagnetizing field and, subsequently, also increases the coercivity of Y-Fe₂O₃. The :Hc of the sample was found to increase with an increasing (Co+Zn) content. However, it would decrease with an increasing Zn/Co ratio because of a large anisotropy constant of cobalt ferrite and the addition of zinc ion decreases its anisotropic constant(K1).

The squareness of (Co,Zn)-doped τ -Fe₂O₃ (Figure 8 and 9) was found to have the same properties as ${}_{i}H_{c}$, which increases with either a higher oxidation temperature or longer oxidation time of Fe₃O₄.

DTA analysis in Figure 10 shows that the partial substitution of Zn for Co in Co-doped γ -Fe₂O₃ particles stabilized γ -Fe₂O₃ because the transformation temperature from γ -Fe₂O₃ to χ -Fe₂O₃ increased with Zn/Co ratio. The $_1$ H_c of the (Co, Zn)-doped γ -Fe₂O₃ (Figure 11) increased with the aging time at 60°C in air within 90 days because of γ -Fe₂O₃ oxidation.

Although a different method was used to produce (Co,Zn)-doped Fe₂O₃ in this study, the magnetic properties were found to be similar to those of previous works^[1-2].

CONCLUSIONS

The σ value of $(Co,Zn)-\gamma$ -Fe₂O₃ decreased with increased of both the oxidation temperature and oxidation time of Fe₃O₄. The σ value of τ -Fe₂O₃ increased with the Zn/Co ratio but decreased with the (Co+Zn) content. The partial substitution of Zn for Co in $Co-\gamma$ -Fe₂O₃ increased the resistance of τ -Fe₂O₃ to τ -Fe₂O₃ transformation.

The $_{1}H_{c}$ and squareness of (Co,Zn)-doped $\gamma\text{-Fe}_{2}O_{3}$ increased

0018-9464/94\$4.00 © 1994 IEEE

Figure 1 σ value of (Co,Zn)- τ -Fe₂O₃ related to various oxidation temperatures of τ -Fe₂O₃ (oxidation time = 1 hr, (Co+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 2 σ value of (CO,Zn)- Υ -Fe₂O₃ related to various oxidation times of Υ -Fe₂O₃ (oxidation temperature = 350°G, (CO+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 3 σ value of (Co,Zn)- γ -Fe₂O₃ related to various Zn/Co ratios (T=350°C, t=1.5 hrs)

with a higher exidation temperature or longer exidation time of Fe₃O₄ because of the formation of more cobalt ferrite, the stress field of α -Fe₂O₃, and the removal of pores. The $_1H_c$ of γ -Fe₂O₃ was increase with an increasing (CO+Zn) content, decreased with an increasing Zn/Co ratio because of smaller K_1 value of zinc ferrite.

The partial substitution of Zn for Co in Co- τ -Fe₂O₃ increased the σ value and environmental stability, but decreased the $_1H_c$ and squareness of τ -Fe₂O₃.

REFERENCES

- [1] G. Kaganowicz, E.F. Hooking and J.W. Robinson, IEEE Trans. Magn. MAG-11, pp.1194, 1975.
- [2] A. Rousset, G. Bonino, M. Gougeon and P. Mollard, ibid. MAG-23, pp.77, 1987.
- [3] P.C. Kuo and J.A. Chen, J. Matl. Sci., pp.817, 1993.
- [4] B.D. Cullity, Introduiction to Magnetic Materials, 1972, pp.190-201

Figure 4 ;H_c value of $(Co,Zn)-\gamma-Fe_2O_3$ related to various oxidation temperatures of $\gamma-Fe_2O_3$ (oxidation time = 1.5 hrs, (Co+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 5 $_{1}$ H_c value of (Co,Zn)- τ -Fe₂O₃ related to various oxidation times of τ -Fe₂O₃ (oxidation temperature = 350°C, (Co+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 6 Electron Micrographs of (Co,Zn)- γ -Fe₂O₃ t=1.5 hrs, (a) T=320°C, (b) T=410°C (Co+Zn)/(Fe+CO+Zn) = 8 wt%, Zn/Co=0.27

Figure 7 $_{1}H_{c}$ value of (∞ ,Zn)- γ -Fe₂O₃ at various Zn/∞ ratios (T=350°C, t=1.5 hrs)

Figure 8 Squareness of $(Co,Zn)-T-Fe_2O_3$ related to various oxidation temperatures of $T-Fe_2O_3$ (oxidation time = 1.5 hrs, (Co+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 9 Squareness of (Co,Zn)-T-Fe₂O₃ related to various oxidation times of T-Fe₂O₃ (oxidation temperature = 350°C, (Co+Zn)/(Fe+CO+Zn) = 8 wt%)

Figure 10 Transformation temperature of $(Co, Zn) - \gamma - Fe_2O_3$ to $\alpha - Fe_2O_3$ (Co+Zn)/(Fe+CO+Zn) = 5 wt%)

Figure 11 Environmental stability of $_{i}H_{c}$ in open air at 60°C, (Co+Zn)/(Fe+CO+Zn) = 5 wt%)