Preparation and magnetical studies of Mn  55Al50/Al bilayer films
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MnsoAlgo/Al bilayer films were fabricated on a glass substrate by rf magnetron sputtering. The films
were subsequently heat-treated in order to transform nonmagnetic MipAhse to magnetic
7-phase. The addition of Al buffer layer could enhance the adhesion of the MnAl films, and for
MngpAl50/Al bilayer films with Al layer thickness between 5 and 15 nm, we can obtain high
saturation magnetizatiof>390 emu/cr), and high coercivity>2200 0 MngoAl5o/Al films for

practical usage. Bending beam method analysis shows that the larger the residual stress of the
MngAlgo/Al bilayer film is, the higher the coercivity is. The relations between the saturation
magnetization, the coercivity and the phase transition, the microstructures of the films are
discussed. ©1997 American Institute of Physids$S0021-897€07)52208-7

I. INTRODUCTION ness of the films were measured by-&tep and SIMS. The

rf power was kept at 80 W, distance between target and

_substrate was set at 45 nm, and the deposition rate was 0.5
nm/s. The base pressure in the system was® ’ Torr, and

: . 7o : B o, after the high purity Ar gas was introduced, the discharge gas
investigated~’ This ~phase contains about 45-58 at. /°pressure was set at 1 mTorr. After sputtering, the

Mn. It has the CuAu | type structure and exhibits interesting,vmk_)OAI </Al bilayer films were annealed at temperatures be-

permanent magnetic properties. The mechanism for the forﬁ/veen 100 °C and 450 °C in vacuum for 30 min.

mation of ther-phase is that the high-temperature nonmag- Magnetic properties of the films were measured with

netic e—phaséhcp)_ transforms .mto a nonmagnetic VSM at room temperature. Crystal structure of the films

e-phaséorthorhombi¢ by an ordering reaction, then trans- . ) .

forms into a ferromagnetic-phaséfct) by a martensitic were characterized by x-ray diffractometer. The stress of
9 P y MnAI/Al film during annealing is measured by a bending

. Y8
phasRee(t:r:\r:lls;no:. variety of MnAl thin films have been beam method. Under this method, fiIm_sampIe was clamp in
studied ™ due to the progress of thin film techniques in the vacuum oven and from the reflection of a He-Ne laser
magnetic materials. In previous wotkwe found that the beam, we convgrted the signal of the deflectlon position of
i . the laser beam into the stress value continuously. The film-

maximum magnetic properties of MnAl thin films occur at : .
. substrate adhesion was determined by a crude scratch test
the composition of MgAls, after heat-treatment. These _ . !
with stainless-steel tweezers.

films have nearly single phase of ferromagnetiphase.
However, because the magnetigphase comes from the
martensitic transformation of the-phase, the adhesion of

In 1985, Kond found that there is a ferromagnetic
7-phase in the MnAl alloy. After that, the structure and mag
netic properties of this ~phase were extensively

lll. RESULTS AND DISCUSSION

MnAl film with the glass substrate is poor. Figure 1 shows the x-ray diffraction patterns of the as-
In this article, we study the effect of an Al buffer layer deposited MgAls, films with various thickness of Al under-
on the adhesion and magnetic properties ofpAh, film. layers. For samples with the thickness of Al underlayer be-
Il. EXPERIMENT =
% o g-phase
The MryAls/Al bilayer films were deposited by an rf ©
magnetron sputtering system. The Al films were deposited = -
onto a room-temperature glass substrate and then the MnAl _;’ ® A
films were deposited on the Al films. A MgAl 496 alloy 3 W»—ij‘- A ]
target were produced from high purit99.99% Mn and Al ;i;’ o A
elements using a high-frequency induction furnace with a § @ e
protective argon atmosphere. This composition of MnAl al- SRl SN\ A A
loy target was proved later on to produce very good | © .
MnsAl 5o alloy films. The compositions of all the MnAl TN e N\ A A e Ao
films were determined by electron probe microanalyzer 30 35 40 45 50 55 60
(EPMA). The microstructure of these films were studied by 26 (deg.)

tr_ansmls_smn e.leCtror.] mlcro_scopjvEM). The MrsAlsg/Al FIG. 1. X-ray diffraction patterns of as deposited J¢l 5, films with thick-
b”_ayer films with various thickness of AI Ia_yer and GOQ NM ness of 600 nm, the thickness of Al underlayer @e0 nm, (b) 30 nm, (c)
thickness of MgAl 5, layer were used in this study. Thick- 60 nm,(d) 90 nm, ande) 120 nm, respectively.
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FIG. 2. Magnetic properties of MgAls//Al bilayer films with various thick-
ness of Al layer after annealed at 400 °C for 30 min.
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FIG. 3. X-ray diffraction patterns of MgAlsy/Al films after annealed at
400 °C for 30 min, the thickness of Al layers g 0 nm,(b) 30 nm,(c) 60
nm, (d) 90 nm, and(e) 120 nm, respectively.
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FIG. 4. Annealing temperature dependencéviaf andH for MnggAl 5//Al
bilayer films.
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FIG. 5. The TEM photographs of the films annealing(at 100 °C, (b)
300 °C, and(c) 400 °C for 30 min.

low 30 nm the diffraction peaks indicated that Ml
films form quite well crystallines-phase. However, if the Al
underlayer becomes thicker than 30 nm, thghase seems
less well crystallized gradually. Figure 2 shows the satura-
tion magnetizatiorM ¢ and coercivityH . of the MnyAl 5y/Al
bilayer films as a function of Al layer thickness. We can see
that theM andH,, are still quite high, for samples with the
Al thickness less than 15 nm. But they decrease quite a lot,
when the thickness of Al layer is increased from 15 nm to
120 nm. The decrease bf, andH . with increasing Al layer
thickness can be attributed to the formation of the nonmag-
netic y-phase after the annealing treatment. This can be seen
from the x-ray diffraction patterns of MgAls/Al films after
annealing at 400 °C for 30 min as shown in Fig. 3. Since the
magneticr-phase is transformed froephase during anneal-
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E of 5 °C/min from room temperature to 400 {Eig. 6(a)] and
15 ramp rate : 5°C/mipc 420 °C[Fig. 6(b)], respectively. At the highest temperature
NE stay 30 min at 400 for each case, it was kept isothermally annealing for 30 min,
~. 10f - healt,ing and then furnace-cooled to room temperature. From Fig. 6,
Z N coolng we can see that the residual stress of these two samples are
S about the samér=—8x10° N/m?) as the temperatures rise
Z O§ *‘L to the annealing temperaturé400 °C and 420 °C How-

@ E ever, after 30 min annealing and cooling down to room tem-

o _ef perature, the residual tensile stress of the film which an-

5 "o, nealed at 400 °Co=15x1C® N/m?) is larger than that of the
ot @ Sy film which annealed at 420 °Co=10x10® N/m?). There-

R T T T T T T T RT fore, the decrease of Hc above 400 °C as shown in Fig. 4 is

owing to the decrease of final residual stress in the film as

Temperature (°C) shown in Fig. 6.

205 o, Finally, we use stainless-steel tweezers to determined the
15k ;ﬁ;’;%gatgig 5°C/mip. film-substrate adhesion by a crude scratch test. It is found
a%\ heating that the adheS|o_n of all the MgAlgy/Al bilayer films _W|th
& 10f =2689 cooling glass ;ubstrate is much better tha_m that of;pAis, single
z ot layer films, even for the sample with an Al underlayer of 5
° 5E nm thickness.
= In conclusion, we have reported the effect of an Al
\; 0; *g buffer layer on the adhesion and the magnetic properties of
o F MngoAlsg films. The Al buffer layer enhances the adhesion
5 7% o \""-“‘“"1" between the MnAl films and the glass substrate, and for
v e MnseAlsy/Al bilayer films with Al layer thickness between 5
050 100" 150 200 250500 550 400 450 and 15 nm, we can obtain MghlsyAl films with high satu-
Temperature (°C) ration magnetizatiort>390 emu/cm), and high coercivity

FIG. 6. Temperature dependence of stress fogMiRy/Al bilayer films, the (2200 Og for p_ractical usage. \_Ne have also demo_n_Strated
thickness of Al layer is 30 nm(a) Annealed at 400 °C for 30 min(b) that the saturation magnetization and the coercivity are
Annealed at 420 °C for 30 min. closely related to the phase transition and the microstructures

of the films.

ing, the decrease of the amount sphase with increasing
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