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Abs t rac t - -To  validate a particle trajectory model as a first check, one usually applies the model in 
simulating the dispersion of fine particles in homogeneous  and stationary turbulence and compared 
the simulation results with the classical result of Taylor 's theory. In this paper we present an analytic 
procedure to derive the dispersion properties of fine particles in homogeneous  and stationary 
turbulence according to the mechanisms of particle trajectory models. Our  approach avoids the use 
of numerical integration and the finite number  of Monte-Carlo trials. This can shed light on the 
model properties without the mask  of errors originated from numerical integration and statistical 
trials. Based on our approach, nine particle trajectory models in the literature are examined. In 
addition, the effects of the time interval of numerical integration taken in the models are analyzed 
and discussed. Copyright © 1996 Elsevier Science Ltd. 

1. I N T R O D U C T I O N  

The problem of dispersion and/or deposition of particles in turbulent flows is important in 
many fields of engineering. The transport and dispersion of aerosols in air and water, the 
mixing of fuel droplets in combustion chambers, the dust flow in electrostatic precipitator 
and the wall losses of a turbulent sampling tube, etc. are typical problems. 

Numerical models appearing in the literature for particle motion in turbulent flows are 
constructed on either an Eulerian approach or a Lagrangian approach. Eulerian approach 
treats both the fluid and particles as a continuous medium with different phases. The 
dispersion of particles is predicted by solving the transport equations of these two phases. 
The difficulty of Eulerian approach is to determine the eddy diffusivity coefficient of the 
particles. Furthermore, Eulerian approach encounters the more difficult problem while 
particles influenced by external force, such as gravitational force. 

Models employing the Lagrangian method are usually known as trajectory models. In 
general, to simulate or predict the dispersion and/or deposition of particles in turbulent flow 
by the so-called Lagrangian trajectory models includes the following key features: 

(1) the realization of fluid instantaneous fluctuating velocity by known turbulence 
statistics, e.g. mean quantities and the second moment quantities, 

(2) an ad hoc relationship between the Lagrangian and Eulerian statistics needs to be 
established, such that the driving fluid velocity history for a particle at consecutive positions 
can be constructed, 

(3) a numerical integration of the equations of particle motion is performed, 
(4) the dispersion of a cluster of particles can be evaluated only by a large number of 

trials (the so-called Monte-Carlo method) by repeating steps (1)-(3). 

This approach is first presented by Yuu et al. (1978), and the differences among the 
models are the generating methods of the instantaneous fluid velocity (e.g. Step (2)) and 
choice of time interval At of numerical integration (Gosman and Ioannides, 1981; Shuen 
et al., 1983; Ormancey and Martinon, 1984; Kallio and Reeks, 1989; Zhou and Leschziner, 
1991; Abuzeid et al., 1991; Berlemont et al., 1990; Lu et al., 1992, 1993a, b). Based on this 
approach, particle trajectory models had been used to predict or simulate the performance 
of a shrouded probe sampling in turbulent flow (Gong et al., 1993), wall deposition of 
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aerosol particles in turbulent flow (Kallio and Reeks, 1989; Abuzeid et  al., 1991), solid 
particle motion in grid-generated turbulent flows (Ormancey and Martinon, 1984; Zhou 
and Leschziner, 1991; Berlemont et  al., 1990; Lu et  al., 1993b), particle dispersion in 
turbulent round jets (Yuu et  al., 1978; Shuen et  al., 1983), and the mixing of fuel droplets in 
combustion chambers (Gosman and Ioannides, 1981). 

The validity and suitability of a particle trajectory model can be checked only through 
statistical sense by comparing the simulation and experimental data. To validate their 
models as a first check, the developers of the models usually applied their model in 
predicting the dispersion of fine particle in homogeneous and stationary turbulence, and 
compared the prediction with the classical result of Taylor's theory (see Gosman and 
loannides, 1981; Shuen et al., 1983; Ormancey and Martinon, 1984; Kallio and Reeks, 1989; 
Berlemont et  al., 1990; Zhou and Leschziner, 1991). Adopting this checking procedure is 
based on a simple belief that any model suitable for complicated flows must be able to 
retrieve the simplest asymptotic condition, i.e. the dispersion of fine particles in homogene- 
ous and stationary turbulence. In addition, the fine particle case can be considered as the 
case of particles with relaxation time far smaller than the turbulent eddy time scale. 

In this paper, we present an analytic procedure to derive the dispersion properties of fine 
particles in homogeneous and stationary turbulence according to the mechanisms of 
particle trajectory models. Our approach avoids the effects of using numerical integration 
and the bias due to the finite number of Monte-Carlo trials. The results may shed light on 
the model properties without the mask of errors originated from numerical integration and 
statistical trials during the aforementioned preliminary model checking. Based on our 
approach, nine particle trajectory models in the literature are examined. They are the 
models proposed by Yuu et  al. (1978, donated YYHJ model), Gosman and Ioannides (1981, 
GI model), Shuen et  al. (1983, SCF model), Kallio and Reeks (1989, KR model), Zhou and 
Leschziner (1991, ZL model), Abuzeid et al. (1991, ABA model), Ormancey and Martinon 
(1984, OM model), Berlemont et  al. (1990, BDG model), and Lu et  al. (1992, 1993a, b, LFA 
model). In addition, the effects of the time interval of numerical integration taken in these 
models are analyzed and discussed. A short review of these models is presented in the next 
section. 

It should be noticed that only the models with the aforementioned key features can be 
analyzed by our approach. For example, our approach cannot extend to examine the model 
of Ahmadi and his co-workers (Li and Ahmadi, 1992; Li et  al., 1994), which has been 
successfully applied to aerosol particle dispersion and deposition in turbulent channel flows. 
In their model, the fluid fluctuating velocity is generated by a continuous Gaussian random 
field proposed by Kraichnan (1970). 

2. SUMMARY OF PARTICLE TRAJECTORY MODELS 

Particle trajectory models are developed to predict the motion of particles in complicated 
turbulent flow. In general, the complexity is due to the inhomogeneity and multi-dimen- 
sional nature of the turbulent flow. In addition, the equations of particle motion associated 
with the models may include the terms of particle inertia, gravitational force, drag force, 
lifting force, etc. In the following, the equations of particle motion are not presented, and 
only the one-dimensional mechanism of the models in homogeneous and stationary 
turbulence is described. 

2.1. Y Y H J  m o d e l  

In the YYHJ model (Yuu et  al., 1978), the fluid Lagrangian integral time scale is used as 
the time interval of numerical integration (hereafter it will be called as the time interval), i.e. 

Ati = -~L (1) 

in which Ati is the ith time interval of particle traveling and 3L is the fluid Lagrangian 
integral time scale. The fluid fluctuating velocity which drives a specific particle on its 
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traveling path is determined by 

up(tl) = u' G (ti) (2) 

in which ur(t~) is the driving fluid fluctuating velocity, the subscript p denotes on the particle 
path, u' is the root-mean-square of the fluid fluctuating velocity, and G(t~) is a random 
number drawn from a Gaussian probability density distribution of zero mean and unit 
standard deviation. 

The fluid fluctuating velocities in two successive time intervals of particle traveling are 
assumed to be uncorrelated. Yuu et al. (1978) explained that each movement of a specific 
particle is controlled by a turbulent eddy with a specific Lagrangian integral time scale. As 
a result, when the particle travels after a time interval -~L, the particle can be considered as 
falling into another eddy that is independent of the previous eddy in its characteristics. 

2.2. GI and SCF  models 

In the GI and SCF models (Gosman and Ioannides, 1981; Shuen et al., 1983), the time 
interval of particle traveling is determined with the minimum between the eddy lifetime 
te and the transit time tt, 

Atl = min(te, tt). (3) 

The eddy lifetime te is equal to -~L and the transit time t t is the time for a particle to pass 
through an eddy. A minor difference between the GI and SCF models is the method to 
estimate the eddy lifetime t~. Furthermore, the driving fluid fluctuating velocity in both 
models is determined by 

up(t~) = (2k/3) 1/2 G(t,) (4) 

in which k is the local value of turbulent kinetic energy. 

2.3. K R  model 

In the KR model (Kallio and Reeks, 1989), a random time scale, called an instantaneous 
eddy lifetime, serves as the time interval of particle traveling, i.e. 

At~ = E(ti) ~L (5) 

in which E(ti) is a random number drawn from an exponential probability density distribu- 
tion, i.e. 

f ( x ) = e  -x f o r 0 ~ < x ~ < ~  (6) 

in whichf(x)  is the exponential probability density function with unit mean and defined in 
the range from zero to infinity. The method to generate the driving fluid fluctuating velocity 
in this model is same as in the YYHJ model, as shown in equation (2). 

2.4. Z L  model 

Zhou and Leschziner (1991) assumed that the fluid driving velocity at successive time 
intervals are related by a time-correlation coefficient, 

Up(ti)  = a U p ( t i - 1 )  q- u' x /1  - a 2 G ( t i )  (7) 

and 

a = RpL(Ati) = Uv(ti)u p (tl- 1)/u '2 (8) 

in which RpL(Ati) is a time-correlation coefficient. The exponential-type of correlation 
function is used in this model, i.e. 

R p L ( A t i )  = exp(-- Atl /3L)  (9) 
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2.5. ABA model 

Abuzeid et al. (1991) used a similar time-correlation concept as in the ZL model, but the 
form of the generation of the driving fluid fluctuating velocity is different. In the ABA 
model, the driving fluid fluctuating velocity is generated by 

Up(ti) = u' ~ G ( t i )  + u'x/1 -- ~G(ti-1) i10) 

in which e is an empirical parameter, and ~ = 0.2 is suggested by Abuzeid et al. (1991). 
According to equation (10) and the definition in equation (8), a relationship between ~ and 
RpL(Ati) can be deduced as 

RpL(Atl) = ~ / ~  - ~). (11) 

2.6. OM model 

The traveling paths of a fluid parcel and a specific particle, even if they start at the same 
location and at the same time, are different. This distinction is absent from the ZL and ABA 
models; however, it is included in the OM model. In OM model, trajectories of a fluid parcel 
and a specific particle, as they start at the same position and at the same time, are traced. 
The time interval in this model is limited to the range from zero to 3L, that is 

A t i = f l 3 e  and O<fl~< 1. (12) 

The fluid fluctuating velocity on the fluid parcel path is generated by 

where 

u:(ti) = u:(t i-  1) F1 (ti) + u' F 2 (ti) G(ti), (13) 

Fl(ti)  = 1, F2(ti) = 0 for [3 < N(ti) <<. 1, (14) 

Fl(ti) = O, F2(ti) = 1 for 0 < N(ti) <~ fl (15) 

in which the subscript f denotes on a fluid parcel path, while N(t~) is a random number 
sampled from a uniform probability density distribution defined in the range from zero to 
unity. The random number 7~eN(tl) can be considered as a random eddy lifetime. If the 
random eddy lifetime is smaller than the time interval fl-~e, it denotes the fact that the eddy 
in which the particle just stayed has vanished; hence a new value of fluid fluctuating velocity 
is generated by equations (13) and (15). In the opposite case, the fluid fluctuating velocity in 
the previous time step is retained by equations (13) and (14). The fluid fluctuating velocity 
on the path of the specific particle is connected to the fluctuating velocity on the path of the 
fluid parcel with a spatial correlation function. 

2.7. BDG model 

Berlemont et al. (1990) followed the same approach as Ormancey and Martinon (1984), 
but they provided a more general correlation function of the fluid fluctuating velocity. The 
fluid fluctuating velocity on the fluid parcel path is generated by 

u:(ti) = u' ~ bijG(tj) (16) 
j = l  

in which n is the total number of time intervals of particle traveling. From equation (16), it 
can be shown that (Berlemont et al., 1990) 

uf(ti)u:(tj) = u '2 ~ bikbjk. (17) 
k = l  
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If the correlation coefficient aq is defined as 

aij = u f ( t i ) u f ( t j ) / u  '2 = RL(I j  - - / [ A t )  (18) 

in which RL(I j  --  i[ At) is the fluid Lagrangian autocorrelation coefficient, equations (17) and 
(18) render the relationship 

air = ~" bikbjk. (19) 
k = l  

Berlemont et al. (1990) computed aij from the Frenkiel family of correlation functions, i.e. 

ai~ = e x p [ - - ] j  -- i lA t / (m 2 + 1)~L] cos[ml j  -- i lA t / (m  2 + 1)~L]. (20) 

A method to calculate blj was suggested by Berlemont et al. (1990). The fluid fluctuating 
velocity at the location of the specific particle is connected to the fluctuating velocity at the 
location of the fluid parcel just same as in the OM model. 

2.8. L F A  model  

The LFA model (Lu et al., 1992, 1993a, b) adopted a same idea as the OM and BDG 
models. However, this model adopted an explicit form of the relationships in which the 
timewise and spacewise correlation functions are used to connect the driving velocity for 
particle and fluid parcel at consecutive points on their pathlines. These are 

and 

Up(h) = aCUp(ti_ 1) + u ' x / 1  - a2c2 G(ti)  (21) 

a = R r ( A t i )  = u f ( t i ) u f ( t l -  1) /u '2, (22) 

c = RE(AS) = uf( t i )Up(t i ) /u  '2 (23) 

in which RE(AS) is the fluid Eulerian autocorrelation coefficient. Lu et al. (1992, 1993a, b) got 
the time correlation a from Frenkiel family of correlation functions with m = 0 (see 
equation (20)) and the spatial correlation coefficient c from a correlation function of the 
same type but with m = 1. 

3. D I S P E R S I O N  IN H O M O G E N E O U S  T U R B U L E N T  FLOW 

In this section, the dispersion properties of fine particles in homogeneous and stationary 
turbulence will be deduced based on the mechanisms proposed by different particle tra- 
jectory models summarized in last section. 

3.1. Basic  assumpt ion  

When considering the dispersion of fine particles in homogeneous and stationary turbu- 
lent flow, the mean flow direction is assumed to be in the xl-direction. The dispersion of fine 
particles is only due to the lateral fluctuating velocity along the x2-direction. In addition, all 
particles are released at the origin 0(0, 0) and their initial velocities in the xz-direction are 
random values sampled from a Gaussian probability density distribution with zero mean 
and variance equal to the root-mean-square of the fluid fluctuating velocities. 

3.2. Ana ly t i c  me thod  

By assuming the dispersed particles with very small relaxation time, the motion of the fine 
particles will exactly follow the turbulent flow. So, the velocity of a specific particle can be 
obtained by setting it equal to the fluid velocity on the traveling path of the particle, and not 
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necessarily through integrating the equations of particle motion. Consequently, the dis- 
placement of a specific particle in the x2-direction (throughout this paper, displacement, 
dispersion and velocity, are indicated to be in the xz-direction) in the ith time interval is 
expressed as 

Ay(ti) - u p ( t i ) A t i  (24) 

in which Ay(ti) is the displacement of the particle in the ith time interval At~ and up(ti) is the 
velocity of the particle or the fluid fluctuating velocity in the ith time interval. After n time 
intervals, the total displacement of the particle is 

it 

~,tt, l = ~ Ay(tO = ~ upft,)At,. 125) 
i - - 1  i - - 1  

The mean squared displacement of all particles is expressed as 

y2(t,) = Ii~'xup(ti)Atil 2 . (26) 

Clearly, the dispersion of fine particles in homogeneous and stationary turbulence will 
depend on the mechanisms for the realization of the fluid fluctuating velocity and the time 
interval adopted by different models. A theoretical prediction of the dispersion of fluid 
particles in homogeneous and stationary turbulence has already been proposed by Taylor 
(see Hinze, 1975): 

y2(t) = dz /2  for t ~ 3L (27) 

and 

)'2(t) 2u '2 3 i t  for t > 31.. (28) 

This theoretical results can be used as checking standard to infer the suitability of different 
trajectory models. 

3.3. The dispersion properties of the particle trajectory models 

3.3.1. Y Y H J ,  GI and SCF models. Under the assumptions in this work, the fluid 
fluctuating velocity and the time interval taken in the YYHJ, GI and SCF models use the 
same formula. Combining the time interval in equation (1) and the fluid fluctuating velocity 
in equation (2) into equation (26), it yields 

With the properties 

and 

equation (29) can be reduced to 

Using 

equation (32) is reduced to 

I ~l u'G 12 y2(t,} = (ti) 31. . 
i 

(29) 

G(t~)G(tfl= 1 f o r i = j ,  (31) 

yZ(t,) = nu '2 3 2 . (32) 

t,,= ~Ati= ~ 3L =n3t. (33) 
i = 1  i = l  

y2(t,) = u 'z 3Lt,. (34) 

G(ti)G(t~) = 0 for i va.j (30) 
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Equation (34) is the dispersion of fine particles in homogeneous and stationary turbulence 
according to the YYHJ, GI and SCF models. 

3.3.2. KR model. In this model, the time interval is expressed in equation (5) and the 
generating method of the fluid fluctuating velocity is the same as the YYHJ model, as shown 
in equation (2). Combining equations (5) and (2) into equation (26), it yields 

y2(t.) = u'G(ti)E(tl).3L . (35) 
i 

Using equations (30) and (31), and the fact that E(ti) and G(tj) are independent of each 
other, equation (35) is reduced to 

y2(t,) = (u'3L) 2 ~ E2( t i ) .  (36) 
i = 1  

With the properties 

E(ti) = xe-X dx = 1, (37) 

E2(tl) = xZe-Xdx = 2, (38) 

V. = ~ Ati = ~ E(ti).3L =-~L ~ E(ti)= n~L (39) 
i = 1  i = 1  i = 1  

equation (36) is reduced to 

y2 (t,) = 2u' 2 . .~Ltn " (40) 

Equation (40) is the dispersion of fine particles in homogeneous and stationary turbulence 
according to the KR model. 

3.3.3. ZL and LFA models. For fine particle, the coefficient c in equation (23) reduces to 
unity. Comparing the generating method of fluid fluctuating velocity in equations (21) and 
(7), we know that the two equations in the LFA and ZL models, respectively, have the same 
form. The fluid fluctuating velocity in equation (7) is transformed to the following form: 

i 

blp(ti) = u'aiG(to) + u'x/1 -- a 2 ~ ai-JG(tj). (41) 
j = l  

Since there is no specific limitation for the selection of time interval in these two models, 
a reasonable expression of the time interval is 

Ati = f l ~ L  (42) 

in which/~ is a real number greater than zero. Combining equations (41), (42) and (26) yields 

yZ(t,) = ~ u'a'G(to) + u'x/1 - a 2 Z a-Jttj) [3~L • (43) 
i = 1  j = l  / / 

Furthermore, with the properties of equations (30) and (31), we obtain 

y2(t, ) = (flU,~L)2 [a  2 -- 2a "+2 + a 2"+2 (1 -- a2)t / 

Using the property 

2(a -- a "+1) 

(1 - a )  
+ 

(44) 

0 < a = e  a < l  (45) 
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and the condition for long dispersion time, i.e. 

nfi ~ ~ and n --* ~c,, 

equation (44) is reduced to 

. . . . . .  2 r , , (1  + a ) ]  

= , # u  -,L, L-rr 
Using the relation, 

i= l  i=1 

equation (47) can be expressed as 

o r  

r . , (1  + a ) ]  ,2 -  

(46) 

(47) 

(48) 

(49) 

From the definitions in equations (13)-(15), the following properties can be obtained: 

F2(h )  = F , ( t , )  = l - fi, (56) 

F2(t i )  = F2(ti) = fi, (57) 

Up(ti) = u' G(to) g l ( t k )  + ~ G(t,i)F2(tj) H Fl(tk) + G(ti)F2(t i)  for i >/2. 
j =  1 k = j +  1 

(55) 

and 

y2( t . )=[ /3  ( l + e  ~)~u'23 t 
( 1 - e % J  - ~ . .  /5o) 

Equation (50) is the dispersion of fine particles in homogeneous and stationary turbulence 
according to the ZL and LFA models at long dispersion time. 

3.3.4. A B A  model. In this model, we express the time interval as equation (42). Substitu- 
ting equations (42) and (10) into equation (26) yields 

1 y2(t,,) = ( u ' x f ~ G ( t , )  + u ' x / 1  - ~G( t i  ,))[:13e • (51) 
i = 1  

By the properties of equations (30) and (31), equation (51) is further reduced to 

yZ(t,) = (flu'~L) 2 [n + 2(n - 1) x/~(1 - ~)]. (52) 

Using equations (46) and (48), equation (50) can be expressed as 

y2(tn)  ~- [/~(1 -t- 2 % / ~  --  G))] b l ' 2 ~ L t n  . (53) 

Equation (53) is the dispersion of fine particles in homogeneous and stationary turbulence 
according to the ABA model at long dispersion time. 

3.3.5. O M  model. In this model, the time interval is expressed as in equation (12) and the 
fluid fluctuating velocity is expressed as in equations (13)-(15). The fluid velocity in equation 
(13) can be transformed to 

U p ( t l ) = u ' [ F l ( t l ) G ( t o ) + F z ( t ~ ) G ( t l ) ]  f o r i =  1 (54) 
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Fx(ti)Fl(t j)  = Fl ( t i )F l ( t j )  for i ~ j ,  (58) 

F2(ti)F2(t i) = Fz(ti) F2(t~) for i ~ j ,  (59) 

FI (ti)Fz(ti) = 0, (60) 

Fl(t i)Fz(t j)  = F~(ti)F2(tj) for i C j ,  (61) 

G(t,)r~ (t j) = G(ti) F~ (t j), (62) 

G(tl)F2(tj) = G(tl) F2(t~). (63) 

Substituting the time interval in equation (12) and the velocity in equations (54), (55) into 
equation (26) yields 

y2(t,) = ( (U 'Fl ( t l )G( to)  + u 'Fz( t l )G(t l )  

+ u' G(to) Fl(tk) + ~, G(t~)F2(t i) (tk) + G(tl)F2(tl) fl~L • 
i=2  j = l  k=j+ 

(64) 

With the properties of equations (30) and (31) and the properties of equations (56)-(63), we 
finally obtain 

y2(tn)=(flU"~L)2~ n(2-fl)T h- -2(1-f l )q-f122(1-  fl)n+ 1.] . (65) 

Using equations (46) and (48), equation (65) is reduced to 

y2(t,) = [2 - fl]U'2,~Lt,. (66) 

Equation (66) is the dispersion of fine particles in homogeneous and stationary turbulence 
according to the OM model at long dispersion time. 

3.3.6. BDG model. In this model, the time interval is expressed by equation (42). Substitu- 
ting the fluid fluctuating velocity in equation (16) and the time interval in equation (42) into 
equation (26), it yields 

yZ(tn) = ' bijG(tj) fl3L . (67) 
i=1 

With the properties of equations (30) and (31), we obtain 

y2(t,) = (flU'3L) 2 . (68) 
i=1 j 

With equation (19), equation (68) is reduced to 

ye(t,) = (flUt~,.~L) 2 ~ ~ aij. (69) 
i = l j = l  

Substituting the expression for aij (equation (20)) into equation (69), and with some 
manipulations, we have 

I 2(n - 1)e -p 2(e -2p - e -"p) 2e -"p y2(tn) = (fl~L) 2 n + 1 -- e -t~ (1 -- e-~)  2 1 - ~  j (70) 
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for m = 0 in the correlation function of the Frenkiel family. And, 

y2(t,)  = 

(fl~L)2 IF/ q-Re {-2(~ - e-(li)e-(l + i ')/~/2 + i ' ) f l / 2  
2 ( e  - 2 ( 1 + i ' ) / ~ / 2  - e n(l+i')fl/2) 

(1 - e - (~  +i')/~/2)2 
2e .(~+,')e,,2 "~  

1 7 e - (  ~ +'  )~ ,~2~j  

(71) 

in which Re { } is the real part in the brackets and i' = ~ - 1  for m = 1 in the correlation 
function of the Frenkiel family. Using equations (46) and (48), equations (70) and (71), 
respectively, are reduced to 

I 1 - - e  --~ J 
COS U ' 2 ~ L t n  " YZ(t") = fl 1 + e -p - 2-e - ~  (fi/2) 

(72) 

(73) 

and 

Equations (72) and (73) are the dispersion of fine particles at long dispersion time in 
homogeneous and stationary turbulence according to the BDG model for m = 0 and m = 1 
in the correlation functions of the Frenkiel family, respectively. 

4. DISCU S S IO N  

In the following, we will focus on the comparison of the dispersion properties from model 
derivations and Taylor's theory for fine particles in homogeneous and stationary turbulence 
at long dispersion time (e.g. equation (28)). It should be noticed that the so-called long 
dispersion time as indicated by experiments (see Hinze, 1975) is valid when the traveling 
time of the fine particles is longer than several eddy time scales. In this situation, the 
dispersion behavior of the fine particles approaches to that of long dispersion time. 

For  the convenience of comparison, the dispersion of fine particles as derived from the 
models at long dispersion time can be expressed in a general form 

y2 (t,) --- f(fl)U'2.~L t, (74) 

in whichf(fl) is a "dispersion coefficient". Apparently, if the dispersion coefficient in a model 
depends on the value of fi, it implies that the dispersion predicted by the model is influenced 
by the magnitude of the time interval taken in the model. Comparing equations (74) and 
(28), we know that a model to conform the Taylor's theory requires 

.f(fl) = 2. (75) 

The dispersion coefficient f ( f l )  inherent in each models is summarized in Table 1. In 
Table l, it is found that the values o f f ( f l )  of the YYHJ, GI, SCF and KR models are 
constant. This is due to the fact that the time interval taken in these models has been limited 
in a specific way. For  example, fl = I is used in the YYHJ, GI and SCF models. On the other 
hand, thef(fi)  of the ZL, LFA, ABA, OM and BDG models is a function of ft. It implies that 
the dispersions predicted from these models are dependant on the time interval taken in 
these models. In general, the users of a model may arrange the time interval as small as 
possible in simulating the particle motion in turbulent flows. So, the values off(fl) at fi <~ 0.1 
for different models are calculated in Table 2, It shows that most models except ABA 
conform the Taylor's theory very well. This is true provided that the time intervals used in 
the models are kept small as compared to the eddy time scale. However, in some situations, 
it cannot avoid the choice of a large value of ft. For  example, when the model is applied to 
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Model Ati f ([3) 

YYHJ, GI, SCF 3L 1 
KR E(tl)" 3 2 
ZL, LFA fl,3L fl(1 + e ~)/(1 -- e -s) 
ABA fl3L /~(1 + 2x//~i -- a)) 
OM* /~L 2 -- fl 
BDG + (m = 0) fl,3L fl(l + e-~)/(1 - e ~) 
BDG ) (rn = 1) fl~L /~(1 -- e 8)/(1 + e -~ -- 2e-~'2cos(fl/2)) 

* In the OM model, fl should be used in the range of 0 < fl ~< 1. 
+The definition of m is given in equation (20). 

Table 2. Dispersion coefficient of particle trajectory models at fl ~< 0.1 

f(/~) of models 

BDG + BDG+ 
fl ZL, LFA ABA* OM (m = 0) (m = 1) 

0.01 2.0000 0.0180 1.9900 2.0000 2.0000 
0.02 2.0001 0.0360 1.9800 2.0001 2.0000 
0.03 2.0001 0.0540 1.9700 2.0001 2.0001 
0.04 2.0003 0.0720 1.9600 2.0003 2.0001 
0.05 2.0004 0.0900 1.9500 2.0004 2.0002 
0.06 2.0006 0.1080 1.9400 2.0006 2.0003 
0.07 2.0008 0.1260 1.9300 2.0008 2.0004 
0.08 2.0011 0.1440 1.9200 2.0011 2.0005 
0.09 2.0013 0.1620 1.9100 2.0013 2.0007 
0.10 2.0017 0.1800 1.9000 2.0017 2.0008 

*In ABA model, c~ = 0.2 is used (see equation (10)). 
+The definition of m is given in equation (20). 

par t ic le  m o t i o n  n e a r  the  solid wall ,  where  the eddies  are of very l imi ted  size a n d  t ime scale. 
F i g u r e  1 shows  the  v a r i a t i o n s  off(/3) w h e n  the va lues  of/3 are up  to five. It  shows  tha t  all the 
m o d e l  p r ed i c t i ons  are  d ev i a t i n g  f rom Tay lo r ' s  theory.  

In  T a b l e  1, we f ind tha t  the YYHJ ,  G I  a n d  S C F  m o d e l s  which  used a t ime  in te rva l  
d e t e r m i n e d  by  eddy  in tegra l  t ime  scale m a y  u n d e r e s t i m a t e  the d i spe r s ion  by  a factor  of  
one-half ,  This  s i t u a t i o n  was  also f o u n d  by Ka l l i o  a n d  Reeks (1989) in a n u m e r i c a l  test. 
A c c o r d i n g  to e q u a t i o n s  (29)-(34), if the t ime  in te rva l  of these mode l s  is chosen  as 2~L 
ins t ead  of-~L, the  d i spe r s ions  p red ic ted  by these m o d e l s  m a y  c o n f o r m  to Tay lo r ' s  t heo ry  
exactly.  F u r t h e r m o r e ,  it is s h o w n  tha t  the  K R  model ,  by  us ing  a n  i n s t a n t a n e o u s  eddy  
l ifet ime concep t  to mod i fy  the Y Y H J  mode l ,  has  been  p r o v e n  to be very  successful.  In  K R  
mode l ,  the  i n s t a n t a n e o u s  eddy  l ifet ime is real ized f rom a n  e x p o n e n t i a l  p r o b a b i l i t y  dens i ty  
func t ion ,  i.e. e q u a t i o n  (6). However ,  a c c o r d i n g  to o u r  analys is ,  the type  of  the  p r o b a b i l i t y  
dens i ty  f u n c t i o n  can  be re laxed  to the fo l lowing  cond i t ions :  

a n d  

E(ti) = 1 (76) 

EZ(ti) = 2. (77) 

T h e  d i spe r s ion  p roper t i e s  of  A B A  m o d e l  d e p e n d s  o n  the d e t e r m i n a t i o n  of  b o t h  the t ime  
in t e rva l  a n d  the  empi r i ca l  p a r a m e t e r  ~, as s h o w n  in T a b l e  1. A p p l y i n g  T a y l o r ' s  t heo ry  as 
a guide,  the  t ime  in t e rva l  a n d  the  empi r i ca l  p a r a m e t e r  ~ have  the r e l a t i onsh ip  

/3(1 + 2 x f ~ l  -- ~)) = 2. (78) 
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Fig. 1. The variations off(fl) vs fl in particle trajectory models. 

Abuzeid et al. (1991) suggested use of ~ = 0.2, this requires a value of 

fi = 1.1. (79) 

The relationship between ~ and the correlat ion function is expressed in equat ion (11). If the 
correlat ion function of exponential- type is used, the relationship between ~ and/3  is 

e ~ = ~ -  ,~). (80) 

The solution of equat ions (78) and (80) yields 

/3 = 1.29 and ~ = 0.92 or 0.08. (81) 

The results in equat ions (79) and (81) indicate that the time interval taken in the ABA model 
should be larger than the Lagrangian  integral time scale. 

For  the O M  model,  as the time interval approaches  zero, this model reveals the result of 
Taylor ' s  theory, as shown in Fig. 1. By checking the driving fluid velocity in equations 
(13)-(15) in O M  model,  it can be seen that if/3 = 1 is used in this model, the mechanism of 
this model  will fall into the same form as YYHJ,  GI  and SCF models for fine particles in 
homogeneous  and stat ionary turbulence. Also, this proper ty  is proved in our  analysis as 
shown in Table 1 and Fig. 1. They show that  f(/3) = 1 at/3 = 1 in O M  model. This result is 
exactly the same as that of YYHJ,  GI  and SCF models. 

In the Z L  and L F A  models, the correlat ion function of  exponential- type (e.g. correlat ion 
function in the Frenkiel family with m = 0) is used. Figure 1 reveals that, as the time interval 
approaches  zero, the dispersion from these two models converges to the result of Taylor 's  
theory. In the B D G  model,  the Frenkiel family of correlat ion functions with m = 0 or  m = 1 
can be used. For  m = 0, the B D G  model  shows the same dispersion results as the ZL and 
LFA models. In B D G  model, the dispersions in both cases m = 0 and m = 1 approach  
Taylor ' s  theory as/3 approaches  zero. However,  the case with m = 1 has a better prediction. 
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If the correlation function with m = 1 is used in the ZL and LFA model, we find the 
dispersion result are same as BDG models with m = 1. In fact, if the Frenkiel family of 
correlation functions is used, a general form of dispersion coefficient in the ZL, LFA and 
BDG models can be expressed as 

1 - -  e - 2 f l / ( m 2 +  1) 

f ( f l )  = fl i + e -2a/("2+ 1) -- 2 e - a / ( " : + ' ) c o s ( m f l / ( m 2  + 1)) " (82) 

It should be noticed that the mechanisms to produce the driving fluid fluctuating velocity 
on the traveling path of a specific particle between the models of LFA (or ZL) and the BDG 
are quite different. The same dispersion results in these models as shown in equation (82) 
allows the users of models to apply the model with simpler mechanism. 

5. C O N C L U S I O N  

An analytic approach is used in this paper to derive the dispersion properties of fine 
particles in homogeneous and stationary turbulence according to the mechanisms of 
different particle trajectory models. So, the analytic forms of dispersion associated with 
different models can be compared with the classical Taylor dispersion theory. This may 
provide us an understanding of model properties, the minor tune-up of the models with 
some empirical constants, and the determination of numerical time intervals associated with 
different models used to predict the dispersive motion of particles in turbulence. Some 
tentative conclusions can be drawn as follows: 

(1) Most of particle trajectory models may conform to the Taylor's theory under the 
condition of a careful determination of some empirical constants associated with the time 
interval used in the model's numerical procedure. 

(2) Particle trajectory models which adopt the eddy lifetime scale as the time interval of 
their particle dispersive motion in turbulence may improve their predictions as compared to 
Taylor's theory, if the time interval could be tuned up to twice the Lagrangian integral time 
scale. This includes the models of YYHJ, GI and SCF. 

(3) The group of models which adopt a time-correlation coefficient to connect the 
turbulent fluctuating velocity at a consecutive time interval, or at consecutive positions may 
predict the Taylor's result exactly as long as the time interval in numerical procedure kept 
much smaller than eddy time scale. This group of models include OM, ZL, LFA and BDG 
models. 

(4) When the dispersed particles are of larger relaxation time as compared with the local 
eddy time scale, we think the major mechanisms responsible for the total dispersion are 
more complicated than the situations that we are treating here. However, we still believe 
that the findings in this paper may provide a good rule of thumb to design a particle 
trajectory model applied to complicated dispersion process. 
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