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Study on a three-dimensional testing method coupling with a
leaching behavior model for solidified waste matrix

KUEN-SHAN LIU and KUNG-CHEH LI

Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan

The objective of this study was to develop a three-dimensional leaching method to understand the diffusion behavior of a solidified
waste matrix. A cylindrical solidified waste matrix with isotope lead compounds used as a tracer was used to demonstrate the diffusion
phenomenon. The leaching test method was coupled with the mathematical diffusion model derived from Duhamel’s theorem to control
the time-dependent conditions and compute the mass diffusivity and mass generation rate constant of the target pollutants and also
simulate the pollutants leached from solidified waste matrix. The simulation value is in fair agreement with experiment.

Keywords: Isotope, diffusion model, lead, fly ash, solidification

Introduction

When the public water supply system source is contam-
inated by lead, long-term health effects, such as brain
and kidney damage, birth defects, are produced.[1] Taiwan
municipal solid waste incinerator (MSWI) fly ash contains
lead oxide. After TCLP testing, the fly ash is classified as
hazardous waste. MSWI fly ash must therefore be treated
and tested before disposal. The characteristics of MSWI
fly ash vary with the refuse source and the incinerator
operating temperature. The solidifying agent, the leachant,
the size of the waste matrix and leaching test method all
affect the diffusion behavior, of the solidified waste matrix.
According to previous studies, it was difficult to illustrate
the waste matrix diffusion behavior, as solidified waste ma-
trix contains large pores and the mass flux during leaching
may not be proportional to the concentration gradient
and may even be against it.[2] Most solidified waste matrix
diffusion models consider only one- or two-dimensional
diffusion.[3−5] As a result, mass diffusivity measurement
methods lack reliability.

The diffusion behavior of a solidified waste matrix
is a non-homogeneous diffusion problem. Accordingly,
Duhamel’s theorem, with the time-dependent boundary
condition, and/or time-dependent condition, provides a
convenient approach for mass diffusivity and mass gen-
eration rate constant measurements.[6,7] The experimen-
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tal setup design and development of the three-dimension
diffusion model in this study were based on Duhamel’s
Theorem.

The MSWI fly ash was mixed with lead isotope and the fly
ash then was solidified and molded into cylindrical shapes.
The molded solidified waste matrix was placed in a cylin-
drical container and a γ detector instrument was applied
to measure the lead isotope leached out of solidified waste
matrix. The mass diffusivity (α) and mass generation rate
constant (k) of the solidified waste matrix were measured
accurately under a unique leaching method design using a
cylinder specimen and a cylindrical leaching vessel. The em-
pirical mass diffusivity and mass generation rate constant
are obtained using the least square method. The lead iso-
tope release simulation from a solidified waste matrix can
be calculated from the diffusion model using the empirical
mass diffusivity and mass generation rate constant.

In general, solidification has been widely applied in haz-
ardous waste management, including MSWI fly ash. When
a solidification process is employed, the potential for con-
taminant loss from a solidified waste matrix is usually de-
termined by leaching tests. Such leaching tests have been
applied to characterize the impact for modeling steps. As
mentioned above, most solidified waste matrix diffusion
models consider only one- or two-dimensional diffusion,
which does not allow the best leach phenomena description.
Therefore, the objective of this study is to develop a three-
dimensional diffusion model based on Duhamel’s theorem
that provides a good simulation of the release mechanism
to predict the long-term leaching behavior. This study also
designed a leaching test method coupled with an experimen-
tal set-up that provides the required test data to verify the
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Diffusion of solidified waste matrix 597

Table 1. Lead isotope leached from solidified waste matrix.

Cement added (%)
Isotope lead in

waste matrix (mg)Isotope lead
release (mg)

Leaching
interval

Leaching
duration (s) 20 40

20
1.05E-01

40
8.97E-02

1 3600 1.28E-02 9.59E-03 9.17E-02 8.01E-02
2 3600 6.52E-03 3.27E-03 8.52E-02 7.69E-02
3 3600 7.01E-03 4.75E-03 7.82E-02 7.21E-02
4 3600 3.47E-03 2.63E-03 7.47E-02 6.95E-02
5 3600 2.92E-03 2.41E-03 7.18E-02 6.71E-02
6 3600 1.85E-03 4.05E-04 6.99E-02 6.67E-02
Lead leached (%) 33.07 25.69

The volume of pH 0.89 phosphoric acid (leachant) to the surface of the solidified waste matrix is 16.

three-dimensional diffusion model. This procedure pro-
vides the confidence that the model performance is
acceptable.

Materials and methods

Preparation for testing a solidified waste specimen

Fly ash was taken from the Taichung MSWI incinerator
in Central Taiwan. A lead nitrate solution containing iso-
tope Pb21028, 362 Bq per mL in 3M HNO3, was added
to the fly ash. The ash was then mixed completely. MSWI
fly ash contains lead oxide at a combustion temperature
of 900◦C. Under this consideration, the mixed fly ash was
put in an oven at 900◦C for 10 hours. After cooling, the fly
ash containing lead oxide with Pb210 isotope was solidified
by adding water and 20%, 40% cement, respectively. The
amount of fly ash, water and cement yielded a specimen
with a water to solid ratio from 0.21 to 0.26. The solidified
waste matrix was molded into a cylinder with a diameter
of 1 cm and a length of 4 cm. Table 1 presents the leaching
contents of the solidified waste matrix.

Experimental apparatus and measurement procedure

Through 15 days of incubation, the cylindrical solidified
waste matrix was placed in a cylindrical leaching container
with a diameter and height both of 5 cm. Figure 1 shows the
experimental apparatus. The unoccupied volume in the so-
lidified waste matrix cylinder was used to contain 100 mL of
leachant. The lead released from the waste matrix exhibits
ion diffusion behavior at lower pH (pH ≤ 2).[8] Therefore,
phosphoric acid with pH 0.89 was used as the leachant in
this study. The ratio of the leachant volume to surface area
of the solidified waste matrix cylinder was 16. The leachant
just covered the solidified waste matrix cylinder. The ves-
sel was coved with a cap to minimized CO2 uptake. The
solidified waste matrix height in the cylinder was kept just
below the cylindrical container lip to prevent the leachant

from overflowing during the experiment. Leachant replace-
ment took place at the time intervals shown in Table 1. The
overall research procedure for model verification is shown
in Figure 2.

The amount of isotope lead that leached out of the solid-
ified waste matrix cylinder was measured every hour within
a six-hour experimental period. The leachate was collected
at the time intervals shown in Table 1. The amount of lead
isotope that had leached out of the cylinder was measured
with a γ detector. The mass diffusivity (α) and mass gener-
ation rate constant (k) can be directly calculated from the
observed parameters.

Based on Duhamel’s theorem, the empirical mass diffu-
sivity (αT) of the solidified waste matrix cylinder was com-
puted using the least-squares method. The empirical mass
generation rate constant (kT) was also computed using the
least square method and partly solved using the integra-
tion method. The calibrated diffusion model was devel-
oped using the empirical mass diffusivity, empirical mass
generation rate constant and Bessel function root. Conse-
quently, the simulated isotope lead released from a solidified
waste matrix can be calculated from the calibrated diffusion
model. The predicted lead isotope release from waste forms
can be employed to verify the effectiveness of the diffusion
model developed in this study. The diffusion model based
on Duhamel’s theorem is described in the following section.

Fig. 1. Cylindrical leaching apparatus.
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The simulation results were within one 

standard derivation of the experimental 

observations. 

Fig. 2. Scheme of the research procedure.

Model

Although a number of solidified waste diffusion models
have been developed, they do not include all of the dif-
fusion phenomena. The model developed by Poon and
Chen[9] uses leachant pressure flow in the leaching process.
The ANS 16.1 (American Nuclear Society, 1986) leach-
ing test only considers the pollutants occurring on the
perpendicular edge of the solidified waste.[10] There is a
limitation to the ANS 16.1 leaching test. The model de-
veloped by Godbee and Joy[11] focused on the solidified
waste surface to leachant volume ratio, the dissolution of
the cement component and pore structure. These mod-
els may caused the excess or retard the components dif-
fused from solidified waste. Although numerous leaching
test methods are available to evaluate the degree of stabi-
lization/solidification (S/S), no single test method can de-

scribe the complex leaching behavior of the solidified waste.
The exact solution for the diffusion equation depends on
the initial and boundary conditions. Reducing the diffusion
effect is the reason why a three-dimensional mathematical
method with the test specimen and leaching vessel having
the same shape is used to model diffusion behavior in this
study.

Because solidified waste diffusion is a non-homogeneous
problem, it can be divided into a set of simple problems
solved using the separation of variables method.[7] Al-
though leaching can proceed through several concurrent
mechanisms, the long-term leaching characteristics of solid-
ified treated wastes are controlled by diffusion.[12] The disso-
lution, sedimentation, desoption/adsorption, and erosion
do not significantly affect the leaching. The mathematical
diffusion model for the solidified waste matrix cylinder is
set up in this study as follows:
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Diffusion of solidified waste matrix 599

The homogeneous diffusion parts

Assume that a time varying concentrated lead isotope, C
(t), in a solidified waste matrix has no discontinuities. An
expression for the lead isotope concentration distribution
C(r, t) in the solidified waste matrix cylinder for times t >

0, the mathematical formulation of this problem is given
by

∂2C(r, t)
∂r2

+ 1
r

∂C(r, t)
∂r

= 1
α

∂C(r, t)
∂t

in 0 ≤ r < b, t > 0

(1a)
C(r, t) = C(t) at r = b, t > 0 (1b)
C(0, t) = 0 for t = 0 in 0 ≤ r ≤ b (1c)

where C(0, t): initial lead isotope concentration in the so-
lidified waste matrix

C(r, t) = time varying lead isotope concentration in the
solidified waste matrix

b = diameter of the cylindrical solidified waste spec-
imen

r = radius of the solidified waste specimen
α = mass diffusivity (cm2/s) of the lead isotope in

the cylindrical solidified waste
t = leaching time(s)

In the initial step toward solution using Duhamel’s theorem,
we solve first the problem when C(t) is the unit. Denoting
this result by � = �(r, t), the auxiliary problem is taken as

∂2�(r, t)
∂r2

+ ∂�(r, t)
r∂r

= 1
α

∂�(r, t)
∂t

in 0 ≤ r < b, t > 0

(2a)
� = 1 at r = b t > 0 (2b)
� = 0 f or t = 0 in 0 ≤ r ≤ b (2c)

Assuming that C(r, t) is differentiable, this is the superpo-
sition integral that gives the desired solution in terms of the
basic �(r, t). According to Duhamel’s theorem, an alterna-
tive form is obtained through integration by parts formu-
lated as follows:

C(r, t) =
∫ t

0
C(τ )

∂�(r, t − τ )
∂t

dτ (0 ≤ r ≤ b) or

C(r, t) = −
∫ t

τ=0
C(t)

∂�(r, t − τ )
∂τ

dτ (3)

τ is dimensionless time or Fourier number τ = αt
b2

Let

ψ(r, t) = 2
b

∞∑
m=1

e−αβ2
mt J0(βmr )

βmJ1(βmr )
(4)

Let Equation 4 be the problem solution for the solidified
waste matrix cylinder.

The βm values in Equation 4 are the positive roots of the
Bessel function and J0(βmb) = 0, J0(βmr), J1(βmr ) are the
zero and first roots of the first kind of the Bessel function.

For 0 ≤ r ≤ b, initially at concentration unity and for
times t >0.The boundary surface at r =b is kept at zero con-
centration. Let the constant initial concentration be C(r, t)
= 1. The solution for ψ(r, t) = 2

b

∑∞
m=1 e−αβ2

mt J0(βmr )
βmJ1(βmr ) is

then obtainable as

C(r, t) = 2C0

b

∞∑
m=1

e−αβ2
mt J0(βmr )

βmJ1(βmr )
(5)

The solution �(r, t) for the auxiliary problem, Equation 2
is obtainable from the solution ψ(r, t), given Equation 5 as
follows:

�(r, t) = 1 − ψ(r, t) = 1 − 2
b

∞∑
m=1

e−αβ2
mt J0(βmr )

βmJ1(βmb)
(6)

Introducing Equation 6 into Equation 3, the solution for
the Equation 1 problem can be derived as

C(r, t) = 2α

b

∞∑
m=1

e−αβ2
mtβm

J0(βmr )
J1(βmb)

[
C(0)e−αβ2

mt

+ e−αβ2
m(t−τ )dC(τ )

]
(7)

The βm values are the positive roots of the Bessel function
J0(βmb) = 0. To obtain an alternative form of Equation 7,
time integration is performed by parts to obtain the follow-
ing equation.

C(r, t) = C(t)
2
b

∞∑
m=1

e−αβ2
mt J0(βmr )

βm(βmb)

− 2
b

∑
e−αβ2

mt J0(βmr )
βmJ1(βmb)

×
(

C(0)e−αβ2
mt +

∫ t

0
e−αβ2

m(t−τ )dC(τ )
)

(8)

The intermediate steps of Equation 8 are described in
Appendix A, Part A.

We note that the solution for Equation 5 for t = 0 should
be equal to the initial concentration ψ(r, o) = 1; thus, we
have

1 = 2
b

∞∑
m=1

e−αβ2
mt J0(βmr )

βmJ1(βmr )
(9)

Which gives the desired closed-form expression for the first
series on the right-hand side of Equation 8, the solution for
Equation 8 is then written as

C(r, t) = C(t) − 2
b

∞∑
m=1

e−αβ
2
mt J0(βmr )

βmJ1(βmb)

×
(

C(0)e−αβ2
mt +

∫ t

0
e−αβ2

m(t−τ )dC(τ )
)

(10)

The solution given in this form clearly shows that C(r, t)
= C(t) at r = b.

Let e−αβ2
mt C(0) = 0. Differentiate

∫ t
0 e−αβ2

m(t−τ )dC(τ ) in
Equation 10 and time integrate it by parts. An experimental
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600 Liu and Li

(observed) mass diffusivity equation comes to Equation 11
as the following step.∫ t

0
e−αβ2

m(t−τ )dC(τ ) =
∫ t

0
e−αβ2

m(t−τ ) dC(τ )
dτ

dτ∫ t

0
e−αβ2

m(t−τ ) dC(τ )
dτ

dτ =
∫ t

0
−2αβ2

mτ × e−αβ2
m(t−τ )C(τ )dτ

= −2αβ2
mτ × e−αβ2

m(t−τ )C(τ )|t0
= −2αβ2

m × t × e−αβ2
m(t−t)C(t) − 2αβ2

m × 0 × e−αβ2
mt C(0)

Then

C(r, t) = C(t) − 2
b

∞∑
m=1

J0(βmr )
βmJ1(βmb)

× ( − 2αβ2
m × t × C(t)

)
α = C(r, t) − C(t)

4
b C(t) × t

∑∞
m=1

J0(βr
m)

J1(βmb) × βm

(11)

It shows that the mass diffusivity is a time-dependent
problem.

The non-homogeneous generation rate parts

This is considered a non-homogeneous problem in which
the generation term and the non- homogeneous parts of the
boundary condition function do not depend on time. It is
assumed that lead isotope diffuses into the leachant from
the cylindrical container at a constant rate g(t) per unit
volume with no discontinuities and a mass generation rate
constant (k). The mathematical formulation for the con-
centration distribution C(r, t) in the solidified waste matrix
cylinder is given by:

∂2C(r, t)
∂r2

+ 1
r

∂C(r, t)
∂r

+ g(t)
k

= 1
α

∂C(r, t)
∂t

in 0 ≤ r < b t > 0 (12a)

C(r, t) = 0 at r = b t > 0 (12b)
C(0, t) = 0 for t = 0 in 0 ≤ r ≤ b (12c)

The auxiliary problem is taken as

∂2�(r, t)
∂r2

+ 1
r

∂�(r, t)
∂r

+ 1
k

= 1
α

∂�(r, t)
∂t

in

0 ≤ r < b, t > 0 (13a)
� = 0 at r = b t > 0 (13b)
� = 0 for t = 0 in 0 ≤ r ≤ b (13c)

The solution for Equation 12 is related to the solution for
the auxiliary problem. Using Duhamel’s theorem, Equation
13 can be expressed as

C(r, t) =
∫ t

τ=0
g(τ )

∂�(r, t − τ )
∂t

dτ (14)

The solution for the auxiliary problem Equation 13 is
given as follows:

∂C(r, t)
∂r2

+ 1
r

∂C(r, t)
∂r

+ 1
k

= 1
α

∂C(r, t)
∂t

in 0 ≤ r < b t > 0 (15a)

C(r, t) = 0 at r = b t > 0 (15b)
C(r, t) = C(t) for t = 0 in 0 ≤ r ≤ b (15c)

The lead isotope leached from the solidified waste matrix
cylinder is determined as a function of the cylinder diam-
eter and time. In this problem, it is convenient to express
the lead isotope leached from the solid waste matrix as the
sum of two distributions. The first distribution is the lim-
iting steady-state distribution, (independent of t), after the
transient effects have become negligible. The second dis-
tribution represents the transient distribution (which must
then approach zero as t increases indefinitely). Thus, writ-
ing

C(r, t) = Cs(r, t) + Ch(r, t) (16)

Ch(r, t) is a particular solution for

∂2C(r, t)
∂r2

+ ∂(r, t)
r∂r

+ g(t)
k

= 1
α

∂(r, t)
∂t

(17)

The function of Ch(r, t) must be determined in such a way
that it vanishes when t → ∞ Ch(r, ∞) = 0 and so that the
sum Cs(r, t) + Ch(r, t) satisfies the initial steady-state con-
dition and transient conditions, respectively. Ch(r, t) must
vanished at r = 0 and r = b for all positive t values.

Cs(0, t) = 0 and Ch(r, t) = 0

Therefore, the transient lead isotope concentration distribu-
tion satisfies the homogeneous end conditions. The steady-
state lead isotope concentration distribution was separated
first for this reason.

The steady-state problem is readily solved using

Cs(r, t) = g(t)
4k

(b2 − r2) (18)

The homogeneous problem is obtained from equation

Ch(r, t) = 2
b2

∞∑
m=1

e−αβ2
mt J0(βmr )

J2
1 (βmb)

×
∫ b

0
r ′J0(βmr ′)[C(r ′) − Cs(r ′)]dr ′ (19a)

Where theβm values are the roots of Bessel function J0(βmr ).
The intermediate steps of Equation 18 are described in

Appendix A, Part B.
Equations 17 and 18 are introduced into Equation 15 and

some integrals are performed. We then obtain the following
equation

C(r, t) = g(t)(b2 − r2)
4k

− 2g(t)
bk

∞∑
m=1

e−αβ2
mt J0(βmr )

β3
mJ1(βmb)

+ 2
b2

∞∑
m=1

e−αβ2
mt J0(βmr )

J2
1 (βmb)

∫ b

0
r ′J0(βmr ′)C(r ′)dr ′ (20)
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Diffusion of solidified waste matrix 601

For the Equation 19 solution, by setting g(t) = 1 and C(r, t)
= 0, we find

�(r, t) = b2 − r2

4k
− 2

bk

∞∑
m=1

e−αβ2
mt J0(βmr )

β3
mJ1(βmb)

(21)

The βm values are the positive roots of J0(βmb) = 0.
Introducing Equation 21 into Equation 14, the solution

is obtained as follows:

C(r, t) =
∫ t

τ=0
g(τ )

∂�(r, t − τ )
∂t

dτ

= − 2
bk

× −αβ2
m

∫ t

τ=0
g(τ )e−αβ2

m(t−τ ) J0(βmr )
β3

mJ1(βmb)
dτ

= 2αβ2
m

bk

∞∑
m=1

e−αβ2
mt J0(βmr )

β3
mJ1(βmb)

∫ t

0
g(τ )eαβ2

mτ dτ

= 2α

bk

∞∑
m=1

J0(βmr )
βmJ1(βmb)

∗ g(t)
∫ t

τ=0
e−αβ2

mt(1− τ
t )dτ (22)

The mass generation rate constant can be obtained as Equa-
tion 23.

k = 2α

bC(r, t)

∞∑
m=1

J0(βmr )
βmJ1(βmb)

∗ g(t)
∫ t

τ=0
e−αβ2

mt(1− τ
t )dτ

(23)

Solution

Both the mass diffusivity and mass generation rate con-
stant are directly computed using Equations 11 and 23 in
every leaching time interval, respectively. The mass diffu-
sivity and mass generation rate could be considered to re-
main constant throughout the overall leaching procedure.
Arranging the model equation and using the least square
method to find the empirical control parameters, a suitable
βm value (Bessel function root) will direct the observed mass
diffusivity and empirical mass diffusivity. The lead isotope
released from the waste matrix predicated using this model
is close to the experimental measurements with an appro-
priate βm value. The computed processes are demonstrated
next.

The empirical mass diffusivity (αT) is calculated from
equation 11 using the least square method as follows.

y = C(r, t) − C(t)
C(t)

∗ 1
2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb)β

2
m

= α ∗ t

[δδ] =
∑

{yi − α ∗ ti}2 = minimum i = 1, 2, 3, 4

∂[δδ]
∂y

= 2 ∗ yi − 2 ∗ α ∗ ti = 0

αT = [yi]
[ti]

(24)

[ ] represents the summation of n observed values.
After obtaining αT, the empirical mass generation rate

constant (kT) can also be calculated from Equation 23 using

the least-squares method as follows.

k = 2 ∗
(

C(r, t) − C(t)
C(t) ∗ t

∗ 1
2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb)β

2
m

)

∗g(t) ∗ 1
b ∗ C(r, t)

∗
∞∑

m=1

J0(βmr )
βmJ1(βmb)

∫ t

τ=0
e−αβ2

mt(1− τ
t )dτ

k ∗ t = 2 ∗
(

C(r, t) − C(t)
C(t)

∗ 1
2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb)β

2
m

)
∗ g(t)

∗ 1
b ∗ C(r, t)

∗
∞∑

m=1

J0(βmr )
βmJ1(βmb)

(
e−αT β2

mt(1− t
t ) − e−αT β2

mt(1− o
t ))

k ∗ t = 2 ∗
(

C(r, t) − C(t)
C(t)

∗ 1
2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb)β

2
m

)
∗ g(t)

∗ 1
b ∗ C(r, t)

∗
∞∑

m=1

J0(βmr )
βmJ1(βmb)

(
e0 − e−αT β2

mt)
Let

Z = 2 ∗
(

C(r, t) − C(t)
C(t)

∗ 1
2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb)β

2
m

)

∗ g(t)
1

b ∗ C(r, t)
∗

∞∑
m=1

J0(βmr )
βmJ1(βmb)

(
1 − e−αT β2

mt) = k ∗ t

Z =
(

[C(r, t) − C(t)]2

C(r, t) ∗ C(t)
∗ 1∑∞

m=1
J0(βmr )

βmJ1(βmb)β
2
m

)

∗
∞∑

m=1

J0(βmr )
βmJ1(βmb)

(
1 − e−αT β2

mt) = k ∗ t

[δδ] =
∑

{Zi − k ∗ ti}2 = Minimum i = 1,2,3,4

∂ [δδ]
∂Z

= 2 ∗ Zi − 2 ∗ k ∗ ti = 0

kT = [Zi]
[t ]

(25)

Using αT, kT and J0(βmr), J1(βmb),βm from Ozisik[7] the
isotope lead release from waste matrix can be simulated
using the following model:

GT (t) = kT ∗ b ∗ C(r, t)

2 ∗ αT ∗ ∑∞
m=1

J0(βmr )
βmJ1(βmr )

∫ t
τ=0 e−αT β2

mt(1− τ
t )dτ

(26)

Model validation

Duhamel’s theorem for the solution to problems with time-
dependent boundary condition function and/or mass gen-
eration is suitable for the diffusion solution in this study.
Basically, the lead isotope leached from the solidified waste
matrix cylinder is a function of the cylinder diameter and
time. Hence, Duhamel’s theorem was applied to simulate
the subsequent diffusion phenomena. The diffusion model
can be calibrated based on this theory, using the empirical
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602 Liu and Li

diffusivity, empirical mass generation rate constant and
Bessel function roots. The predicated lead isotope released
from the solidified waste matrix could be calculated from
the calibrated and verified diffusion model. The calibrated
and verified diffusion model can be developed as follows:

GT (ti) = kT ∗ b ∗ (
C(o, t) − ∑i

0 GT (ti−1)
)

2 ∗ αT ∗ ∑∞
m=1

J0(βr
m)

βmJ1(βmr )

∫ t
τ=0 e−αT β2

mt(1− τ
t )dτ

(27)

i = leaching interval
GT (ti) = Lead isotope release simulation from waste ma-

trix at i leaching interval
C (0,t) = Initial lead isotope concentration in the solidi-

fied waste matrix
GT (t0) = 0
αT = Empirical mass diffusivity (cm2/s)
kT = Empirical mass generation rate constant (1/s)

The αT and kT obtained using the least square method
for the first, second, third and fourth leaching result inter-
vals were used to established the calibrated model. The lead
isotope released from the waste matrix in the fifth and sixth
intervals were used to verify the diffusion model (Equa-
tion 27). The correspondence between the simulated and
measured mass release rates was compared to assess the
model acceptance. The criterion for model calibration and
verification was the simulation results within one standard
derivation of the experimental observations. A sample cal-
culation for empirical mass diffusivity, empirical mass gen-
eration rate constant and simulated isotope lead release is
demonstrated in Appendix B.

Results and discussion

Table 1 shows that the amount of lead isotope leached out
of a solidified waste matrix cylinder with pH 0.89 phospho-
ric acid leachant was between 25.69% and 33.07% within 6
hours. At the first hour of leaching, the amount of lead iso-
tope that leached out of the solidified waste matrix was the
greatest. In the next 4 hours, the amount of lead isotope that
leached out of the solidified waste matrix decreased. After
the fifth hour, the leaching rate was dramatically reduced.

The amount of lead leached from the solidified waste matrix
decreased with the leaching time as shown in Table 1.

Table 1 also demonstrates the amount of lead isotope
leached out of the cylinder solidified waste matrix to which
20% cement addition was greater than that of 40% ce-
ment additions. It also reveals that the amount of lead
isotope that leached out of the solidified waste matrix co-
incided with the amount of added cement in the solid un-
der the same boundary conditions on every leaching test.
These results verified the lead isotope for tracing the leach-
ing behavior of a solidified waste matrix is a promising
method.

Table 2 indicates that the observed mass diffusivity (α)
(Equation 11) of the cylindrical solidified waste matrix us-
ing pH 0.89 phosphoric acid as the leachant with the addi-
tion of 20%, 40% cement were in the order of 10E-8 at the
six leaching test time intervals. The observed mass genera-
tion rate constant (k)(Equation 23) for the cylindrical so-
lidified waste matrix using pH 0.89 phosphoric acid as the
leachant with the addition of 20%, 40% cement were in the
range of 10E-8 and 10E-12. A calibrated diffusion model
using the least square method to determine the empirical
mass diffusivity (Equation 24) in the same order as the ob-
served values is shown in Table 3. A Bessel function root
control value is present in this diffusion model. The lead
isotope release simulation was performed using the diffu-
sion model. After obtaining the empirical mass diffusivity,
the empirical mass generation rate constant (Equation 25)
could also be easily computed from the diffusion model
using the least-squares method using empirical mass diffu-
sivity, isotope lead release and Bessel function root. Table
4 and Figures 3 and 4 demonstrate that the lead isotope re-
lease from solidified waste matrices simulation with pH 0.89
phosphoric acid leachant using the calibrated and verified
diffusion model (Equation 27) has good correspondence
between the measured and simulated values in this study,
as shown in Table 4. It is quite obvious that the simulated
lead isotope releases were within one standard deviation of
the observations, as shown in Figures 3 and 4. A model re-
sults comparison with the experimental data showed that
the lead isotope leached out of the solidified waste matrix
corresponding to the various amounts of cement added to
the waste could be acceptable.

Table 2. Observed mass diffusivity and mass generation rate constant from the experimental results.

Cement added (%) Observed mass diffusivity
(α) (cm2/s)

Observed mass generation
rate constant (k) (1/s)

Leaching
interval

Leaching
duration (s) 20 40 20 40

1 3600 9.60E-08 1.37E-08 1.71E-08 3.63E-10
2 3600 5.26E-08 2.92E-08 3.28E-09 6.51E-10
3 3600 6.16E-08 4.53E-08 4.61E-09 2.5E-09
4 3600 3.19E-08 2.60E-08 7.06E-10 5.1E-10
5 3600 2.80E-08 2.47E-08 4.96E-10 4.53E-10
6 3600 1.82E-08 4.17E-09 1.43E-10 2.29E-12
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Diffusion of solidified waste matrix 603

Table 3. Empirical mass diffusivity (αT ) and mass generation rate constant (KT ) computed from the least-squares method.

Empirical mass diffusivity (cm2/s) Empirical mass generation rate constant (1/s)

Y = C(r,t)−C(t)
C(t) ∗ 1

2
b

∑∞
m=1

J0(βmr )
βmJ1(βmb) β

2
m

= α ∗ t Z = ( [C(r,t)−C(t)]2

C(r,t)∗C(t) ∗ 1∑∞
m=1

J0(βmr )
βmJ1(βmb) β

2
m

) ∗ ∑∞
m=1

J0(βmr )
βmJ1(βmb) (1 − e−αβ2

mt ) = K ∗ t

Cement added (%) 20 40 Cement added (%) 20 40

Y1 2.86E-04 2.46E-04 Z1 3.00E-06 1.71E-06
Y2 1.57E-04 8.72E-05 Z2 1.87E-06 4.57E-07
Y3 1.84E-04 1.35E-04 Z3 3.72E-06 1.58E-06
Y4 9.53E-05 7.76E-05 Z4 1.36E-06 7.01E-07

5.02E-08 3.79E-08 kT = [2]
[t ] 6.91E-10 3.09E-10

[ ] represents the summation of n observed values.∑∞
m=1

J0(βmr )
βmJ1(βmb) β

2
m = 122 βm = 22.

This study validated that Duhamel’s Theorem can be
used to determine the mass diffusivity of a solidified waste
matrix and also calculate the mass generation rate of a spe-
cific solidified waste matrix. It was also proven that phos-
phoric acid is suitable for measuring the mass diffusivity (α)
and mass generation rate constant (k) for a solidified waste
matrix cylinder. Thus, the diffusion model coupled with the
experimental design developed in this study is a very appro-
priate instrument for understanding the leaching behavior
of solidified waste.

The experimental apparatus is this study was a solidified
waste matrix cylinder placed inside a cylindrical leaching
vessel that reflected the time-dependent boundary condi-
tions, time-dependent mass diffusion and mass generation
characteristics. The first 6-hour leaching period would be
enough to produce leaching data for determining the rele-
vant parameters. The experimental time was much shorter
than any other currently used test method for evaluating the
diffusion behavior of a solidified waste matrix. The results
from this designed leaching test can be used to simulate the
behavior in actual field conditions.

The empirical mass diffusivity (αT ) and mass generation
rate constant (kT ) were easily computed using least-squares
method derived from Duhemel’s diffusion values and ap-

plied to simulate the amount of pollutants leaching from
various cement-added matrices.

The mass diffusivity (αT ) and mass generation rate con-
stant (kT ) vary with the amount of cement added to the
waste matrix. This proved that this diffusion model could
be used to simulate the released pollutant resulting from
the addition of solidified agents.

Equation 22, which shows the diameter of the solidified
waste matrix (b) and its concentration (C(r, t), C(t)), infers
that the amount of lead isotope that leached from the so-
lidified waste matrix g(t), and the leaching time (t) were all
related to the mass diffusivity (α).

An appropriate Bessel function root (βm) reflected the
exact mass diffusivity value. From Equation 23, the mass
diffusivity (α), leaching time (t), concentration and diam-
eter of the solidified waste matrix (b) are all related to the
mass generation rate constant (k). Thus, the mass diffu-
sivity (α) and mass generation rate constant (k), which
were time-dependent parameters and a function of the
cylinder diameter, were effectively demonstrated by this
study.

The solidified waste cylinder leaching method and the
corresponding 3-dimension mathematical diffusion model
constitute a very useful and efficient alternative method

Table 4. Lead isotope leached from waste forms by experiment and empirical diffusion model.

Cement added
20% 40%

Leaching
interval

Leaching
duration(s) Experiment Model Experiment Model

1 3600 1.28E-02 1.68E-02 9.59E-03 1.12E-02
2 3600 6.52E-03 7.23E-03 3.27E-03 4.99E-03
3 3600 7.01E-03 4.53E-03 4.75E-03 3.17E-03
4 3600 3.47E-03 3.28E-03 2.63E-03 2.32E-03
5 3600 2.92E-03 2.57E-03 2.41E-03 1.82E-03
6 3600 1.85E-03 2.11E-03 4.05E-04 1.51E-03
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604 Liu and Li

20% Cement = added waste matrix
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Fig. 3. A comparison of measured and simulated values of the lead isotope released from solidified waste matrix with 20% cement
addition.

for evaluating waste solidification processes. From an
administrative perspective, solidified waste matrix disposal
requires that the solidified waste products be characterized
and meet specified criteria for disposal permission to be
granted. The three-dimension testing method coupled with
a leaching behavior model for the solidified matrix devel-
oped in this study can be employed to forecast the amounts
of contaminants leached. Furthermore, based on the mass
generation rate of the contaminants leached out of the so-
lidified waste matrix obtained from the diffusion model, the
associated limit values leached from the solidified waste ma-
trix could be scientifically established. From an engineering
perspective, the solidified waste products could be utilized,
e.g., as a filling material in an embankment. The material is
generally placed on or below the ground surface above an
aquifer. The diffusion model could be used to predict the

maximum acceptable amount of a given component in the
leachate through a sound waste solidification project. For
such an engineering project, a cost-effective process can be
thoroughly evaluated using the proposed model. From an
environmental perspective, the role of risk assessment and
risk management in environmental decision making have
been accepted.

Thus, a relationship between the results from leached
contaminants from a solidified waste matrix and the en-
vironmental risk posed by various engineering waste dis-
posal methods should be performed. Using the proposed
diffusion model, it is possible to estimate the incremental
probability of some harm occurring. The three-dimensional
leaching method for investigating the diffusion behavior de-
veloped in this study can be used as an effective tool for es-
tablishing the regulatory limits, designing disposal sites, and

40% Cement = added waste matrix
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Fig. 4. A comparison of measured and simulated values of the lead isotope released from solidified waste matrix with 40% cement
addition.
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Diffusion of solidified waste matrix 605

performing risk assessment in the field of solidified waste
management.

Conclusion

A three-dimensional diffusion model based on Duhamel’s
theorem was developed to simulate the diffusion behav-
ior of a solidified waste matrix. An appropriate Bessel
function root is the key to the diffusion model accuracy.
A lead isotope release simulation was performed using
the proposed diffusion model. The controlling parameters
were derived from the experimental results using the least-
squares method. The diffusion model was calibrated and
verified with extended leaching time from the simulated
target pollutant leaching out of the waste cylinder. An ap-
propriate Bessel function root demonstrated the exact dif-
fusion model. The three-dimensional mass diffusion model
showed good overall agreement between the simulation and
experimental data through an experimental setup using a
solidified waste matrix cylinder contained inside a cylin-
drical leaching vessel. The proposed model will also help
reduce the time and expenses involved in investigating dif-
fusion behaviour due to pollutant leaching from solidified
waste matrices.
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606 Liu and Li

Appendix A

Intermediate steps in diffusion model development

Part A
Text Equation 8 and 10 are from the following

Introduce text Equation 6 into text Equation 3

�(r, t) = 1 − ψ(r, t) = 1 − 2
b

∞∑
m=1

e−αβ2
mt J0(βmr )

βmJ1(βmb)

C(r, t) =
∫ t

0
C(τ )

∂�(r, t − τ )
∂t

dτ (0 ≤ r ≤ b)

Obtain the following equation

C(r, t) =
∫ t

0
C(τ )

1 − 2
b

∑∞
m=1 e−αβ2

mt J0(βmr )
βmJ1(βmb)

∂t
dτ

C(r, t) =
∫ t

0
C(τ )

2αβ2
m

b
×

∞∑
m=1

eαβ2
mτ J0(βmr )

βmJ1(βmb)
dτ

C(r, t) = 2α

b

∞∑
m=1

e−αβ2
mtβm

J0(βmr )
J1(βmb)

∫ t

0
eαβ2

mτ C(τ )dτ

∫ t

0
eαβ2

mτ C(τ )dr Integration by parts as follows∫ t

0
eαβ2

mτ C(τ )dτ = 1
αβ2

m
eαβ2

mτ C(τ )

∣∣∣∣
t

0
−

∫ t

0

1
αβ2

m
eαβ2

mτ dC(τ )

= 1
αβ2

m
eαβ2

mt × e−αβ2
mt × eαβ2

mτ C(τ )

∣∣∣∣
t

0

−
∫ t

0

1
αβ2

m
eαβ2

mt × e−αβ2
mt × eαβ2

mτ d(τ )

= 1
αβ2

m
eαβ2

mt
[

e−αβ2
m(t−t)C(t) − e−αβ2

m(t−0)C(0)

−
∫ t

0
e−αβ2

m(t−τ )d(τ )
]

= 1
αβ2

m
eαβ2

mt
[

C(t) − e−αβ2
mt C(0) −

∫ t

0
e−αβ2

m(t−τ )dC(τ )
]

Then

C(r, t) = 2
b

∞∑
m=1

J0(βmr )
βmJ1(βmb)

C(t) − 2
b

∞∑
m=1

J0(βmr )
βmJ1(βmb)

×
(

e−αβ2
mt C(0) +

∫ t

0
e−αβ2

m(t−τ )dC(τ )
)

Let

2
b

∞∑
m=1

J0(βmr )
βmJ1(βmb)

= 1 and C(0) = 0

Then

C(r, t) = C(t) − 2
b

∞∑
m=1

J0(βmr )
βmJ1(βmb)

×
(

e−αβ2
mt C(0) +

∫ t

0
e−αβ2

m(t−τ )dC(τ )
)

Part B

Text Equation 18 is from the following:
Three-dimensional homogeneous differential equation

of mass diffusion in the cylindrical coordinate system,

∂C
∂r2

+ 1
r

∂C
∂r

+ 1
r2

∂2C
∂φ2

+ ∂C
∂z2

= 1
α

∂C
∂t

(1)

where C = (r, φ, z, t). Assume a separation of variable in
this form

C(r, φ, z, t) = φ(r, φ, t)
(t) (2)

Equation 1 becomes

1
ψ

(
∂ψ

∂r2
+ 1

r
∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2
+ ∂ψ

∂z2

)
= 1

αC(t)
dC(t)

∂t
= −λ2

(3)
The separation equations for C(t) and ψ are then taken

as
dC(t)

dt
+ αλ2C(t) = 0 (4)

∂ψ

∂r2
+ 1

r
∂ψ

∂r
+ 1

r2

∂2ψ

∂φ2
+ ∂ψ

∂z2
+ λ2ψ = 0 (5)

We assume a separation in this form

ψ(r, φ, z) = R(r )�(φ)Z(z) (6)

Equation 5 then becomes

1
R

(
d2R
dr2

+ 1
r

dR
dr

)
+ 1

r2

1
�

d2�

dφ2
+ 1

Z
d2Z
dz2

+ λ2 = 0 (7)

The only way this equality is satisfied is if each group of
functions is equated to an arbitrary separation constant in
the form

1
Z

d2Z
dz2

= −η2,
1
�

d2�

dφ2
= −v2, and

1
R v

(
d2Rv

dr2
+ 1

r
dRv

dr

)
− v2

r2
= −β2 (8)

The separated equations and the elementary solutions
become

1
Z

d2Z
dz2

+ η2Z = 0 Z(η, z) : sin ηz and cos ηz (9a)

1
�

d2�

dφ2
+ v2� = 0 �(v, φ) : sin vφ and cos vφ (9b)

d2Rv

dr2
+ 1

r
dRv

dr
+

(
β2 − v2

r2

)
Rv = 0

Rv(β, r ) : Jv(βr ) : Yv(βr ) (9c)

The function C(t) satisfies Equation 4, that is

C(t) : ε−αλ2t (9d)

where λ2 = β2 + η2

Equation 9c is called Bessel’s differential equation of
order v and its solutions. Jv(βr ) and Yv(βr ) are the
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Diffusion of solidified waste matrix 607

Bessel functions of order v, of the first and second kind,
respectively.

If concentration in the cylinder has no z dependence,
Equation 1 becomes

1
�

d2�

dφ2
+ v2� = 0 �(v, φ) : sin vφ and cos vφ (10a)

d2Rv

dr2
+ 1

r
dRv

dr
+ (β2 − v2

r2
)Rv = 0

Rv(β, r ) : Jv(βr ) : Yv(βr ) (10b)
dC(t)

dt
+ αλ2C(t) = 0 C(t) : e−αλ2t (10c)

where

λ2 = β2 (10d)

Equation 10a is an eigenvalue problem. Its solution is β =
βm, m = 1.2.3. . . . . . The corresponding solutions X(βm, x)
are called the eigenfunctions of the problem.

The complete solution for the concentration C(r, t) is
constructed by linear superposition of the separated ele-
mentary solutions in the form

C(r, t) =
∞∑

m=1

cme−αβ2
mt R0(βm, r ) (11)

The initial condition gives an equation in the diameter of b
cylinder as

Ch(r, t) =
∞∑

m=1

CmR0(βm, r ) in 0 ≤ r ≤ b (12)

The eigenfunction has the following orthogonality prop-
erty: ∫ b

0
rRv(βm, r )Rv(βnr )dr = 0 for m �= n∫ b

0
rRv(βm, r )Rv(βnr )dr = N(βm) for m = n (13)

where the normalization integral (or the norm), N(βm), is
defined as

N(βm) =
∫ b

0
(Rv(βm, r ))2 dr (14)

To determine the Cm we operate on both sides of Equa-
tion 12 by the operator

∫ b
0 Rv(βm, r )dr and utilize the or-

thogonality property given Equation 13 and find

Cm = 1
N(βm)

∫ b

0
Rv(βmr )F(r )dr (15)

The substitution of Equation 15 into Equation 12 yields
the solution for the concentration as

Ch(r, t) =
∞∑

m=1

e−αβ2
mt 1

N(βm)
Rv(βmr )

∫ b

0
r ′Rv(βmr ′)Ch(r ′)dr ′

(16)

As boundary condition

Rv = 0, Rv(βm, r ) = J ′
v(βmr )

We can find the

N(βm) =
∫ b

0
rJ2

v (βmr )dr = b2

2
J

′2
v (βmb) (17)

Let v = 0 Equation 16 becomes

Ch(r, t) = 2
b2

∞∑
m=1

e−αβ2
mt J0(βmr )

J2
1 (βmb)

∫ b

0
r ′J0(βmr ′)Ch(r ′)dr ′

Ch(r, t) = 2
b2

∞∑
m=1

e−αβ2
mt J0(βmr )

J2
1 (βmb)

×
∫ b

0
r ′J0(βmr ′)

[
C(r ′) − Cs(r ′)

]
dr ′ (18)

Appendix B

A sample for empirical mass diffusivity, empirical mass
generation rate constant and simulate isotope lead leached
from solidified waste matrix

Part A

Empirical mass diffusivity calculated using the leasts-
squares method:

Y = (C(r, t) − C(t)
C(t)

∗ 1
2
b

∑∞
m=1

J0βmr )
βmJ1(βmb)β

2
m

= α ∗ t

Y1 = (1.05E − 01) − (9.17E − 02)
9.17E − 02

∗ 1
2

0.5 ∗ 122
= 2.86E − 04

Cement
added (%) 20 40

Y1 2.86E-04 2.46E-04
Y2 1.57E-04 8.72E-05
Y3 1.84E-04 1.35E-04
Y4 9.53E-05 7.76E-05
αT = [Y ]

[t ] 5.02E-08 3.79E-08

App. 1. Lead isotope leached from the waste matrix.

Cement
added (%)

Isotope lead in
waste matrix (mg)Isotope lead

release (mg)
Leaching
interval

Leaching
duration(s) 20 40

20
1.05E-01

40
8.97E-02

1 3600 1.28E-02 9.59E-03 9.17E-02 8.01E-02
2 3600 6.52E-03 3.27E-03 8.52E-02 7.69E-02
3 3600 7.01E-03 4.75E-03 7.82E-02 7.21E-02
4 3600 3.47E-03 2.63E-03 7.47E-02 6.95E-02
5 3600 2.92E-03 2.41E-03 7.18E-02 6.71E-02
6 3600 1.85E-03 4.05E-04 6.99E-02 6.67E-02
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608 Liu and Li

Part B

Empirical mass generation rate constant calculated using the least-squares method

Z =
(

[C(r, t) − C(t)]2

C(r, t) ∗ C(t)
∗ 1∑∞

m=1
J0(βmr )

βmJ1(βmb)β
2
m

)
∗

∞∑
m=1

J0(βmr )
βmJ1(βmb)

(1 − e−αβ2
mt ) = K ∗ t

Z1 = [(1.05E − 01) − (9.17E − 02)]2

(1.05E − 01) ∗ (9.17E − 02)
∗ 1

122
∗ (2.15E − 02) = (3.00E − 06)

Cement
added (%) 20 40

Z1 3.00E-06 2.06E-06
Z2 1.87E-06 5.47E-07
Z3 3.72E-06 1.88E-06
Z4 1.36E-06 8.34E-07
κT = [Z]

[t ] 6.91E-10 3.09E-10

Table 2. Roots of the Bessel function.

First 2 roots of Bessel function Jn(z) = 0 n = 0,1
z = 1 b = 0.5 βm = 2
z = 2 b = 0.5 βm = 4 and so on

z J0(βmr ) J1(βmb) βm β2
m

J0(βmr )
J1(βmb)βm

J0(βmr )
J1(βmb)βm

× β2
m

1 2.4048 3.8317 2 4 3.14E-01 1.26E+00
2 5.5201 7.0156 4 16 1.97E-01 3.15E+00
3 8.6537 10.1735 6 36 1.42E-01 5.10E+00
4 11.7915 13.3237 8 64 1.11E-01 7.08E+00
5 14.9309 16.4706 10 100 9.07E-02 9.07E+00
6 18.0711 19.6159 12 144 7.68E-02 1.11E+01
7 21.0711 22.7601 14 196 6.61E-02 1.30E+01
8 24.3525 25.9037 16 256 5.88E-02 1.50E+01
9 27.4935 29.0468 18 324 5.26E-02 1.70E+01

10 30.6346 32.1897 20 400 4.76E-02 1.90E+01
11 33.77582 35.33231 22 484 4.35E-02 2.10E+01

Summation 1.20E+00 1.22E+02
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Diffusion of solidified waste matrix 609

For Z1 and β1 = 2
∞∑

m=1

J0(βmr )
βmJ1(βmb)

(
1 − e−αT β2

mt) = (3.14E − 01)∗
(
1 − e (5.02E−08)∗4∗3600) = (2.27E − 04)∗

20% cement added waste form

t(sec) 3600 7200 10800 14400 18000 21600

β1 = 2 2.27E-04* 4.53E-04 6.79E-04 9.05E-04 1.13E-03 1.36E-03
β2 = 4 5.68E-04 1.13E-03 1.70E-03 2.26E-03 2.82E-03 3.38E-03
β3 = 6 9.19E-04 1.83E-03 2.74E-03 3.64E-03 4.53E-03 5.42E-03
β4 = 8 1.27E-03 2.53E-03 3.77E-03 5.00E-03 6.21E-03 7.41E-03
β5 = 10 1.62E-03 3.22E-03 4.78E-03 6.32E-03 7.83E-03 9.31E-03
β6 = 12 1.97E-03 3.89E-03 5.76E-03 7.58E-03 9.36E-03 1.11E-02
β7 = 14 2.31E-03 4.55E-03 6.71E-03 8.79E-03 1.08E-02 1.27E-02
β8 = 16 2.65E-03 5.19E-03 7.61E-03 9.92E-03 1.21E-02 1.42E-02
β9 = 18 2.99E-03 5.81E-03 8.47E-03 1.10E-02 1.33E-02 1.56E-02
β10 = 20 3.32E-03 6.40E-03 9.27E-03 1.19E-02 1.44E-02 1.67E-02
β11 = 22 3.64E-03 6.97E-03 1.00E-02 1.28E-02 1.54E-02 1.77E-02
sum 2.15E-02 4.20E-02 6.15E-02 8.01E-02 9.80E-02 1.15E-01

40% cement added waste form

t(sec) 3600 7200 10800 14400 18000 21600

β1 = 2 1.71E-04 3.42E-04 5.13E-04 6.84E-04 8.55E-04 1.03E-03
β2 = 4 4.29E-04 8.57E-04 1.28E-03 1.71E-03 2.13E-03 2.56E-03
β3 = 6 6.94E-04 1.39E-03 2.07E-03 2.76E-03 3.44E-03 4.12E-03
β4 = 8 9.61E-04 1.91E-03 2.86E-03 3.80E-03 4.72E-03 5.64E-03
β5 = 10 1.23E-03 2.44E-03 3.63E-03 4.81E-03 5.98E-03 7.12E-03
β6 = 12 1.49E-03 2.96E-03 4.39E-03 5.80E-03 7.18E-03 8.53E-03
β7 = 14 1.76E-03 3.47E-03 5.13E-03 6.75E-03 8.33E-03 9.86E-03
β8 = 16 2.02E-03 3.96E-03 5.84E-03 7.66E-03 9.41E-03 1.11E-02
β9 = 18 2.27E-03 4.45E-03 6.53E-03 8.52E-03 1.04E-02 1.22E-02
β10 = 20 2.53E-03 4.92E-03 7.18E-03 9.33E-03 1.14E-02 1.33E-02
β11 = 22 2.78E-03 5.37E-03 7.81E-03 1.01E-02 1.22E-02 1.42E-02
sum 1.63E-02 3.21E-02 4.72E-02 6.19E-02 7.60E-02 8.97E-02

Part C

The simulated lead isotope leached from waste matrix using the calibrated and verified diffusion model

GT (ti) = kT ∗ b ∗ (C(r, t) − ∑i
0 GT (ti−1))

2 ∗ αT ∗ ∑∞
m=1

J0(βr
m)

βmJ1(βmr )

∫ t
τ=0 e − αTβ2

mt(1 − τ
t )dτ

GT (t1) = (6.91E − 10) ∗ 0.5 ∗ (1.05E − 01)
2 ∗ (5.02E − 08) ∗ (2.15E − 02)

= 1.68E − 02

GT (t2) = (6.91E − 10) ∗ 0.5 ∗ ((1.05E − 01) − (1.68E − 02))
2 ∗ (5.02E − 08) ∗ (4.20E − 02)

= 7.23E − 03
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