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Abstract—In this paper, we present the results of the temperature 
effect on two-dimensional phononic crystals. Band gap variations 
of both of the bulk modes and surface modes due to the changing 
of temperature of the band structure in air/quartz band structure 
from zero to fifty degrees centigrade are calculated and discussed. 
The results show that the elastic band gaps can be enlarged or 
reduced by adjusting the temperature of the band structure. The 
temperature effect can potentially be utilized for fine-tuning of 
the phononic band gap frequency and the precise design of filters. 
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I.  INTRODUCTION  
The existence of complete band gaps of electromagnetic 

waves in photonic structures extending throughout the 
Brillouin zone has demonstrated a variety of fundamental and 
practical interests. Successful application of photonic crystals 
has led to rapid growing interests in the analogous acoustic 
effects in periodic elastic structures called the phononic 
crystals. Research in band gaps of bulk acoustic waves (BAW) 
of phononic structures have been carried out in the past [1-6]. 
The dispersion relations and band gap properties of the 
transverse polarization modes for periodic, elastic composites 
were analyzed and discussed in the past [1-3]. The dispersion 
relations of mixed polarization modes and the experimental 
evidence for the existence of absolute acoustic band gaps have 
also been investigated [4,5]. The effects of the orientation of 
square rods on the acoustic band gaps in a two-dimensional 
phononic crystal (solid/air) were discussed [6,7]. In [8-11], the 
multiple scattering theory was applied to study the band gaps 
of bulk wave in three-dimensional periodic acoustic 
composites and the band structure of a phononic crystal 
consisting of complex and frequency dependent Lame’ 
coefficients. The finite difference time domain method was 
applied to interpret the experimental data of two-dimensional 
systems consisting of cylinders of fluids inserted periodically 
in a finite slab of Al host [12].  

Investigations into surface wave (SAW) properties of solids 
in which the periodic modulation occurs on the traction-free 
surface did not take place until quite recently [13-15]. 
References 13 and 14 reported the calculations for surface 

waves on a square and hexagonal superlattice, consisting of 
cubic (AlAs/GaAs) and isotropic (Al/polymer) materials, and 
Wu et al [15] extended these works by studying the phononic 
band gaps of the SAW and BAW modes in two-dimensional 
phononic structures consisting of general anisotropic materials.  

In this paper, we focus on the temperature effect for 
different polarization propagation modes in two-dimensional 
periodic structures. The plane wave expansion (PWE) method 
was adopted in [15] to calculate the variations of band gap 
widths of the quasi-shear vertical (SV), quasi-shear horizontal 
(SH), quasi-longitudinal (L) and surface acoustic wave (SAW) 
modes due to the temperature changes. 

II. THEORY 
A brief introduction of the theory is given in the following. 

In an inhomogeneous linear elastic medium with no body 
force, the equation of motion of the displacement vector 

),( tru  can be written as 

)],,(),([),(),( tuTCtuT mnijmnji rrrr ∂∂=ρ           (1) 

where ),,(),( zyxz == xr  is the position vector, T is the 
temperature variable, t is the time variable; ),( Trρ and 

),( TCijmn r are the position-dependent and temperature-
dependent mass density and elastic stiffness tensor 
respectively. In the following, we consider a phononic crystal 
composed of a two-dimensional periodic array (x-y plane) of 
material A, embedded in a background material B. Due to the 
spatial periodicity, the material constants, ),( Txρ  and 

),( TCijmn x  can be expanded at temperature T and in Fourier 
series, with respect to the two-dimensional reciprocal lattice 
vectors (RLV), ),( 21 GG=G , as 
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where )(TGρ  and )(TC ijmnG  are the corresponding Fourier 
coefficients. 

To utilize the Bloch’s theorem and to expand the 
displacement vector ),( tru  in Fourier series for the analyses of 
the surface and bulk waves, we have 

),(),( zikitii zeeet ∑ ⋅−⋅=
G

G
xGxk Aru ω             (4) 

where ),( 21 kk=k  is the Bloch wave vector, ω is the circular 
frequency, zk  is the wave number along the z direction, and 
AG is the amplitude of the displacement vector. We note that as 
the component of the wave vector zk  equals zero, equation (4) 
degenerates into the displacement vector of a bulk acoustic 
wave. On substituting equations (2), (3) and (4) into equation 
(1), and after collecting terms systematically, we obtain the 
generalized eigenvalue problem as   

,0)( 2 =⋅++ UCBA zz kk                   (5) 

where A, B and C are 3n×3n matrices, and are functions of the 
Bloch wave vector k, components of the two-dimensional 
RLV, circular frequency ω, the Fourier coefficients of mass 
density )(TGρ  and components of elastic stiffness tensor 

)(TC ijmnG .  n is the total number of RLV used in the Fourier 
expansion, and U is the eigenvector. The expressions of the 
matrices A, B and C were listed in [15]. 

By applying the surface wave conditions and the traction 
free boundary conditions on the surface, the dispersion relation 
for the surface waves propagating in the two-dimensional 
phononic crystals, with both of the filling and background 
materials belonging to the triclinic system, can be obtained [15]. 
When zk  in equation (5) is equal to zero, the equation 
degenerates into the eigenvalue problem of the bulk waves as  

      .0=⋅ UC                                    (6) 

The dispersion relations of the bulk waves propagating in 
the two-dimensional phononic crystals can be obtained by 
setting the determinant of matrix C equal to zero. At the same 
time, for materials with symmetry lower than orthorhombic 
symmetry, the matrix C can not be decoupled into two 
different polarization modes (mixed and transverse polarization 
modes) [15]. The full matrix C must be considered, and 
distinguished as quasi-SV, quasi-SH and quasi-L modes.  

III. AIR/QUARTZ BAND STRUCTURE 
Consider phononic structures consisted of circular cylinders 

and a background material forming a two-dimensional square 
lattice with lattice spacing a (=10 µm) shown in Fig. 1. Air and 
quartz are utilized as both of the cylinders and the background 
materials respectively. From the elastic constants and density at 
room temperature (25°C), the temperature-dependent elastic 
constants and densities of the material, quartz, can be obtained 
by using [16]  
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where T0 is 25°C, and X(T0) is the elastic constant evaluated at 
room temperature. 
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∂  are the first and 

the second order temperature coefficients respectively. T is 
increased from 0°C to 50°C. The first order temperature 
coefficient of the density reads 

      ),(
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                   (8) 

where 11α , 22α , and 33α  are the expansion coefficients along 
the x, y, and z axis respectively. 

In this paper, we only considered the first order temperature 
coefficients and expansion coefficients of quartz (Z-cut). The 
related constants can be found in [17] and the thermodynamic 
properties (density and sound speed) of air can be found in [18]. 
It is worth noting that the filling fraction and the effects of the 
thermal stresses arising from the thermal expansion mismatch 
between the superlattice components when the temperature is 
varied are neglected due to the air/solid band structure.  

The case considered in this paper is that we increase the 
temperature of the air/quartz band structure from zero to fifty 
degrees centigrade. The phononic crystal consists of quartz 
substrate and square arrays of air cylindrical holes. The 
modified PWE method can be applied because of the high-
density contrast between solid and air [6,7]. It is well-known 
that the high density contrast between solid and air leads to 
unexpected flat bands in the band structure. We get round this 
problem by adopting the technique shown in [6]. The flat bands 
can be removed by taking an artificial transverse velocity 
inside the fluid. Instead of postulating a purely longitudinal 
behavior of the solid [7], we also give an artificial transverse 
character to the fluid [6].  

Figure 1.  A two-dimensional square lattice with lattice spacing a (=10 µm) 
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Figure 2.  Dispersion relations of the quasi-SV, quasi-SH, quasi-L and SAW 
modes in air/quartz phononic structure with square lattice. 

Fig. 2 shows the dispersion relations of the surface and bulk 
modes along the Γ-X section in the irreducible part of the 
Brillouin zone (see inset of Fig. 2) in air/quartz band structure 
with a filling ratio of 0.2. In the calculations, the x-y plane is 
parallel to the (001) plane and the x axis is along the [100] 
direction of quartz, and the elastic properties and densities of 
the materials from 0°C to 50°C utilized in this example are 
calculated from equations (7) and (8). The vertical axis is the 
frequency in MHz unit and the horizontal axis is the reduced 
wave vector π/* kak = .  k is the wave vector along the 
Brillouin zone. The thin solid lines represent the fundamental 
and higher quasi-SV modes, and the square symbols represent 
the quasi-L modes. The thin dashed lines represent the quasi-
SH modes, while solid circles represent the surface acoustic 
modes. The band gap width is defined as 12 ωωω −=∆  (ω1, 
ω2 are the frequencies at the X point) and SVω∆ , SHω∆ , Lω∆ , 
and SAWω∆  represent the band gap widths for quasi-SV, quasi-
SH, quasi-L and SAW modes respectively. At room  

Figure 3.  Band gap variations of air/quartz phononic structure with cylinder: 
air (0°C - 50°C) and base: quartz (0°C - 50°C) 

 

temperature, the band gap widths for the above four types of 
modes are SVω∆ = 89.98 MHz, SHω∆ = 78.04 MHz, Lω∆ = 
104.76 MHz, and SAWω∆ = 4.77 MHz. 

With the temperature of the band structure being increased 
from zero to fifty degrees centigrade, Fig. 3 shows the detail 
variations of the band gap widths of the four types of modes. 
The vertical axis is the frequency variation of the band gap 
defined as C25ωω ∆−∆  (unit: kHz) and the horizontal axis is 
the temperature varying from 0°C to 50°C. The results show 
that ω1 and ω2 of the quasi-SH mode at point X increase as the 
temperature rises, but those of the quasi-SV and SAW modes 
decrease. At point X, the ω1 of the quasi-L mode decreases 
while ω2 increases as the temperature rises. In Fig. 3, the 
relative variations of the band gap widths SVω∆ , SHω∆ , Lω∆  
and SAWω∆  all increase in direct proportion to the temperature 
change. 

IV. CONCLUSION 
Some important conclusions can be drawn from the above 

studies. First, we found that the temperature effects are obvious 
for all types of modes in the air/quartz band structure. Secondly, 
the tendencies of the relative band gap widths for the four type 
modes are the same in air/quartz band structure while the 
variations of the frequencies at X point are quite different. The 
frequencies ω1 and ω2 would decrease as the temperature rises. 
However, the ω1 and ω2 of quasi-SH modes and the ω2 of 
quasi-L modes in the air/quartz band structure increase as the 
temperature rises. We note that the band gap width can be 
enlarged or reduced by adjusting the temperature of the band 
structure. These prominent features of the temperature effect on 
the band gap variations of the phononic crystals may have 
potential applications in fine-tuning of the phononic band gap 
and they are very important on the precise filter design. 
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