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Abstract
The Miller-indices determination of the arising surfaces at the Si(0 0 1)

convex corner due to anisotropic etching is investigated. We propose a 2D
zoning model in which the undercut planes arising at a masked convex
corner are presumed to be in the same zone as the sidewalls forming the
convex corner, which is characterized by the parallelism of the intersection
lines of each pair of new surfaces and the sidewalls. Based on this model a
method combining the experimental data, analytical geometry and
stereographic projection is presented to systematically determine the Miller
indices of the arising planes. The quantitative prediction of undercut planes
is confirmed by the angle measurement using a surface profiler.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Due to the rapid growth of the microelectromechanical system
(MEMS) market the use of anisotropic wet etching of single
crystals in MEMS processing has increased. Anisotropic
etching is considered indispensable when certain planes
inclined with the wafer surface, which cannot be fabricated
by plasma dry etching, are needed. Also the increasing
complexity of an MEMS device gives the impetus to the study
of anisotropic etching for many unsolved problems. The study
of the etch rates of silicon crystal planes can be found in the
papers of Seidel et al [1], Herr and Baltes [2] and Zielke and
Frühauf [3], also the etch rates of polycrystalline SiO2 and
Si3N4 can be found in [1, 4, 5]. Papers [6–9] investigated
the etching behavior of silicon crystals. The undercutting
behavior of convex corners was reported in [10–13]. Designs
of compensating structures for avoiding the emergence of the
undercut facets were depicted in [11, 14, 15]. The final
shapes of etched crystals were analysed either by the method
of Wulff-type construction [16, 17] which is based on the
equilibrium thermodynamics, or by the kinematic wave theory
[18]. Given etch rate diagrams, papers [19, 20] developed

their own simulation programs to predict the etched shapes of
crystals using some geometrical methods.

As to the anisotropic etching of a convex corner on {1 0 0}
silicon with the mask edge parallel to the 〈1 1 0〉 direction,
Mayer [12] claimed that the arising planes at the corner are
the {4 1 1} ones as shown in figure 1. Schröder [13] proposed
that the anisotropic etching is mainly a step flow mechanism,
and predicted the direction of bunched step lines (as shown in
figure 2(a)) on the arising planes (the area B in figure 2(b))
occurring at the convex corner. Schröder did not state
definitely what the Miller indices of these arising planes
are. Bean [6], using a KOH–water–propanol etch solution,
identified these planes as the {3 3 1} planes, while Abu-Zeid
[11], using ethylene diamine–water solution instead, claimed
them as the {2 1 2} planes. If we look with care at the (1 0 0)
stereographic projection diagram, it was found that Bean and
Abu-Zeid marked the undercut planes and the {1 1 1} sidewalls
on the same trace, while those undercut planes of Mayer were
not located on the trace of the sidewalls. Lattice planes with
stereographically projected points on the same trace means
that the intersection lines of each pair of those planes are
parallel; or in the generalized sense, when these lattice planes
are moved passing through the origin, they will intersect at a
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Figure 1. (4 1 1) planes occurring at convex corners during the
KOH etching [12].

line. This line is called the zone axis of the zone in which
those planes are situated. The important concept of being in
the same zone for the undercut planes is that the orientations
or Miller indices of those planes can be analysed and predicted
by using 2D theory. Mayer determined the Miller indices of
the undercut planes by an experimental technique. Neither
Mayer nor Bean and Abu-Zeid provide a clear-cut method for
identifying those undercut planes. We are engaged in this kind
of study due to the fact that the method of properly determining
the orientation of the undercut planes is insufficient and that the
Miller-indices determination is indeed important in making the
etch rate diagram of lattice planes.

In section 2 the etching solutions and the configurations
of the Si{1 0 0} undercut convex corners are described. The
2D zoning of the undercut planes with the sidewalls of the
convex corner are shown from the SEM micrographs. In
section 3 the fundamental concepts and the necessary formula
of crystallography are introduced. The evolution of the
new surfaces arising at the convex corners in the process of
anisotropic etching is explained step by step in section 4.
A method, based on the proposed 2D zoning model and
combining the analytical geometry, stereographic projection
[21–23] and the auxiliary tool of the Wulff net, is presented in
section 5 for the Miller-indices determination of the arising
planes. A surface profiler is used to measure the angle
between the undercut plane and the mask surface to verify
the theoretically obtained result. This consistency proves the
2D zoning model which states that the undercut planes (area B
in figure 2(b)) are in the same zone as the sidewalls.

2. Convex corner etching

p-type {1 0 0} oriented silicon wafers were etched in aqueous
KOH solutions. Two different concentrations of KOH were
used, one is KOH:H2O = 3 : 7 and the temperature is
maintained at 70 ± 1 ◦C, the other is KOH:H2O = 4 : 6 and
the temperature is maintained at 80 ± 1 ◦C. The mask pattern
is shown in figure 3. After 10 min etching using KOH of 30%
the convex corner A of figure 3 was photographed by SEM as
shown in figure 4. For this short-period etching only a pair
of symmetric undercut planes appears, these two planes are
identified as of the {7 7 2} family instead of {4 1 1} reported
by Mayer and will be explained later on. It is clear from this
graph that the intersection lines of the undercut planes (7 2̄ 7)

and (7 2 7), (7 2̄ 7) and the sidewall (1 1̄ 1), and (7 2 7) and

(a)

(b)

Figure 2. (a) SEM micrograph of coarse bunched step lines at area
B occurring at convex corner undercut planes during the KOH
etching [13]. (b) Undercut planes B occurring at convex corners.

Figure 3. Mask pattern for the undercut etching.

(1 1 1), are indeed parallel; this parallelism is evidence for the
undercut planes to be in the same zone as the {1 1 1} sidewalls.
Figure 5 shows the configuration of the etched convex corner
after 50 min etching with KOH of 30%. The undercut
structures after 100 min etching with 40% KOH are shown
in figure 6. We find that both cases produce the same undercut
structure as those obtained previously by Mayer and Schröder.
The symmetric undercut planes are again identified, by our
proposed method, as of the {7 7 2} family. Besides these, there
exist two additional rough undercut surfaces marked as S.

In the other two etching experiments the same mask
opening is used but the etching solutions are replaced by
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Figure 4. The SEM micrograph of the convex corner A marked in figure 3 shows the onset of the emerging new undercut planes, which
were etched with 30% KOH at 70 ◦C.

Figure 5. The SEM micrograph shows the configuration of the
convex corner A marked in figure 3, which was etched with KOH of
30% and 50 min etching time at 70 ◦C. Except for the symmetric
(7 2 7) and (7 2̄ 7) undercut planes, another pair of undercut surfaces
marked as S appears.

KOH + IPA. In one experiment KOH:H2O = 3 : 7 and
temperature is kept at 70 ± 1 ◦C, in the other KOH:H2O =
4 : 6 and temperature is kept at 80 ± 1 ◦C. It is found that,
although the concentration and temperature are different, they
produce the same undercut planes as shown in figure 7.

3. Fundamental theory

Since we propose to use a combination of analytical geometry
and the stereographic projection to determine the Miller
indices of undercut planes, certain concepts of crystallography
must be introduced in advance. In this section we will
introduce the necessary condition for a lattice plane to be in
the same zone as the other two lattice planes. A powerful
technique for determining the Miller indices of a lattice
plane, with known orientation, directly from the stereogram is
described and will be used in the following sections.

The Miller indices (h k l) of a lattice plane mean that this
plane makes the intercepts a/h, b/k, c/ l on the orthogonal

x, y, z axes, respectively. The equation describing this plane
in terms of the lattice parameters a, b, c of a unit cell is

x

a/h
+

y

b/k
+

z

c/ l
= 1,

or

f (x, y, z) = hx

a
+

ky

b
+

lz

c
− 1 = 0. (1)

The unit normal vector of this plane is

n = ∇f

|∇f | = 1√
(h/a)2 + (k/b)2 + (l/c)2

(
h

a

k

b

l

c

)T

. (2)

The superscript ‘T’ means the transport operator and ∇
represents the gradient operator. For a cubic system we have
a = b = c, then n = (h k l)T/

√
h2 + k2 + l2; it is obvious that

n is parallel to the direction [h k l]. So the Miller indices of a
lattice plane can also represent the components of its normal
vector for cubic crystals.

3.1. Zone and zone axis

Any two non-parallel lattice planes (h1 k1 l1) and (h2 k2 l2)

intersect at a line. Let their normal vectors be n1 = (h1 k1 l1)
T

and n2 = (h2 k2 l2)
T, then the intersection line is represented

by the vector

L = n1 × n2 = (uvw)T, (3)

where

u = k1l2 − l1k2, v = l1h2 − h1l2 and w = h1k2 − k1h2.

The line represented by L is said to be the zone axis of
the zone in which the two planes (h1 k1 l1) and (h2 k2 l2) are
situated. The condition for the third plane (h3 k3 l3) to be of
this zone 〈uvw〉 is that

n3 · L = 0, or h3u + k3v + l3w = 0, (4)

where n3 = (h3 k3 l3)
T.

The two undercut planes in figure 4 will be identified as
(7 2 7) and (7 2̄ 7) planes in section 4. We will see that the
intersection line L1 of (7 2 7) and the sidewall (1 1 1), and the
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(a)

(b)

Figure 6. (a) The SEM micrograph of the convex corner A marked
in figure 3 shows the undercut structures, which were etched with
40% KOH and 100 min etching time at 70 ◦C. (b) For this
long-period etching, except for the symmetric (7 2 7) and (7 2̄ 7)
undercut planes, another pair of undercut surfaces marked as S
appears.

intersection line L2 of (7 2̄ 7) and (1 1̄ 1), are parallel because

�L1 =
∣∣∣∣∣
�i �j �k
7 2 7
1 1 1

∣∣∣∣∣ = −5�i + 5�k,

�L2 =
∣∣∣∣∣
�i �j �k
1 −1 1
7 −2 7

∣∣∣∣∣ = −5�i + 5�k,

and the zone axis of the two sidewalls (1 1̄ 1) and (1 1 1) is

�L = u�i + v �j + w�k =
∣∣∣∣∣
�i �j �k
1 −1 1
1 1 1

∣∣∣∣∣ = −2�i + 2�k,

therefore, we have �L1‖ �L, �L2‖ �L and �L1‖ �L2. This parallelism
indicates that the undercut planes are in the same zone as the
sidewalls of the convex corner. These parallel lines �L1 and
�L2 can be observed directly from figure 4. It is also easy to

Figure 7. The SEM micrograph shows the configuration of the
convex corner A marked in figure 3, which was etched with
KOH+IPA of 40% and 60 min etching time at 70 ◦C.

Figure 8. The stereographic projection p of a pole P in the northern
hemisphere projected from the south pole.

check that the condition given by equation (4) is satisfied by
undercut plane (7 2 7) or (7 2̄ 7) and the zone axis 〈2̄ 0 2〉.

3.2. Stereographic projection

Stereographic projection provides a means of representing the
angular relationship in two dimensions, which will facilitate
the measurement or discussion of the angles between crystal
faces on a flat piece of paper. Imagine the crystal to be
positioned with its center at the center of the sphere of
projection and draw normals to crystal planes through the
center of the sphere to intersect the surface of the sphere at
point P. P is called the pole of the plane. A crystal plane can
also be represented by drawing the parallel plane through the
center of the sphere and extending it until it strikes the sphere.
The line of intersection of the sphere with such a plane is called
a great circle with radius equal to the radius of the sphere. We
now project the point P on the sphere on to a flat piece of paper.
Referring to figure 8, if we project the point P from the south
point S on the sphere on to the equatorial plane normal to SO,
the point p so produced on the equatorial plane is defined as
the stereographic projection of P.

There are two important things coming from the
stereographic projection. One is that angles on the sphere of
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A 

B 

1p
2p

3p

S

E
O

N

Figure 9. A stereogram illustrates the stereographic projection of
crystal planes. Poles of planes (h1 k1 l1), (h2 k2 l2) and (h3 k3 l3) are
on the circular trace

�
AB, because they are in the same zone.

Figure 10. The Wulff net drawn at 2◦ intervals.

projection project as equal angles. The other is that all circles
(great or small) on the surface of the sphere of projection
project as circles. Let P1 and P2 be the poles on the sphere
of projection of the two sidewalls (h1 k1 l1) and (h2 k2 l2) of
a convex corner. Through these two poles we can draw a
great circle. The circular arc AB in figure 9 is the partial
stereographic projection of this great circle and is also called
the trace of that great circle. p1and p2 are the corresponding
stereographically projected poles. Now if the undercut plane
(h3 k3 l3) is in the same zone of the sidewalls, from the above
discussion, the pole p3 of the stereographic projection of the
undercut plane must lie on the same trace

�
AB. With this

concept in mind we will save a lot of effort in finding the Miller
indices of the undercut planes. A Wulff net is a graphical
aid for the construction of a stereogram. This net shown in
figure 10 is drawn at 2◦ intervals. The net is used by placing
it under the stereogram with two centers pinned together. The
angle between poles is measured by rotating the stereogram
until the two poles lie on the same great circle.

3.3. Miller indices measured from a stereogram

Now we turn to the problem of finding the Miller indices
of a crystal plane with its orientations known. Referring to

O

D

E

F

N

3a h

3b k

3c l γ

α β

a

b

c

Figure 11. Orientation of a crystal plane of the Miller indices (h k l).

figure 11, the angles between the normal line of the crystal
plane (h3 k3 l3)and the orthogonal axes x, y and z are denoted
respectively by α, β and γ . The Miller indices of this plane
can be determined when the position of the stereographically
projected pole in the stereogram is known. The angles α, β, γ

shown in figure 11 can be obtained directly by measuring
the angles between the poles p3 and S(1 0 0), poles p3 and
E(0 1 0), and poles p3 and O(0 0 1), respectively, in figure 9
with the auxiliary Wulff net. From the right triangles �DON

we have

cos α = cos � NOD = ON

OD
= ON

a/h3
,

thus

h3 = a

ON
cos α. (5)

Similarly, from�EON and �FON , we get

k3 = b

ON
cos β, l3 = c

ON
cos γ. (6)

Combining equations (5) and (6) gives

h3 : k3 : l3 = a cos α : b cos β : c cos γ. (7)

For a cubic system we have a = b = c, then equation (7)
reduces to

h3 : k3 : l3 = cos α : cos β : cos γ, (8)

that is, the ratio of Miller indices is the ratio of the directional
cosines.

4. Etching behavior

In this section the mechanism of the emergence of the undercut
planes is explained.

Figures 12(a) and (b) are the X–X and Y–Y cross sections
of the mask opening given in figure 3. In the first period
of etching the (1 0 0) substrate was etched down along the
〈0 0 1̄〉 direction as shown in figure 13. In the second period
of etching the substrate was etched out continuously and
at the concave corners a1 and b1, e1, and f1 (marked in
figure 13) the {1 1 1} planes illustrated in figure 14 emerged.
So the convex corner A of figure 3 was formed by the two
{1 1 1} side planes which intersect at the edge r1r2 as shown in
figure 15. For this convex-corner configuration there are three
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(a) X-X cross section (b) Y-Y cross section 

Figure 12. The X–X and Y–Y cross sections of the masked opening given in figure 3.

Figure 13. Etched structures of the X–X and Y–Y cross sections in the first period of etching.

(a) X-X cross section (b) Y-Y cross section 

Figure 14. Etched structures of the X–X and Y–Y cross sections in the second period of etching.

Figure 15. Configuration of corner A in the second period of
etching.

regions where undercutting may occur: (1) the convex corner
of the edge r1r2, (2) the region in the vicinity of point r1, and
(3) the region in the vicinity of point r2.

According to the Séquin theorem [18] (based on kinematic
wave theory) and the Wulff–Jacodine theorems [19] (based on
equilibrium thermodynamic theory), we know that a convex
corner remains convex after etching no matter how many new
crystal planes appear; similarly, a concave corner keeps its
concave shape after etching even if new crystal planes emerge.
Furthermore, the new crystal planes at the convex corner are
dominated by the faster-etching-rate planes, whereas the new
planes occurring at the concave corner are dominated by the
slower-etching-rate planes.

Now we consider the first case. The two sidewalls {1 1 1},
which form the convex corner of edge r1r2, have the slowest
etch rates, some crystal planes with etch rates faster than
these rates may occur, but only those of the fastest etch rates
can emerge. The configuration of undercutting is shown in
figure 16. Since the silicon single crystal belongs to the m3m

Figure 16. Undercutting occurring at corner A in the third period of
etching.

point group [24], if one undercut plane is (h k l), due to the
symmetry the crystal plane (h k̄ l) also appears. Whether these
two undercut planes are in the same zone as the sidewalls
depends on whether the sectional lines

←→
t1t2 and

←→
t3t4 are parallel

or not. The (h k l) plane and the (0 0 1) substrate form a local
concave corner. According to the above-mentioned theorem,
this concave corner must remain concave even if undercutting
occurs. If there exist some crystal planes whose etch rates
are slower than (h k l) and whose poles in the stereogram lie
inside the sector formed by the origin and the poles of (h k l)

and (0 0 1), these new planes will emerge in the final period
of etching and are represented by the concave-corner undercut
planes S illustrated in figure 17.

Next we consider the second case. In the vicinity of point
r1 the (0 0 1) mask and the {1 1 1} sidewall form a concave
corner; and the two {1 1 1} sidewalls form a convex corner.
The etch rate of the SiO2 mask approaches zero, and that of
the {1 1 1} side wall is the slowest one of the silicon crystal, so
there is no crystal plane with an etch rate slower. Therefore,
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Figure 17. The new surfaces S emerge at the corner formed by the
{h k l} planes and the (0 0 1) substrate in the vicinity of corner A in
the final period of etching.

it is not possible for the occurrence of new planes at this
concave corner. But some crystal planes of faster etch rate
may appear in the convex corner of edge r1r2, this mechanism
of undercutting belongs to that of the first case.

Finally we consider the third case, the corner in the
vicinity of point r2. The {1 1 1} side wall and the substrate
(0 0 1) form a concave corner. Although there is no crystal
plane having a slower etch rate than the {1 1 1} one, there
may exist planes whose etch rates are slower than the (0 0 1);
these planes have to compete for emergence with those {h k l}
planes arising at the convex corner of edge r1r2 in the vicinity
of point r2. According to the rule that the fastest-etch-
rate plane appears first at the convex corner, and that the
slowest-etch-rate one occur first at the concave corner, it
naturally leads to the conclusion that the slower-etch-rate plane
appearing at the concave corner formed by a {1 1 1} and a
(0 0 1) is predominated by the faster-etch-rate plane occuring
at the convex corner formed by the two {1 1 1} plane of edge
r1r2. Indeed we do not observe any undercut plane at the
concave corner at the point r2 in our experiments. From the
above discussion of the three possible undercutting cases, only
the first one, that is, the undercutting at the convex corner of
edge r1r2, occurs. Based on these explanations, and the parallel
character of the intersection lines of the undercut planes and
the sidewalls shown in figures 4 and 7, we introduce a 2D
zoning model to emphasize that the undercut planes near the
mask layer should be formed in such a way that they are in the
same zone as the sidewalls.

5. Miller indices of undercut planes

We first assume that the undercut planes are in the same zone as
the sidewalls, based on this we determine the Miller indices of
the undercut planes through measurement and the auxiliary
tools of stereographic projection and Wulff net. The so-
determined undercut planes are verified by experimental angle
measurement using the surface profiler.

5.1. Aqueous KOH solutions

Referring to figure 18, which is the microscopic top-view
graph, the vector

−−→
P0A coincides with the intersection line of

the mask layer and the (1 1̄ 1) sidewall, while vector
−−→
P0P1

coincides with that of the mask layer and the undercut plane
of Miller indices (h k̄ l). The angle between

−−→
P0A and

−−→
P0P1

is measured to be 29◦. The projections of the directions
〈1 1̄ 1〉 and 〈h k̄ l〉 on the (0 0 1) plane are 〈1 1̄ 0〉 and 〈h k̄ 0〉,

Figure 18. Top view of the microscope micrograph showing the
mutual intersection lines of side walls, undercut planes and mask
layer (KOH of 40%, temperature 70 ◦C, and 1 h etching time.)

 

A 

B

E 
F 

O

Figure 19. Location of the Miller indices of the undercut plane in
〈0 0 1〉 stereogram.

respectively; while 〈1 1̄ 0〉 is the normal direction of the (1 1̄ 0)

plane and its pole in the stereogram is marked by the letter A
in figure 19 and 〈h k̄ 0〉 is the normal direction of the (h k̄ 0)

plane and its pole is labeled by B. It is easy to show that the
angle � P1P0A is equal to the angle between the two planes
(1 1̄ 0) and (h k̄ 0). If we properly draw the line

←→
OB (where

point O represents the pole of the (0 0 1) plane) at an angle 29◦

with respect to the line
←→
OA in figure 19, then the intersecting

point of
←→
OB and the trace

�
EF of the two {1 1 1} sidewalls will

be the projected pole of the (h k̄ l) undercut plane.

Equation (8) given in section 3 will be used to calculate
the Miller indices of the undercut planes. We first measure the
angles α, β, γ of the direction 〈h k̄ l〉 with respect to the three
axes 〈1 0 0〉, 〈0 1̄ 0〉 and 〈0 0 1〉. It is found that α = 45◦, β =
80◦ and γ = 45◦. Then equation (8) gives (h k̄ l) = (7 2̄ 7).

The above-mentioned method for the Miller-index
determination is hands-on and systematic. An alternative
which is purely a mathematical calculation is also presented
here.
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Figure 20. The inclination angle βe of the (7 2 7) undercut plane with respect to the (0 0 1) plane measured by the surface profiler
(Alpha-step) is 47.13◦.

Figure 21. Top view of the microscope micrograph showing the
mutual intersection lines of side walls, undercut planes and mask
layer (KOH+IPA of 40%, temperature 70 ◦C and 100 min etching
time.)

The component form of vector
−−→
P0A is

−−→
P0A = 〈0 0 1〉 × 〈1 1̄ 1〉 =

∣∣∣∣∣
�i �j �k
0 0 1
1 −1 1

∣∣∣∣∣ = �i + �j = 〈110〉,

and
−−→
P0P1 = 〈0 0 1〉 × 〈h k̄ l〉 = 〈k h 0〉. The angle θ1 between

vectors
−−→
P0A and vector

−−→
P0P1 can be found by the inner product

of these two vectors as
−−→
P0A · −−→P0P1 = |−−→P0A||−−→P0P1| cos θ1. The

angle between planes (1 1̄ 0) and (h k̄ 0), which is equal to θ1,
in terms of h and k is

cos θ1 = h + k√
2
√

h2 + k2
. (9)

The zone axis �L of the two sidewalls (1 1̄ 1) and (1 1 1) is

�L = 〈1 1̄ 1〉 × 〈1 1 1〉 = −2�i + 0 �j + 2�k = 〈2̄ 0 2〉. (10)

Since the undercut plane is in the same zone as the sidewalls,
it must be that 〈h k̄ l〉 · 〈2̄ 0 2〉 = 0, or

h − l = 0. (11)

The angle θ1 can be obtained by measurement, we let√
2 cos θ1 = 1/η, then equation (9) can be expressed in the

form

(η2 − 1)h2 + 2η2hk + (η2 − 1)k2 = 0. (12)

 

O

A  

B

Figure 22. Location of the Miller indices of the {3 1 3} undercut
plane in a 〈0 0 1〉 stereogram.

Solving (12) gives

h =
{

−2η2 ±
√

4η4 − 4(η2 − 1)2

2(η2 − 1)

}
k = g(η)k. (13)

Since θ1 = 29◦, equation (13) gives h = 3.487k. Thus we
have h : k : l = 1 : g(η) : 1 = 3.487 : 1 : 3.487 ≈ 7 : 2 : 7.

In order to verify the Miller indices (7 2̄ 7) of the undercut
plane calculated on the assumption that undercut planes are of
the same zone of the sidewalls, we perform an experiment
which measures, by using the surface profiler, the angle
between the undercut plane and the top (0 0 1) surface with
the mask layer etched off. The probe of the surface profiler
contacts the top surface and keeps going along the direction
perpendicular to the edge

−−→
P0P1, over the edge it goes down the

undercut plane. The angle βe in figure 20 is measured to be
tan−1(57.44/53.31) = 47.13◦. The angle βt between 〈0 0 1〉
and 〈7 2̄ 7〉 is calculated as βt = cos−1(7/

√
102) = 46.12◦,

which agrees well with βe. Mayer [12] claimed the undercut
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Figure 23. The angle between (0 0 1) and (3 1 3) is measured to be 44.67◦ by the surface profiler.

plane is (411), the angle between 〈0 0 1〉 and 〈411〉 is βt =
cos−1(1/

√
18) = 76.37◦, which is far away from βe. Let the

angle between
−−→
P0P1 and

−−→
P2P1 be denoted by θ3, we can further

confirm our result by comparing the experimentally measured
θ3 with the theoretically calculated θ3. Since

−−→
P0P1 = 〈2 7 0〉

and
−−→
P2P1 = 〈7 2 7〉× 〈0 0 1〉 = 〈2 7̄ 0〉, from the inner product

of
−−→
P0P1 and

−−→
P2P1 we have θ3 = cos−1(−45/53) = 148.1◦

which is very close to the measured value (= 148.5◦as shown
in figure 18). From the several verifications mentioned above,
we know that the undercut planes are {7 2 7} and not {411} as
mentioned by Mayer [12].

5.2. Aqueous KOH + IPA solutions

The proposed method for the Miller-index determination of
the undercut surfaces can also be applied equally well to the
case where the etching solution is KOH plus IPA. The angle
between

−−→
S0S1 and

−−→
S0A in figure 21 is measured to be 26◦. In

figure 22 we draw a line
←→
OB at an angle of 26◦ with respect to

the line
←→
OA. Based on the assumption that the undercut plane

belongs to the same zone as the sidewalls, the intersection
of

←→
OB and the trace of the two {1 1 1} sidewalls gives the

projected pole of the undercut plane. By using equation (8)
the Miller indices of the undercut plane are calculated to be
(3 1̄ 3), which is of the {3 3 1} family. This result is the same
as that of Bean [6]. The angle between (0 0 1) and (3 1̄ 3) can
then be calculated to be θ = cos−1(3/

√
20) = 46.5◦, which is

very close to the angle 44.67◦ measured by the surface profiler
(figure 23).

6. Conclusions

Although the undercutting behavior of a Si(0 0 1) convex corner
had been widely studied, a sound theoretical background for
the determination of the Miller indices of these undercut planes
had not been found in the literature. In section 4 we have
given a theoretical explanation for the emergence of undercut
planes, and propose a 2D zoning model in which the undercut
planes just beneath the mask layer are presumed to be in the
same zone as the sidewalls forming the convex corner. Based
on this model we have presented a method for determining
the Miller indices of the undercut planes by using analytical
geometry in conjugation with stereographic projection. The

theoretical results have been verified by experimental angle
measurement.
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