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Abstract 

A space marching Godunov-type method using control volumes consisted of streamlines and the coordinate lines in the marching 

direction is described for the computation of steady supersonic/hypersonic equilibrium flows. A steady Riemann problem and its solution 

for equilibrium gases is described and used in the Godunov method. Both Tannehill’s equilibrium air program and Lighthill’s ideal 

dissociating gas model are used to calculate the equilibrium gas properties. The streamline meshes are automatically solution generated. The 

use of streamline meshes enables a crisp resolution of sliplines and simplifies the Godunov solution procedure. Extensive computations of 

various steady two-dimensional and three-dimensional axisymmetrical supersonic/hypersonic equilibrium flows are included to illustrate the 

method. 0 1998 Elsevier Science S.A. 

1. Introduction 

In [I], we have described a streamline Godunov-type scheme for the computation of steady supersonic and 
hypersonic flows of perfect gases. In this sequel, we shall describe the same numerical approach for the 
computation of steady supersonic/ hypersonic equilibrium flows. In order to implement the Godunov method 
[2], one has to find the solution for the steady Riemann problem for an equilibrium gas. One of the most 
important tasks one has to deal with in order to obtain accurate and efficient numerical solutions of inviscid 
equilibrium flows is to be able to obtain the accurate equilibrium gas properties. Since the equation of state for 
an equilibrium real gas is not available in closed form, it must either be obtained by solving a set of nonlinear 
chemical equilibrium equations, or approximated by some curve fit or a table lookup. In recent years 
formulations for various approximate Riemann solver for the Euler equations for equilibrium gases have been 
reported [3-81. Here, we use the Tannehill’s equilibrium air program [9] and Lighthill’s ideal dissociating gas 
model [lo] to calculate the real gas properties. In [9], the equilibrium gas properties such as pressure, 
temperature and speed of sound, as functions of density and internal energy, can be efficiently calculated. This 
program is simple and efficient and thus is very suitable for modern computational fluid dynamics, particularly 
for high-speed flows. In [lo], Lighthill proposed an interesting and simplified model called the ideal dissociating 
gas (IDG) for calculating the equilibrium properties of gases. In the IDG model to obtain all the equilibrium gas 
properties one has to use the numerical iteration for the law of mass action and the equation of state, although 
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the formula for an equilibrium gas is explicit and easy to understand. Although this model has proved useful in 
the approximate study of dissociating symmetrical diatomic gas, however, it has not been broadly used in 
modern computational gas dynamics. Here, since air before dissociation is a mixture primarily consisting of 0, 
and N,, in this connection we also consider this IDG model. A more recent program for equilibrium air has been 
provided by Vinokur and Liu [ 111. Although this program, in principle, can also be adopted in the present frame 
of work, however, due to the different formulation and independent variables used and to limit the size of the 
paper we shall not include this equilibrium real gas model in this work. Other general equilibrium gas laws 
applied to numerical formulations for various approximate Riemann solvers including the Steger-Warming flux 
vector splitting [ 121, the van Leer flux vector splitting [ 131, and Roe’s approximate Riemann solver [ 141, have 

been given. 
The purpose of the present work is to construct an efficient and second-order Godunov-type space marching 

scheme for steady supersonic/ hypersonic equilibrium flow computations based on the steady Riemann problem 

and its solution for an equilibrium gas using streamline meshes. As a building block, the Riemann problem and 
its solution play an essential role in the Godunov-type scheme in the numerical solution of inviscid compressible 
gas flows. For perfect gases, exact Riemann solution for steady Euler equations can be found in [ 151. The 

solution procedure for real gases is similar to that for the perfect gases. However, due to the different real gas 
models implemented, the detailed steps can be quite different. Here, two real gas models are used. One is due to 
Tannehill and the other one Lighthill. In this work, pressure is used as the independent thermodynamic variable 
in order to meet the condition of pressure equality at both sides of slipline and the real gas properties are 
calculated due to Srinivasan et. al. [9] and Vincenti and Kruger 1161 can also be used. 

The characteristics of using streamline meshes as control volumes or cells in the Godunov method has been 
illustrated in [l]. Basically, the use of streamline meshes shares the same desirable features of new Lagrangian 
method [ 171 via simplifying the Godunov solution procedure and producing crisp resolution of the sliplines 
since for steady flow a slipline coincides a streamline, just as in [ 171. To improve the accuracy of the basic 
Godunov method which is first-order accurate we extend it to second-order method [ 18,191 by adopting an 

essentially nonoscillatory interpolation due to Harten and Osher 1201 (see also [ 11). 
In Section 2, the steady Euler equations of inviscid compressible equilibrium flows are described. In Section 

3, the streamline Godunov-type scheme of second-order accuracy is briefly outlined. The elementary waves of 
the steady Riemann problem for an equilibrium gas and its solutions are given in Section 4. Formulations are 
derived using pressure as independent thermodynamic variable. In Section 5, Tannehill’s air table and 
Lighthill’s ideal dissociation gas model used are introduced. In Section 6, numerical results for various steady 
supersonic and hypersonic equilibrium flow problems are given to illustrate the feature of the present method. 
Some concluding remarks are made in Section 7. 

2. Steady Euler equations of real gas 

The Euler equations of motion of an inviscid non-heat-conducting gas for steady two-dimensional and 
three-dimensional axisymmetrical equilibrium flows in conservation form can be written as 

where 

(2) 

Here, x and y are the physical coordinates, p is the density of the gas, u and u are the corresponding 
components of the local velocity V, P is the pressure, and H is the total enthalpy per unit mass. The value of X is 
0 for the two-dimensional case and 1 for the axisymmetrical one. In the later case, y denotes the radial 
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coordinate, while x denotes the space-marching direction in both cases. The relations among the state variables 
for equilibrium gases are further defined by two equations of state (EOS) which are taken in the form 

p = P(P, 7); h = e4 n, 

where T is the temperature and h is the specific enthalpy. The total enthalpy per unit mass H is 

(3) 

2 2 

H=h(p,P)+$=c(p,P)+$+$, (4) 

where V2 = u2 + v2 and e is the specific internal energy. For an inviscid non-heat-conducting flow, H always 
conserves along the same streamline. 

With the state variable vector Q = (p. U, u, P)T, the matrix [&?Z/C?Q]-‘[M/~Q], has four eigenvalues: 

A0 = t multiplicity of 2 , 

(5) 
uuka 7 V -a 

h, = 2 2 3 

where a is the speed of sound. To guarantee that [&ZZ/aQ] -’ [M/aQ] has four real eigenvalues, we require 
V= m > a. That is, the flow must be supersonic. Then, the system (1) is hyperbolic and the spatial 

variable x is a time-like variable. It is well known that 2-D steady supersonic flow and 1-D unsteady flow have 
the same mathematical structure and some qualitative analogy in flowfield, because both belong to the class of 
hyperbolic partial differential equations with two independent variables. Due to the similarity in mathematical 
structure and flowfield physics, we can obtain the solutions of these two kinds of problems by applying the same 
numerical method. Here, a marching method in the x-direction can be constructed to solve Eq. (l), and consider 
a space-marching method associated with the Godunov scheme. The numerical solution of Eq. (1) by 
Godunov-type scheme and a second-order essentially nonoscillatory (EN02) interpolation has been described in 
detail in [l] for a perfect gas. 

To solve the governing equations with the source terms, like Eq. (I), we can apply the splitting technique in 
our problem. That is, in the case of axisymmetrical flow, the numerical integrations for the source terms can be 
treated separately by using an appropriate x-marching step. When E” represent finite difference approximations 
to the convection fluxes E at x = n Ax, the present computational scheme can be written as 

E n+’ = ~‘(~/2)~“(~)~‘(i\x/2)E” . 

Here, the operator 2’ represents the integration of source terms, satisfying 

(6) 

g+s=o, 
and the operator ZF denotes the finite-volume integration of equation satisfying 

s+‘F_O. 
8Y 

The operator 9’ is defined by 

eYs(A_x)E” = E” - Ax” S(Q;) + 2 

The finite-volume formulation of operator LZF is then described in Section 3. 

3. Streamline Godunov method 

(7) 

(8) 

(9) 

In this section, we describe a Godunov-type scheme for solving Eq. (1) using a second-order EN0 
interpolation with streamline control volumes for the steady Euler equations in equilibrium flows. 
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3.1. Finite-volume formulation 

Let the marching direction be in the x-coordinate and the mesh be oriented such that xy = constant = x” for all 
j. Here, n and j refer to the marching step number and cell number, respectively. The marching distance, 
&” = xn+ ’ _ Xn, is chosen to satisfy the usual Courant-Friedrichs-Lewy (CFL) linear stability condition based 
on the elementary wave systems of the steady Riemann problem at the cell interfaces of all streamline cells. The 
computational domain in x - y plane is divided into a system of control volumes or cells which in the 
y-direction are centered at $ and have a height of Ay; = yy_ , , I - _Y:’ , , ?. The computational domain is shown in 
Fig. 1. 

Here, we apply the splitting technique, i.e. let S = 0 in the steps 2?“(Ax) for solving the corresponding 

Riemann problem of Eq. ( 1): dE / dx + dF / $v = 0. Then, the difference equations for the jth zone are obtained 
by integrating dE/ dx + dF/@ = 0 over the jth cell and applying the divergence theorem. That is 

(10) 

where D is the control area or cell, 8D is the boundary curve of the control area, n’ is the outward unit normal to 
aD, and d4 =dm is the infinitesimal arc length on aLI. Expanding Eq. (lo), it can be expressed in terms 
of numerical fluxes as 

t1 + I 

E, 

where the numerical flux G,N+, ,2 is defined as 

G)V,,,, = F;:,‘;; - .(‘+,,zE:‘:I’:2’ 

Here, .yyT , , 2 is the slope of the cell interface at .Y~~~~~, and is given approximately by 

n + I 

s” = Y,+1u -yj'+,,* 
,+ 112 Ax” . 

For any quantity h the cell average off is 

Fig. 1 

Y 

. j ::. :: ..I 
j - l/2 

j-l 

Streamline meshes in (x, y) coordinates for the streamline Godunov method 

j+l 

oblique shock 

streamline 

P-M expansion wave 

j 

oblique shock 

streamline 

P-M expansion wave 

j-l 

(11) 

(12) 

(13) 
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and the distance average off along the upper and lower boundaries of cells are 

(14) 

(15) 

In the first-order Godunov scheme, the jth cell average of state variables Qy, at marching step n is considered as 

constant within that cell and the numerical fluxes Gfr+,,* along the interface between the jth cell and the 
(j 4 1)th cell from marching step n to 12 + I is to be obtained from the self-similar solution R[(y - y,“, , ,,)/(x - 

0; Q:‘, Q,“, I 1 at Y = 4;“~~~~ to the steady Riemann problem formed by two adjacent piecewise constant flow 

states Qr and QT+ , , i.e. with Q,” = QB and QT,, = Q7 and use the procedure described in Section 4. 

3.2. Numerical procedure 

The algorithm for computing the interface flux from the initial data, say step II, and updating solutions to step 
II + 1 may be divided into a number of steps. These are 

Step I. ‘Decode’ ET to obtain QJ. Given El”, one has 

(16) 

and assuming that p is known, then 

E, 
Ll=--, 

P 
(17) 

2 

P=E,-2: (18) 

(19) 

From Eq. (18), we define an object function 

(20) 

In Eq. (20) P(p, h) comes from equation of state, Eq. (3), such that h is calculated from Eq. (19). Using a 
numerical iteration procedure, one gets a converged value of p, after 3 to 5 iterations with the tolerance below 
10P6. Once p is obtained, u and P can be determined from Eqs. (17) and (18). 

Step 2. Apply second-order EN0 representation to evaluate the state variable pair (Q,T+ ,,2, a,:+ 1,2) in the 

upper and lower sides of cell interface. In Eq. (12), the intermediate values E,“:::t, Fyz::,’ and G,!+, ,2 can be 
obtained more accurately at the cell interfaces using a second-order EN0 interpolation and are given by 

with 

(22) 

Zy = m(a,, b,) , (22) 

where 
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(23) 

In the above, A,Ey = L(EJ’+, - Ey) and A+ YT = ?(Yy,, - y:’ ) denote the usual forward and backward 
difference operators. In Eq. (23), if 77 = 0, one has a second-order TVD scheme, and if 77 = l/2, one has a 
uniformly second-order EN0 scheme. The limiter functions m and ?ii are defined, respectively, by 

if s&z) = sgn(b) = c , 

otherwise 

and 

FiT(u’ b) = 

a, if Ial s Ihj, 

b, if Ial > lb1 

Next, we advance Ey,‘,,, to step IZ + l/2 as follows: 

E -,-+,,z =Ej’,,,z -s WE;,,,,) - W;_‘,,,N 7 
I 

-+ 
E ,+I/2 = E;:,,2 - g$ mq;, ,2) - F@;L!)l . 

.I 

(24) 

(25) 

(26) 

After obtaining ET*, ,?, we then calculate e;*, ,? by using the decoding formula as shown in Step 1. 

Step 3. Obtain the self-similar solutions R[(y -Y,“+,,~)/(x -x;+,,~); e,++,,,, e,-+, ,2] by solving the steady 
Riemann problem for equilibrium gases. The solution states along the upper and lower boundaries of cells, 

Q;Z;7 are used to evaluate the numerical fluxes Gy?, ,2 along (Y - yy?, ,,)/(x - .xr_, ,2) = .TJ’~ 1 ,2. 

Step 4. Generate the streamline meshes. The streamline meshes are carried out by defining 

n+1 
x1 =$+A.?, (27) 

?I+1 
Y,%l/2 =y;‘t,/* + ~“&,/Z~ (28) 

Here, AX” is the marching distance from step n to step II + 1 and spt, ,2 are the slope of the slipline which comes 
from the Riemann solution at the corresponding cell interfaces, i.e. sy_ ,,2 = (tan 8*)~~~~~. From the CFL 
criterion, Ax” can be estimated by 

Ax” = min 
AY; 

I Ib,L2l + Iqw*l ’ 
(29) 

_ 
where ST+, ,? are the maximum slope of the -, + waves at the cell interfaces y = Y~~~~~, determined from the 

I-.‘- 

Riemann solution at the corresponding cell interfaces. Then, we 
Y-coordinate of the cell at the marching step n as 

can determine the cell height and the 

,;+I = Y;::,, -Y;‘,‘,, > 

and 

PI+1 .$+,/2 + s:)-112 
Y, =; (Y,“I,‘,, + y;f:,2) = y; + ax” 

2 . 

Note that the mean slope of streamline for the cell is approximately 
upper and lower interfaces of the cell. 

(30) 

(31) 

equal to the average of the slopes at the 
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Step 5. Lastly, the solutions of x-direction convection fluxes at step n + 1 EJn+‘, can be obtained from Eq. 

(1 l), and then calculate the state variables Ql” by using the decoding formula as stated in Step 1. 
At this stage the numerical procedure of the streamline Godunov method for marching solution from step II to 

step IZ + 1 is completed. To march forward further in x, one goes back to Step 1 and repeats Steps l-5. 

We note that the procedure to generate the streamline grids described here is slightly different to that 
described in [l]. In [ 11, the slope of the cell interface is approximated by the average speed of the upper and 
lower flow velocities of the interface while here we employ the slope of the slipline (interface) which is from the 
exact Riemann solution. In most cases, the two approaches give the same results, however, there are cases, 
particularly with solid boundary, the method in [l] may allow the flow to cut into the solid boundary. Although 
one can overcome this problem by cutting the size of marching step AX, but at high speeds this sometimes can 
be extremely costly. The present approach improves this and indicates its robustness in practical computations. 

If a solid boundary is present in the flow, it must be a streamline. At this wall the local velocity vector must 
be tangent to the solid wall. So the boundary condition to be imposed on the solid boundary is 

> = tan 13, , 
w 

(32) 

where t?,$, is the inclination of the solid wall and u, and v, are the corresponding components of the local flow 
velocity parallel to the surface of the solid wall. This results in a boundary Riemann problem for equilibrium 
gases and is solved using the procedure described in Section 4. 

4. Riemann problem for 2-D steady supersonic flows of equilibrium gases 

The Riemann problem for two-dimensional steady supersonic flows for equilibrium gases is specified as the 
system (1) of hyperbolic conservation laws subject to the initial condition 

;z;” 
0' 

(33) 

where Q = (p, u, v, P)T and subject to the equation of state 

where the flow states are given at the initial data line x =x0 and Q, and QB denote the top and bottom states. 
The equation of state is prescribed as a given function of any two thermodynamic variables, such as p, e. 

The solution to the above steady Riemann problem for equilibrium gases is self-similar in the variable 

(Y - Y,)/(x - ~0) an d consists of three types of elementary wave + , 0, - , namely, the oblique shock waves, the 
slip lines, and the Prandtl-Meyer expansion waves, in that order from top to bottom, as shown in Fig. 2. The 
k-waves may be either shocks or expansions while O-wave is always a slipline. In order to construct these 
waves, one needs to determine the intersection (P*, 19*) in the P - 8 plane, as shown in Fig. 3. It is noted that 
although the classification of the elementary waves for equilibrium gases is the same as that for perfect gases, 
nevertheless, the real gas effects complicate the formula considerably and exact formula cannot be found 
explicitly and numerical solution has to be pursued. Denote this Riemann solution as R[(y - y,)/(x - 
x0); QT, Q,]. These elementary waves can be used to construct a solution to the steady Riemann problem for 
two-dimensional supersonic flows. 

4. I. Elementary wave systems for equilibrium gases 

Let Q, and Q be states ahead of and behind any one of the elementary waves, then there are three cases: 

(A) The wave is a slipline (P = PO) 
In this case, from the physical feature of the streamline, we have 
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I QT = (PT, UT, VT, PT)~ 

P-M expansion wave problem 

Fig. 2. Elementary wave system m the solution of steady Riemann Problem 

Fig. 3. Solution for the steady Riemann problem in the (!‘, 0) plane. 

P(P, e> = P,(p,, e,) = p* > 

O=tan-’ f 
0 

=o,,=tan-’ z 
( > 

= tI* 

(34) 

(35) 

That is, the pressure P and flow angle 8 must be identical on either side of the slipline, which holds for both 
perfect and equilibrium gases. The density p, velocity components and the other thermodynamic variables may 
jump abruptly. 

(B) The wave is an oblique shock wave (P > PO) 

In this case, from the oblique shock relations and the equation of state, we have 

p(,Vi sin2P = 
P - P, 

1 - POIP ’ 

tanS= (P-PdtanP 
P + p. tan’/? ’ 

(36) 

(37) 

where V, =J/m. p IS the shock angle, and 6 = A0 is the flow deflection angle. 

The changes of the thermodynamic variables across an oblique shock wave can be expressed by the 
Rankine-Hugoniot relation, 

(38) 

or 

T=l-2,, 
4E PI - e, 

P+P, ’ 

This Rankine-Hugoniot jump condition is an implicit relation between pressure P and density p. If P is known, 
p can be obtained by letting the object function be 

f(P) = 4 + 2P” 
e(e p) - e, 

P + P,, - l i (40) 

from using the appropriate numerical procedure. 
Having obtained the flow properties ahead of and behind the oblique shock wave, we can get fi and 6 from 
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Eqs. (36) and (37). The flow angle 0 is then 

1 

8 = @+(P) = f3,, + 6 , (for the flow on the top) 

0 = @a(P) = 19, - S , (for the flow on the bottom) 

(C) The wave is a Prandtl-Meyer expansion wave (P < P,) 

In this case we use the isentropic condition and H = const., then we have 

(41) 

TdS=dh-;dP=O, 

where S is the specific entropy and 

dH=dh+VdV=O. 

Combining above two relations, we obtain 

(42) 

(43) 

dV dP -=__ 
V pv* . 

(44) 

From the theory of the Prandtl-Meyer flow for equilibrium gases, we have the local flow inclination angle d0 
as 

dt?=ssT. (45) 

By using Eq. (44) Eq. (45) can be rewritten as 

de=-+ JM2-1dp 
pv* ’ 

or the flow deflection angle S 

I 

p&K? 
6=8-t?,=? 

PO pv2 
dP . 

The speed of sound and the local flow velocity for an equilibrium gas can be calculated from 

dP 
2=-d--; V2=2(H-h)=Z(H-SF), 

and then the local Mach number for an equilibrium gas is 

M*L. 
a 

With P is known, the flow inclination angle 0 after a Prandtl-Meyer expansion wave becomes 

I e = G+(P) = 0, + 

8 = @B(P) = 0, - 

dP , (for the flow on the top) 

dP , (for the flow on the bottom) 

(46) 

(47) 

(48) 

The integrals in Eq. (48) can be evaluated numerically using Simpson’s rule. They play the same role in 
equilibrium flow as the Prandtl-Meyer function does in a perfect gas flow. 

Therefore, through any state Q, at 2?(hx)-steps, with P/P, as parameter, there are two families of states 
connecting to Q,, namely, the compression state (P/P, 3 l), and the expansion state (P/P, c 1). The two 
families join smoothly and can be regarded as a single family. For example, in the plane, the two curves form a 
single smooth curve at Q = Q,, and in the P - 8 plane, a constant P = P* line can be drawn and the value of B* 
can be determined. 
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4.2. Solution procedure of Riemann problem 

(i) In the P - 0 plane, there are two curves that pass through the states Q, and Q,; they are defined 

respectively by 

f3, + tan’ 
(P - pT) tan P 

0 = Q+(P) = 
p + ~.r tan’p 1 

0, + dP , 

co -t,,-T h-pB)tanP 
1 

“B bull 

8 = CD&P) = 
L p + PB tan2p 1 

I 

4iiT 

‘B - df’, 

PLl PV2 

P > P, 

PSP, 

P > P, 

P s P, 

(49) 

(50) 

These curves are depicted in Fig. 3. 
(ii) Using appropriate numerical procedure to solve P* and 13”. Define the object function as follows: 

f(‘) = @r(‘) - @n(p). 

Then, the Riemann solution becomes 

(51) 

f(P*) = 0 ; o* = q(P*) = QB(P*). (52) 

(iii) With the values P* and 8* are known, we can calculate all other flow variables using appropriate 
equations for compression and expansion states on both sides of the slipline. These flow quantities in the two 
uniform flow regions adjacent to the slipline are all that is needed for computing the interface convection fluxes 

E,J,t:;;, F;;,‘:; and the numerical fluxes G,:?,,, in our streamline Godunov method. 
At a solid wall the flow tangency condition requires that the solid wallis also a streamline. This causes a 

boundary Riemann problem and is specified as the system (1) of hyperbolic conservation laws subject to the 
condition 

-I 

Q<x = -q,t Y) = Q, , Y > Y,. > 
(jzo*=(j (53) 

M > Y =y,. 

Here, we assume that the flow is on the top of solid wall. In this way the tangency boundary condition is 
automatically satisfied. The solution procedure is then the same as that described above. That is, since 

19, + tan’ 
(P - P,> tan P 

H,, = GqP) = 
p + fi tan*P I 

, e,v > 0, 

0, + dP , 6,. =s HT 

(54) 

then the boundary Riemann solution becomes 

fJP*) = Qqp*, - 0, = 0, (55) 

for the flow on the top side of solid wall. Similar result can be obtain for the flow on the bottom side of solid 
wall. 

The above elementary solutions of the steady Riemann problem for equilibrium gases are used in our 
streamline Godunov method described in previous section. Also, the Riemann solver discussed here can be used 
to obtain the exact solution for some of the test problems in both perfect gas and equilibrium flows. 
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5. Specification of real gas models 

In this section we describe the two equilibrium gas models used to calculate the equilibrium gas properties. 

5.1. Tamehill’s equilibrium air gas table 

To compute the thermodynamic properties of equilibrium air, we must first determine the species 
concentrations at the given T and P of the mixture. Some typical chemical reactions in equilibrium condition for 

air are 

o,So+O, (56) 

N,=N+N, (57) 

N+O=NO, (58) 

N+OeNO++e-. (59) 

Generally, there are a total of 22 chemical reactions that occur for temperatures up to about 15 000 “K, resulting 
in a set of 28 nonlinear equations. Each of these reactions will have an equilibrium constant K,(T). These 
equilibrium constants are known functions of temperature from either measurements or statistical mechanics 
computations. These equilibrium constants are related to the partial pressures of the individual constituents by 
the law of mass action, such that 

Kl)’ 
- = ho,(T), P 02 

(Pr$ 
- = Kp.N1(T) > P NZ 

P 
PNNpq, = KP,NO G”) > 

P NO+Pem 
pNpo = G.m+(T) . 

(60) 

(61) 

There would be a single equation corresponding to each significant chemical reaction. For temperatures below 
about 9000 “K, (56)-(59) are the most important chemical reactions. Mathematically, for the constituents of 
chemical reactions (56)-(59), Dalton’s law of partial pressure can be written as follows: 

P=P”z+Po+PN*+PN+PNo+PN,++P,~. (64) 

Of course, if the temperature is higher than 9000 “K and other chemical reactions occur, and other species must 
be added to Eq. (64), just as the chemical reaction equations are included in the set (56) through (59). Note that 
there are seven unknowns in Eq. (64) and we have only five equations so far. The remaining two equations 
come from a chemical balance of the number of 0 and N atoms and the fact that electric charge must be 
conserved. These facts, in equation form, may be written as 

2Po, + PO + P,, + PNO+ 0.21 

2PN2 + P, + P,, + P,,+ = - 0.79 ’ (65) 

and 

P NO+ = P,- . (66) 

For given temperature and pressure, Eqs. (60)-(66) give a unique set of seven partial pressures for the seven 
species. This is a nonlinear set of algebraic equations that must be solved for each given T and P to determine 
the species content once temperatures are high enough for dissociation to occur. Knowing the partial pressures 
of the species present allows one to uniquely determine the other properties of the system. 

If we focus on how to compute the thermodynamic and flowfield properties of a chemically equilibrium 
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reacting gas, the properties of air as a function of P and p could be used in a table look-up mode in the 
computation process. A more simplified approach was produced by Srinivasan et al. 191. They produced curve 
fits from algebraic equations for P = P(e, p), a = a(e, p). T = T(e, p), h = h(P, p) and T = T(P, p). These curve 
fits are valid up to temperatures of 25 000 “K. Since this method is very computationally efficient so we adopt 
this technique in our computation. The details will not be repeated here and can be found in [9]. 

5.2. Lighthill’s ideal dissociating gas model 

Consider a simple dissociation-recombination reaction for a symmetrical (or homonuclear) diatomic gas A, 

in equilibrium condition: 

A ,=A+A. (67) 

Introduce a new variable CY called the mass fraction of atomic species A of dissociated gas, i.e., LY = pA /p, and 
QY = 0 - 1 such that (Y = 0 denotes a completely combined gas and cr = 1 a completely dissociated gas. We also 
have pA, /p = 1 - (Y. The equilibrium state of the gas is defined by equation of state which is then taken in the 

form - 

P = P(p, T) (68) 

The thermodynamic changes in a real gas at high temperatures are rather complicated and are not completely 
understood. In order to simplify the complicated expressions of the symmetric diatomic gas for easy use in gas 
dynamics, Lighthill proposed a simplified model which is termed the ideal dissociating gas to describe the 
changes of state of all gases with reasonable accuracy within a specified range of temperatures and pressures 
[lo]. The law of mass action, which determines the equilibrium composition of the mixture of atoms and 
molecules, is 

(69) 

where pd is the characteristic density for dissociation which is a complicated function of T and 0, is the 
characteristic temperature for dissociation. Lighthill showed that it is a reasonable approximation to take 
pd = constant over a wide range of temperatures for 0, and N,. This greatly simplifies the problem; it is 
consistent with taking the vibrational degrees of freedom of the molecules as always being half - excited, even 
at low temperatures. In other words, the contribution from the various degrees of freedom to the energy is the 
same for atoms and molecules. The internal energy per unit mass, e, is then 

e = R,,[3T + O,CY] , (70) 

where RAzis the gas constant per unit mass for the diatomic species A,, and RA,Ona is the chemical potential 

energy (the dissociation energy) of the reaction (67). 
If a partially dissociated gas, in conditions of thermal equilibrium, can be regarded as a mixture of two perfect 

gases, the molecules A, and the atoms A, with the definition of molecular weight of the mixture, M,,i,, given by 

where n, is the number of species in the mixture (here n, = 2). Then the gas constant of mixture, R,,,, becomes 

where R is the universal gas constant. Using this Rmi,, the thermal equation of state of the ideal dissociating gas, 
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thereby defining Eq. (68), is taken as 

P=pR,,,T=(l+a)pRAzT. (71) 

Combining Eqs. (70) and (71), we have the caloric equation of state 

h = e + $ = R,,[(4 + a)T + 0+x]. (72) 

It can be seen that, as (Y approaches zero at low temperature, the ideal dissociating gas becomes a perfect gas 
with constant specific heats cPO, cUO and with the specific heat ratioy, = c~~/c,~ = 4/3. This incorrect 

low-temperature behavior sets a low limit below which air cannot be accurately represented by this model of 
ideal dissociating gas. An upper limit will also be fixed by the fact that electronic contribution to the internal 
energy is neglected, as is the ionization. Lighthill sets these lower and upper limits at approximately 1000 and 
7000°K for OZ and N, with density range from lo-” to 1. Suggested values of pd are [ 161 

{ 

pd = 1.5 X lo5 Kg/m3, for O2 

p,, = 1.3 X lo5 Kg/m3, for N2 
(73) 

Rewriting the specific enthalpy h from Eq. (72) in terms of p and P, we have the useful relation h = h(p, P) 

of the form 

4cc-i P 
h(p,P)=~+cu,+RA$n. (74) 

Then, with the specific enthalpy derivatives h,, h,, h, and the relation (Y = (~(p, P) from the combination of 
Eqs. (69) and (71), we have the equilibrium speed of sound as 

2_ 
-h, -heap 

a -h,+h,cr,- l/p 

= R,,T 
(~(1 - a’)( 1 + 2T/O,) + (8 + 3a - t~l)(T/@,)~ 

a( 1 - (Y) + 3(2 - a)(T/@J2 ’ 

We can also compute the entropy difference for the ideal dissociation gas: 

s - s, -= 
R A2 

310g f 
( > 0 

-(l+a,))log $ 
( > 

+((Y-ah)log T 
( > 

+[(1+a)-(1-(Y)log(l-~)-2alog(Y] 

- [( 1 + f&J - (1 - a,) log( 1 - a;,) - 2a, log a!rJ , 

where subscript ‘0’ denotes the reference condition. 

(75) 

(76) 

6. Numerical results and discussions 

In this section, we first test the performance of the present second-order essentially non-oscillatory streamline 
Godunov method by solving several simple initial and boundary value Riemann problems of steady equilibrium 
flows and comparing the results with exact solutions. Computations of practical supersonic/hypersonic 
equilibrium flows are also included. All computations were done with a uniform grid at the initial marching step 
and with CFL = 1.0. Also note that the reference conditions used in all numerical computation cases are: 
Pref = 101330N/m2, pref = 1.292 Kg/m3 and Trcf = 273 “K. 

To test the new streamline procedure as defined by (28), we consider several simple test problems. Firstly, we 
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consider a model test case of initial-value Riemann problem. It is formed by two parallel supersonic streams at 
y0 = 0.5 with different states. The initial conditions are given by 

(p,, PT, MT, e,., = (0.5,0.25,4.0,0.0”1 1 y > 0.5 

&, P,, M,, 0,) = (1.0, 1.00,2.4,0.0”) , 4’ < 0.5 

This is a case considered by Glaz and Wardlaw [ 151 using Eulerian method and also considered by Loh and Hui 
[ 171 using Lagrangian method. In the exact solution, the resulting interaction produces an oblique shock wave, a 
Prandtl-Meyer expansion, and a slipline in between. Here, we use 100 cells and the initial cell size is 
Ay,,, = 0.01. Numerical results for the flow properties at section x = 0.8 are shown in Fig. 4 along with the exact 
solution which was obtained using the real gas Riemann solver described in Section 4. Results obtained using 
both first-order Godunov scheme and EN02 scheme are shown. The EN02 results indicate better resolution at 

(a) 

Y - distance 

o.ou 
0.0 0.2 0.4 0.6 0.8 1 .o 

Y - distance 

(b) 

0.0 0.2 0.4 0.6 0.6 1 .o 

Y - distance 

(d) 

0.0 0.2 0.4 0.6 0.6 1 .o 

Y - distance 

Fig. 4. Solution of initial-value Riemann problem for a confluence of two parallel supersonic stream. A comparison of numerical results 

(circles) and exact solution (solid line). (a) and (b) first-order Godunov scheme; (c) and (d) second-order EN0 rcheme. 
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shocks and Prandtl-Meyer expansions. By using the streamline mesh system, a better resolution of slipline, even 
for the first-order scheme, can be achieved. To test the robustness of this method, a more severe case with 
MT = 12 is considered. The results are shown in Fig. 5 at section x = 0.8. It is observed that the quality of the 
resolution for shock and slipline remain unchanged even with increasing Mach number. This is another feature 
of using streamline meshes as computational cells. 

The second test case is the same initial-value Riemann problem but formed by a confluence of two 
intersecting supersonic streams at y0 = 0.5 with different states. The initial conditions are given by 

{ 

(&, PT, MT, 0,) = (o.2,0.1,4.0,0.0°) , y > 0.5 

(pB, P,, M,, @,, = (1.0, 1.00,6.0, CO’), y < 0.5 

This is clearly a more severe case than the above test case of Riemann problem, but the resulting interaction 

(a) lb) 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Y - distance Y - distance 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Y - distance Y - distance 

(d) 

Fig. 5. Solution of initial-value Riemann problem with high Mach number MT = 12. A comparison of numerical results (circles) and exact 
solution (solid line). (a) and (b) first-order Godunov scheme; (c) and (d) second-order EN0 scheme. 
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produces similar features, namely an oblique shock adjacent to the low-pressure stream side and a Prandtl- 
Meyer expansion flow on the high-pressure stream side. Here we also use 200 cells and Ay,,, = 0.005. 
Numerical results for the flow properties at section x = 0.8 are shown in Fig. 6 along with the exact solution. 
Again, it is seen that shock and slipline discontinuities are sharply resolved by our Godunov-type scheme based 
on the streamline meshes. In the same manner, the EN02 results give a better resolution at shock, slipline 
discontinuity, and also expansion fan structure. This may be attributed to the streamline meshes, shown in Fig. 
7(a) and (b), which follow the movement of the fluid particles. The clustering of the grids at high gradient region 

such as shock wave can also be observed. 
As an example of initial and boundary value Riemann problems we compute a supersonic flow with M, = 5 

(a) 

Y - distance 

(c) 

0.4 0.6 0.6 1 .o 1.2 1.4 

Y - distance 
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0.4 0.6 0.6 1 .o 1.2 1.4 
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Fig. 6. Solution of initial-value Riemann problem for a confluence of two intersecting supersonic streams. A comparison of numerical 

results (circles) and exact solution (solid line). (a) and (b) first-order Godunov scheme; (c) and (d) second-order EN0 scheme. 
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lb) 

0.50 

0.00 0.00 

X - distance X - distance 

Fig. 7. Streamline grids of initial-value Riemann problem. (a) A confluence of two parallel supersonic streams; (b) a confluence of two 

intersecting supersonic streams. 

past a 20” wedge. We use 70 cells and Ay,,, = 0.01. Numerical results for the flow properties at section x = 1.0 
are plotted in Fig. 8 and compared to the exact solution which was obtained using the boundary Riemann solver. 
A good accuracy for the flow properties within the shock layer and a better resolution at shock can be seen. 

We also compute the Prandtl-Meyer flow with M, = 5 past a 10” turning angle. Here 25, 50, 250, cells are 
employed with Ayini = 0.01, 0.005, 0.001, respectively. Numerical results for the flow properties at section 
x = 0.5 are plotted in Fig. 9 and compared with the exact solution which was also obtained using the boundary 
Riemann solver. Due to the intrinsic feature of streamline, grid size should be widened after expansion and the 
accuracy of computation would deteriorate, especially at the tail of expansion fan. To attain the same level of 
accuracy in representation of expansion wave structure, the use of refined grids to recover the same grid size 
after flow expansion is a good way of remedy, as can be seen from Fig. 9. Otherwise, with the application of 
EN02 scheme, a great improvement in computational accuracy can be achieved, as is evident in Fig. 9. 

The above examples illustrate the new procedure of generating streamline meshes as described in Step 4 
which is different from that reported in [l]. The present procedure is an improvement over the work in [1], 
particularly when there exists a solid boundary. The streamline mesh generating procedure presented in [I] may 
cut into the solid body and causing smaller CFL number that can be used, i.e. smaller marching step size. 

To apply the streamline Godunov method to more practical equilibrium gas dynamical flows, we next 
consider a case of a supersonic air flow past a 10% symmetric circular-arc airfoil with M, = 8, P, = 101325 N/ 
m2, T, = 1000°K t a zero incidence. Here, 1000 initial uniform cells are used with AY,,~ = 0.001. The computed 
pressure contour and streamline grids for the equilibrium airflow are presented in Fig. 10. The leading-edge and 
trailing-edge oblique shock waves and the Mach waves emanating from the surface are all crisply captured. The 
gridlines clearly indicate also that the computational mesh follows exactly the particle movement even when it 
crosses a shock wave. An EN02 scheme is used in this case. From the comparison between perfect and 
equilibrium flows for the surface distribution of the flow properties, as shown in Fig. 11, we know that the real 
gas effect should reduce the shock strength and also the shock angle in general. 

Another example considered is that of shock interaction generated in a convergent channel containing both 
upper and lower wall slope discontinuities with -10” and 20” wedge angles, respectively. The collision of the 
two shocks belonging to different families produces two new shocks and a slipline discontinuity. The exact 
solution to this case can be constructed using the boundary Riemann solver to predict the location and strengths 
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Fig. 8. Distributmn of flow properties of a perfect wedge air flow along a marching distance line (-1 z 1.0). A comparison of numerical 

results (circles) and exact solution (solid line). (a) and Cb) First-order Godunov scheme: Cc) and Cd) vxond-order EN0 scheme. 

of the shocks induced by the upper and lower wall slope discontinuities. Fig. 12 illustrates the computed 
streamline grids for the perfect and equilibrium air flows with the same freestream conditions and initial cell 
sizes as above, using EN02 scheme. Flowfield structures accompanying with the shock - shock interaction 
system are clearly represented. The flow properties computed with both first order Godunov and second order 
EN0 schemes are shown along with the exact solution in Fig. 13 at station .r = 0.6 which is upstream of the 
shock-shock interaction and in Fig. 14 at station x = 0.75, which is downstream of the shock-shock interaction, 
respectively. Our numerical results agree well with the exact solutions, as can be seen from Figs. 13 and 14. 
Obviously, the EN02 results can achieve a better resolution for the shocks and slipline discontinuity, especially 
for the flow properties downstream of the shock-shock interaction. 

The next example is that of interaction of shocks of the same family resulting from a supersonic air flow past 
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Fig. 9. Distribution of flow properties of a perfect Prandtl-Meyer air flow along a marching distance line (X = 0.5). A comparison of 
numerical results for Ax,,, = 0.01 (triangles), 0.005 (squares), 0.001 (circles), and exact solution (solid line). (a) and (b) First-order Godunov 
scheme; (c) and (d) second-order EN0 scheme. 
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Fig. 10. Numerical results of a supersonic equilibrium air flow past a 10% symmetric circular-arc airfoil (M, = 8) using the EN02 scheme. 

(a) Pressure contour; (b) streamline grids. 
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Fig. I I. Distribution of surface flow properties of a supersonic air flow past a 10% symmetric circular-arc airfoil using the EN02 scheme. A 

comparison of perfect flow (dash line) and equilibrium flow (solid line). (a) Mach number: (b) density; (c) pressure; (d) temperature. 

( a ) Perfect Air Flow ( b) Equilibrium Air Flow 
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Fig. 12. Streamline grids of a supersonic air flow past a converging channel (M, = 8) using the EN02 scheme. (a) Perfect flow; (b) 

equilibrium Row. 
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a double-wedge with 10” and 20” wedge angles for both perfect and equilibrium air. All the computational 
conditions are the same as the previous example. The exact solution consists of three parts: the oblique shock 
solutions for the first and second wedges and the shock collision formed by the freestream flow and the uniform 
Row behind the second shock. The exact solutions for the first and second obIique shocks can be obtained using 
the boundary Riemann solver and then the shock-shock collision is solved exactly by the real gas Riemann 
solver. Since the two colliding shocks are from the same family, the resulting slipline inclination (about 21.5”) is 
very close to that of the uniform flow behind the second shock (20”). This implies that the turning angle in the 
Prandtl-Meyer expansion is small and the expansion fan becomes very narrow. The computed pressure contours 
and streamline grids are shown in Fig. 15 to illustrate these phenomena. From the results of the flow properties 
along the solid wall, as shown in Fig. 16, we know that except for the strengths of the shocks, the flow structure 
accompanying with the shocks and reflection expansion wave are not significantly different for the perfect and 
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Fig. 13. Distribution of flow properties of a supersonic air flow past a converging channel along a marching distance line (x = 0.6). A 

comparison of numerical results for perfect flow (triangles) and equilibrium flow (circles) and exact solution for perfect flow (dash line) and 
equilibrium flow (solid line). (a) and (b) First-order Godunov scheme; (c) and (d) second-order EN0 scheme. 
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Fig. 15. Numerical results of a supersonic equilibrium an flow past a double-wedge (M, = 8) using the EN02 scheme. (a) Pressure contour; 

(b) streamline grids. 
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Fig. 16. Distribution of surface flow properties of a supersonic air flow past a double-wedge using the EN02 scheme. A comparison of 

perfect flow (dash line) and equilibrium flow (solid line). (a) Mach number; (b) density: (c) pressure; (d) temperature. 
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Fig. 17. Numerical results of a supersonic equilibrium air flow past a diamond-shaped airfoil (M, = 8) using the EN02 scheme. (a) Pressure 

contour; (b) streamline grids. 
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equilibrium air flows in this case. It is also seen from Fig. 16 that the strength of expansion wave is still strong 
enough to generate a greater decrease in the flow properties on the solid wall. 

We also consider a supersonic air flow past a diamond-shaped airfoil with a 10” wedge angle. The freestream 
conditions and initial cell size are the same as the previous example for both the perfect and equilibrium air 
flows. The computed pressure contours and streamline grids for the equilibrium airflow are presented in Fig. 17. 
The leading-edge and trailing-edge oblique shock waves and the Prandtl-Meyer expansion fan at the vertex are 

all cleanly and accurately resolved. The distribution of surface flow properties for the perfect and equilibrium 
flows, as shown in Fig. 18, indicate that the real gas effect should weaken the shock strength and result lower 
temperature and higher Mach number after the leading-edge shock as compared with that for a perfect gas. After 
the Prandtl-Meyer expansion at the vertex, higher temperature and lower Mach number are obtained for 
equilibrium gas, as the conversion of internal energy to kinetic energy is easier and more fully for perfect gas. 
Note that the poor accuracy occurring at the expansion side of flowfield after the flow across the vertex of airfoil 
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Fig. 18. Distribution of surface flow properties of a supersonic air flow past a diamond-shaped airfoil using the EN02 scheme. A 

comparison of perfect flow (dash line) and equilibrium flow (solid line). (a) Mach number; (b) density: (c) pressure; (d) temperature. 
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Fig. 19. Streamline grids of a high-temperature channel flow (M, = 5) using the EN02 scheme. (a) Perfect air flow; (b) equilibrium air 

flow; (c) equilibrium IDG-0, flow. 

comes from the fact that the streamlines delay to match the solid wall due to the existence of the sudden 
expansion corner. By refining the cell height at the initial marching step near the solid wall one could achieve a 
better accuracy. 

To test different equilibrium gas models we consider a high-temperature channel flow through a simple inlet 
which consists of a 10” wedge followed by a 10” expansion shoulder and then connected by a constant-area duct. 
At the inlet entrance, all conditions are held constant at the reference freestream conditions of M, = 5, 
P, = 101325 N/m2 and T, = 3576 “K. We have computed this problem using both the Tannehill’s equilibrium 
air table and Lighthill’s IDG-0, gas model. Here, 500 initial uniform cells are used with Ayini = 0.002. The 
computed streamline grids of the perfect and equilibrium flows for these two gas models are presented in Fig. 
19. And the pressure and temperature contours are shown in Figs. 20 and 21 for these two equilibrium gas 
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Fig. 20. Pressure contours of a high-temperature channel flow (M, = 5) using the EN02 scheme. (a) Perfect air flow; (b) equilibrium air 

flow; (c) equilibrium IDG-0, flow. 
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(a) Perfect Air Flow (b) Equilibrium Air Flow 
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Fig. 21. Temperature contours of a high-temuerature channel flow (M, = 5) using the EN02 scheme. (a) Perfect air flow; (b) equilibrium air 
flow; (c) equilibrium IDG-O, flow. - ’ 
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Fig. 22. Distribution of surface flow properties for a high-temperature channel flow using the EN02 scheme. A comparison of perfect air 
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models, respectively. It can be clearly seen that the shock strength is smaller for the real gas and the values of 

thermodynamic properties are reduced behind the shocks, since the kinetic energy would attribute to the internal 
degree of freedom for the equilibrium flow. Comparing the results in Figs. 20 and 21, it is quite surprising to 

find the close matching of the values for the field distribution of the pressure and temperature between these two 
equilibrium gas models. In Fig. 22, the distributions of the surface flow properties indicate the effects of the real 
gas and the difference of the two equilibrium gas models. The distributions of the flow properties along 
centerline are also shown in Fig. 23. Aside from the underestimation in temperature and overestimation in Mach 
number along the solid wall and centerline, the overall good agreement for pressure and density in the 
equilibrium condition shows that the Lighthill’s IDG model is a valid model for the numerical computation of 
equilibrium air flows. The underestimation in temperature for the Lighthill’s IDG model attributes to the fact 
that this model may overestimate the dissociation degree of molecules in the mixture at temperature above about 
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Fig. 23. Distribution of flow properties along centerline for a high-temperature channel flow using the EN02 scheme. A comparison of 
perfect air flow (dash line), equilibrium air flow (solid line) and equilibrium IDG-O, flow (dash-dot line). (a) Mach number; (b) density; (c) 

pressure; (d) temperature. 
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3500 “K. Therefore, if more internal energy contributes from the dissociation energy of chemical reaction, and 
then the higher the temperature the more underestimation in temperature may result, as are seen from Figs. 22 
and 23. Generally speaking, we can use Lighthill’s IDG-0, model as a simple, useful equilibrium gas model to 
the approximate numerical simulation of the flowfield properties for a chemically equilibrium reacting air. 

To evaluate the robustness of the splitting technique for the system Eq. (1) involving source terms in our 
streamline Godunov method, we consider here a hypersonic flow past an axisymmetrical circular cone with 20” 
cone angle with M, = 5, P, = 101325 N/m’, T, = 3576 “K at zero incidence. This is the Taylor-Maccoll flow 
in an equilibrium gas. Both the Tannehill’s air table and Lighthill’s IDG model are used. Here, we use 100 cells 
and AY,,~ = 0.005. Computed results for the flow properties at section x = 0.6, obtained using both first-order 
Godunov scheme and EN02 scheme, are shown in Fig. 24 along with the exact solution which was obtained by 
solving the Taylor-Maccoll equation for equilibrium gases. Very good agreement is found between the 
computation and exact solution.-The EN02 results indicate better resolution at shock. 
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Fig. 24. Distribution of flow properties of a hypersonic Taylor-Maccoll flow along a marching distance line x = 0.6 (M, = 5) using the 
EN02 scheme. A comparison of numerical results for perfect air flow (triangles), equilibrium air flow (circles), and equilibrium IDG-0, 

flow (squares) with their corresponding exact solution. (a) Mach number; (b) density; (c) pressure; (d) temperature. 
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7. Concluding remarks 

In this paper, a Godunov-type method with streamline meshes as control volumes is presented for solving the 
steady supersonic and hypersonic equilibrium flows. The equilibrium real gas Riemann problem and its solution 

in the streamline mesh system is devised for the implementation of Godunov method. Two real gas models are 
adopted to calculate the equilibrium gas properties; one is Tannehill’s program and the other is Lighthill’s 
simplified ideal dissociating gas model. A two-step essentially non-oscillatory method is implemented to achieve 
high-order accuracy. Computations of two-dimensional and three-dimensional axisymmetrical steady supersonic 
and hypersonic equilibrium flows have been carried out and the results indicate that the smooth flow can be 
accurately represented and Ilow discontinuities such as oblique shock waves and sliplines can be crisply 
resolved. The use of streamline meshes as computational cells enables intrinsic flow adaption, excellent 
resolution of sliplines, and simpler implementation of the Godunov method. The use of Lighthill’s simplified 
real gas model gives similar results as that given by Tannehill’s program. It shows that this IDG model is not 
only a good quantitative representation of 0,and N, alone, but also provides a good qualitative representation of 
air, even when NO is formed. Formula in the Lighthill’s model are all explicit for different kinds of equilibrium 
diatomic gas, and this IDG model is very efficient to extend our streamline Godunov method to the numerical 
computation of chemical nonequilibrium flow. The computational algorithm is robust and accurate and is very 
suitable for steady supersonic and hypersonic equilibrium flow calculations. Extension of the present streamline 
Godunov-type scheme to steady supersonic and hypersonic nonequilibrium flows is a subject of future study. 
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