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A class of lower–upper approximate-factorization implicit weighted essentially
nonoscillatory (ENO) schemes for solving the three-dimensional incompressible
Navier–Stokes equations in a generalized coordinate system is presented. The algo-
rithm is based on the artificial compressibility formulation, and symmetric Gauss–
Seidel relaxation is used for computing steady-state solutions. Weighted essentially
nonoscillatory spatial operators are employed for inviscid fluxes and fourth-order
central differencing for viscous fluxes. Two viscous flow test problems, laminar en-
try flow through a 90◦ bent square duct and three-dimensional driven square cavity
flow, are presented to verify the numerical schemes. The use of the weighted ENO
spatial operator not only enhances the accuracy of solutions but also improves the
convergence rate for steady-state computation as compared with that using the ENO
counterpart. It is found that the present solutions compare well with experimental
data and other numerical results.c© 1998 Academic Press

1. INTRODUCTION

The design and construction of the WENO (weighted ENO) schemes for hyperbolic
conservation laws are based on ENO (essentially nonoscillatory) schemes which were first
introduced by Hartenet al. [1] in the form of cell averages. Later Shu and Osher [2,3]
devised a class of flux-based efficient ENO schemes. The main concept of ENO schemes
is to use the “smoothest” stencil (in the asymptotic sense) among several candidates to
approximate the fluxes at cell boundaries to a high-order accuracy and at the same time
to avoid oscillations near discontinuities. ENO schemes are uniformly high-order accurate
right up to the shock and are very robust to use. However, they also have certain drawbacks,
as Jiang and Shu [4] have pointed out. One problem is that the freely adaptive stencil could
change even by a round-off perturbation near zeroes of the solution and its derivatives.
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This free adaptation of the stencil is also not necessary in regions where the solution is
smooth. The convergence rate for the implicit ENO scheme is generally less efficient.
Another problem is that ENO schemes are not effective on vector supercomputers because
the stencil-choosing step involves heavy usage of logical statements which perform poorly
on such machines. The WENO schemes introduced by Liuet al. [5] and extended by Jiang
and Shu [4] can overcome these drawbacks while keeping the robustness and high-order
accuracy of ENO schemes. The concept of WENO schemes is the following: instead of
approximating the numerical flux using only one of the candidate stencils, one uses a
convex combination of all the candidate stencils. Each of the candidate stencils is assigned
a weight which determines the contribution of this stencil to the final approximation of the
numerical flux. The weights are defined in such a way that in smooth regions the stencil
approaches certain optimal weights to achieve a higher order of accuracy, while in regions
near discontinuities, the stencils which contain the discontinuities are assigned a nearly
zero weight. Thus the essentially nonoscillatory property is achieved by emulating ENO
schemes around discontinuities and a higher order of accuracy is obtained by emulating
upstream central schemes with the optimal weights away from the discontinuities. Both
efficient ENO and weighted ENO schemes have been extensively tested and applied to the
compressible Euler/Navier–Stokes equations.

The solution methodology for viscous incompressible flows is rather different from that
for compressible flows, due to the fact that there exists no time derivative in the continuity
equation for incompressible flows. In order to apply compressible flow solution algorithms
to incompressible flow problems, the continuity equation needs to be modified to couple
with the momentum equation so that the whole system of equations can be put into the
same formulation and solved efficiently. To achieve this goal, artificial compressibility
may be introduced by adding the time derivative of pressure to the continuity equation,
as was first proposed by Chorin [6]. The modified continuity equation, together with the
unsteady momentum equations, yields a hyperbolic–parabolic-type time-dependent system
of equations. Thus, fast implicit schemes developed for compressible flows, such as the
approximate-factorization scheme by Beam and Warming [7], can be implemented. Various
applications which evolved from this artificial compressibility concept have been reported
for obtaining steady-state solution [8–16]. Merkle and Athavale [17], Rogers and Kwak [18],
Rogerset al. [19], and Rosenfeldet al. [20] have reported successful computations using the
pseudo-time-iteration approach for the time-dependent flow problems. The preconditioning
methods for solving the incompressible flow problems were reviewed by Turkel [21]. Further
developments of numerical methods for incompressible viscous flows can be found in the
work by Andersonet al. [22] and by Brileyet al. [23].

In this work, the WENO schemes of Jiang and Shu [4] are adopted to solve incompressible
flow problems. An implicit code of WENO schemes is developed for the artificial com-
pressibility formulation of the three-dimensional incompressible Navier–Stokes equations.
The lower–upper symmetric Gauss–Seidel (LU-SGS) implicit algorithm [16] is adopted to
solve the steady-state flow problems. This algorithm is not only unconditionally stable but
also completely vectorizable in any dimensions. We apply the resulting schemes to com-
pute several standard laminar flow problems including the entry flow through a 90◦ bent
square duct and a three-dimensional driven square cavity flow. It is found that the present
solutions are in good agreement with available experimental results and other numerical
results. Meanwhile, the convergence rate to a steady-state solution using implicit weighted
ENO schemes is found to be much superior to that using the implicit ENO counterpart.
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2. GOVERNING EQUATIONS

The Navier–Stokes equations in the integral conservation law form for an incompressible,
three-dimensional viscous flow with artificial compressibility can be written as

∂

∂t

(
1

V

∫
V

Q dV
)
+ 1

V

∮
S

EF · dES= 0, (1)

whereV is the volume of an arbitrary control volume,S is the area of an arbitrary control
surface, the direction ofdES is outward,Q is the conservative variables, andEF= (E−Ev)Ei +
(F− Fv) Ej + (G−Gv)Ek is the flux vector. In Cartesian coordinates system, Eq. (1) can be
expressed as

∂Q
∂t
+ ∂(E− Ev)

∂x
+ ∂(F− Fv)

∂y
+ ∂(G−Gv)

∂z
= 0, (2)

with

Q =


p
u
v

w

 , E =


βu

u2+ p
uv
uw

 , F =


βv

vu
v2+ p
vw

 , G =


βw

wu
wv

w2+ p

 ,

Ev = Re−1


0

2ux

uy+ vx

uz+ wx

 , Fv = Re−1


0

vx + uy

2vy

vz+ wy

 , Gv = Re−1


0

wx + uz

wy + vz

2wz

 ,
whereβ is the artificial compressibility parameter and Re= ρV∞L/µ is the Reynolds
number. The Cartesian velocity componentsu, v, w are scaled with the freestream velocity
V∞ and the Cartesian coordinatesx, y, z are normalized with the characteristic lengthL.
The nondimensional pressure is defined asp= (P− P∞)/ρV2

∞, and the densityρ and
dynamic viscosityµ are assumed to be constant.

Conventionally, Eq. (2) is transformed into the generalized coordinates(ξ, η, ζ ) as

∂Q̂
∂t
+ ∂(Ê− Êv)

∂ξ
+ ∂(F̂− F̂v)

∂η
+ ∂(Ĝ− Ĝv)

∂ζ
= 0, (3)

where

Q̂ = h


p
u
v

w

 , Ê = h


βU

uU + ξx p
vU + ξy p
wU + ξz p

 , F̂ = h


βV

uV + ηx p
vV + ηy p
wV + ηz p

 ,

Ĝ = h


βW

uW+ ζx p
vW + ζy p
wW + ζz p

 ,
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Êv = h[ξxEv + ξyFv + ξzGv], F̂v = h[ηxEv + ηyFv + ηzGv],

Ĝv = h[ζxEv + ζyFv + ζzGv],

U = ξxu+ ξyv + ξzw, V = ηxu+ ηyv + ηzw, W = ζxu+ ζyv + ζzw,

andh is the Jacobian of the coordinate transformation (the cell volume) given by

h =
∣∣∣∣∣∣
xξ xη xζ
yξ yη yζ
zξ zη zζ

∣∣∣∣∣∣ = xξ yηzζ + xηyζ zξ + xζ yξzη − xζ yηzξ − xηyξzζ − xξ yζ zη.

The Jacobians of the inviscid fluxesÊ, F̂, Ĝ are needed for the flux-difference splitting
and for the implicit algorithm. Let the Jacobian matricesÂ, B̂, Ĉ (Â= ∂Ê

∂Q̂
, B̂= ∂F̂

∂Q̂
, Ĉ= ∂Ĝ

∂Q̂
)

be represented by

Â i =


0 kxβ kyβ kzβ

kx 2+ kxu kyu kzu
ky kxv 2+ kyv kzv

kz kxw kyw 2+ kzw

 , (4)

whereÂ i = Â, B̂, Ĉ for i = 1, 2, 3, respectively, and

2 = kxu+ kyv + kzw

kx = (ξi )x, ky = (ξi )y, kz = (ξi )z, ξi = (ξ, η orζ ) for i = 1, 2, 3.

A similarity transform for the Jacobian matrix is introduced,

Â i = Ri3i R−1
i , (5)

with

3i =


2 0 0 0
0 2 0 0
0 0 2+ c 0
0 0 0 2− c

 , (6)

wherec is the scaled artificial speed of sound given by

c =
√
22+ β. (7)

The matrix of the right eigenvectors is given by

Ri =


0 0 −λ4c λ3c
x2 x1 u− λ4kx u+ λ3kx

y2 y1 v − λ4ky v + λ3ky

z2 z1 w − λ4kz w + λ3kz

 , (8)
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and its inverse is given by

R−1
i =

1

2c2


2(x1a2+ y1a3+ z1a1) 2(z1d2− y1d3) 2(x1d3− z1d1) 2(y1d1− x1d2)

−2(x2a2+ y2a3+ z2a1) 2(y2d3− z2d2) 2(z2d1− x2d3) 2(x2d2− y2d1)

1 λ3kx λ3ky λ3kz

1 λ4kx λ4ky λ4kz

 ,
(9)

where

x1 = ∂x

∂ξi+1
, y1= ∂y

∂ξi+1
, z1= ∂z

∂ξi+1
, andξi+1= η, ζ,orξ for i = 1, 2, and 3, respectively

x2 = ∂x

∂ξi+2
, y2= ∂y

∂ξi+2
, z2= ∂z

∂ξi+2
, andξi+2= ζ, ξ,orη for i = 1, 2, and 3, respectively

λ3 = 2+ c, λ4 = 2− c

a1 = kxv − kyu, a2 = kyw − kzv, a3 = kzu− kxw

d1 = kxβ +2u, d2 = kyβ +2v, d3 = kzβ +2w.

3. NUMERICAL METHOD

3.1. Spatial Discretization

A semidiscrete finite volume method is used to solve Eq. (3) to ensure that the final con-
verged solution is independent of the integration procedure and to avoid metric singularity
problems. The finite volume method is based on the local flux balance of each mesh cell.
The semidiscrete form of Eq. (3) can be written as

∂Q̂
∂t
== − 1

V i, j,k
{[(Ẽ− Ẽv)S] i+1/2, j,k − [(Ẽ− Ẽv)S] i−1/2, j,k]}

− 1

V i, j,k
{[(F̃− F̃v)S] i, j+1/2,k − [(F̃− F̃v)S] i, j−1/2,k]}

− 1

V i, j,k
{[(G̃− G̃v)S] i, j,k+1/2− [(G̃− G̃v)S] i, j,k−1/2]}, (10)

where(i, j, k) is the(i, j, k)th computational cell with volumeV i, j,k, andS is the area of
each control surface and the direction is outward. The spatial differencing of numerical
fluxes adopts fifth-order accurate (r = 3) weighted ENO scheme (WENO3) [4] for the
inviscid convective fluxes(Ẽ, F̃, G̃) and fourth-order central differencing for the viscous
fluxes(Ẽv, F̃v, G̃v).

By adopting WENO3 schemes, we split the physical fluxes (say,F̂) locally into positive
and negative parts as

F̂(Q̂) = F̂+(Q̂)+ F̂−(Q̂), (11)

where ∂F̂+/∂Q̂≥ 0 and ∂F̂−/∂Q̂≤ 0. There are several flux splitting methods can be
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chosen. In this paper, we use the local Lax–Friedrichs flux splitting method, i.e.,

F̂±(Q̂) = 1

2
(F̂(Q̂)± |3|Q̂), (12)

where|3| = diag(|λ1|, |λ2|, |λ3|, |λ4|) andλ1, λ2, λ3, λ4 are the local eigenvalues2, 2,
2+c, and2−c, respectively. For easy understanding, we first consider the one-dimensional
scalar conservation laws. For example,

ut + f (u)x = 0. (13)

Let us discretize the space into uniform intervals of size1x and denotexj = j1x. Various
quantities atxj will be identified by the subscriptj . The spatial operator of the WENO3
schemes which approximates− f (u)x at xj will take the conservative form

L� = − 1

1x
( f̃ j+1/2− f̃ j−1/2), (14)

where f̃ j+1/2 and f̃ j−1/2 are the numerical fluxes. Designatef̃ +j+1/2 and f̃ −j+1/2 respectively
the numerical fluxes obtained from the positive and negative parts off (u); then we have

f̃ j+1/2 = f̃ +j+1/2+ f̃ −j+1/2. (15)

Here we first describe the approximation of the numerical fluxf̃ j+1/2 in the one-
dimensional scalar conservation law. The WENO3 numerical flux for the positive part
of f (u) is

f̃ +j+1/2 = ω+0
(

2

6
f +j−2−

7

6
f +j−1+

11

6
f +j

)
+ ω+1

(
−1

6
f +j−1+

5

6
f +j +

2

6
f +j+1

)

+ω+2
(

2

6
f +j +

5

6
f +j+1−

1

6
f +j+2

)
, (16)

where

ω+k =
α+k

α+0 + α+1 + α+2
, k = 0, 1, 2

α+0 =
1

10
(ε+ I S+0 )

−2, α+1 =
6

10
(ε+ I S+1 )

−2, α+2 =
3

10
(ε+ I S+2 )

−2, ε= 10−6

and

I S+0 =
13

12
( f +j−2− 2 f +j−1+ f +j )

2+ 1

4
( f +j−2− 4 f +j−1+ 3 f +j )

2

I S+1 =
13

12
( f +j−1− 2 f +j + f +j+1)

2+ 1

4
( f +j−1− f +j+1)

2

I S+2 =
13

12
( f +j − 2 f +j+1+ f +j+2)

2+ 1

4
(3 f +j − 4 f +j+1+ f +j+2)

2.
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Similarly, the WENO3 numerical flux for the negative part off (u) is

f̃ −j+1/2 = ω−0
(
−1

6
f −j−1+

5

6
f −j +

2

6
f −j+1

)
+ ω−1

(
2

6
f −j +

5

6
f −j+1−

1

6
f −j+2

)

+ω−2
(

11

6
f −j+1−

7

6
f −j+2+

2

6
f −j+3

)
, (17)

where

ω−k =
α−k

α−0 + α−1 + α−2
, k = 0, 1, 2

α−0 =
3

10
(ε+ I S−0 )

−2, α−1 =
6

10
(ε+ I S−1 )

−2, α−2 =
1

10
(ε+ I S−2 )

−2, ε= 10−6

and

I S−0 =
13

12
( f −j−1− 2 f −j + f −j+1)

2+ 1

4
( f −j−1− 4 f −j + 3 f −j+1)

2

I S−1 =
13

12
( f −j − 2 f −j+1+ f −j+2)

2+ 1

4
( f −j − f −j+2)

2

I S−2 =
13

12
( f −j+1− 2 f −j+2+ f −j+3)

2+ 1

4
(3 f −j+1− 4 f −j+2+ f −j+3)

2.

Next we consider the system of three-dimensional incompressible Navier–Stokes equa-
tions; the numerical flux at a cell surfacem+ 1/2 in directionm is usually approximated
in the local characteristic fields.

Now, we denote byr s (column vector) andls (row vector) thesth right and left eigenvec-
tors of Âm+1/2 (the average Jacobian atξm+1/2), respectively. Then the scalar WENO3
scheme can be applied to each of the characteristic fields, i.e.,

F̄m+1/2,s =
2∑

k=0

ωk,sqk(ls · F̂m+k−2, . . . , ls · F̂m+k), (18)

which gives the numerical flux in thesth characteristic field. Hereωk,s, k= 0, 1, 2, are the
weights in thesth characteristic field,

ωk,s = ωk(ls · F̂m−2, . . . , ls · F̂m+2), (19)

which is a nonlinear function (ωk is defined previously), andqk are the stencils as in Eqs. (16)
and (17). The numerical fluxes obtained in each characteristic field can then be projected
back to the physical space by

F̃m+1/2 =
4∑

s=1

F̂m+1/2,sr s. (20)
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3.2. Time Discretization

The lower–upper (LU) factored implicit scheme which was developed by Jameson and
Yoon [24] is unconditionally stable in any number of space dimensions. In the framework
of aproximate factorization implicit scheme, the flux vectors can be linearized by setting

Ên+1 = Ên + Ân1Q̂+ O(‖1Q̂‖2)
F̂n+1 = F̂n + B̂n1Q̂+ O(‖1Q̂‖2)
Ĝn+1 = Ĝn + Ĉn1Q̂+ O(‖1Q̂‖2)
Ên+1
v = Ên

v + Ân
v1Q̂+ O(‖1Q̂‖2)

F̂n+1
v = F̂n

v + B̂n
v1Q̂+ O(‖1Q̂‖2)

Ĝn+1
v = Ĝn

v + Ĉn
v1Q̂+ O(‖1Q̂‖2),

whereÂ, B̂, Ĉ, Âv, B̂v, Ĉv are the Jacobian matrices of inviscid fluxesÊ, F̂, Ĝ and vis-
cous fluxeŝEv, F̂v, Ĝv, respectively, and1Q̂= Q̂n+1− Q̂n is the increment of conservative
variables.

The inviscid Jacobians can be split according to the sign of the eigenvalues,

Â i = Â+i + Â−i = Ri3
+
i R−1

i + Ri3
−
i R−1

i . (21)

Here3+i is formed by the nonnegative part of the3i matrix and3−i by the nonpositive part.
An Euler implicit time discretization of Eq. (10) can be written as

V i, j,k
(
Q̂n+1

i, j,k − Q̂n
i, j,k

)
1t

= −{[(Ẽ− Ẽv)S]n+1
i+1/2, j,k −

[
(Ẽ− Ẽv)S]n+1

i−1/2, j,k

]}
−{[(F̃− F̃v)S]n+1

i, j+1/2,k −
[
(F̃− F̃v)S]n+1

i, j−1/2,k

]}
−{[(G̃− G̃v)S]n+1

i, j,k+1/2−
[
(G̃− G̃v)S]n+1

i, j,k−1/2

]}
, (22)

wheren is the time level. An unfactored implicit scheme can be obtained by substituting the
above relations into Eq. (22) and dropping terms of second and higher orders. This results
in the governing equation in diagonally dominant form

V i, j,k

1t
I1Q̂i, j,k + {[(Â+ − Âv)S] i+1/2, j,k1Q̂i, j,k − [(Â+ − Âv)S] i−1/2, j,k1Q̂i−1, j,k

+ [(Â− + Âv)S] i+1/2, j,k1Q̂i+1, j,k − [(Â− + Âv)S] i−1/2, j,k1Q̂i, j,k

+ [(B̂+ − B̂v)S] i, j+1/2,k1Q̂i, j,k − [(B̂+ − B̂v)S] i, j−1/2,k1Q̂i, j−1,k

+ [(B̂− + B̂v)S] i, j+1/2,k1Q̂i, j+1,k − [(B̂− + B̂v)S] i, j−1/2,k1Q̂i, j,k

+ [(Ĉ+ − Ĉv)S] i, j,k+1/21Q̂i, j,k − [(Ĉ+ − Ĉv)S] i, j,k−1/21Q̂i, j,k−1

+ [(Ĉ− + Ĉv)S] i, j,k+1/21Q̂i, j,k+1− [(Ĉ− + Ĉv)S] i, j,k−1/21Q̂i, j,k}n

= −{[(Ẽ− Ẽv)S] i+1/2, j,k − [(Ẽ− Ẽv)S] i−1/2, j,k]}n

−{[(F̃− F̃v)S] i, j+1/2,k − [(F̃− F̃v)S] i, j−1/2,k]}n

−{[(G̃− G̃v)S] i, j,k+1/2− [(G̃− G̃v)S] i, j,k−1/2]}n

≡RHS, (23)

whereI is the identity matrix.
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The implicit viscous Jacobians are also considered here to enhance the convergence rate,
especially for high-Reynolds-number flows in which grid systems with high aspect ratio
near the walls are used to resolve the boundary layer.

In order to maximize the efficiency, Jacobian matrices of the flux vectors are approx-
imately constructed to give diagonal dominance.Â+, Â−, B̂+, B̂−, Ĉ+, andĈ− are con-
structed so that the eigenvalues of “+” matrices are nonnegative and those of “−” matrices
are nonpositive, i.e.,

Â±i =
1

2

[
Â i ± ρÂ i

I
]
, (24)

with the spectral radius of Jacobians

ρÂ i
= κ max[|λ(Â i )|], (25)

whereλ(Â i ) represent eigenvalues of Jacobian matrixÂ i andκ is a constant that is greater
than or equal to 1 to ensure the splitting of flux Jacobians diagonally dominant.

The unfactored implicit scheme, Eq. (23), produces a large block banded matrix that is
very costly to invert and requires large amounts of storage. This difficulty can be solved
by adopting the LU factored implicit scheme. The lower–upper symmetric successive over-
relaxation (LU-SSOR) scheme of Yoon and Jameson [25] has the advantages of LU factor-
ization and SSOR relaxation. In this paper, we adopt the LU-SSOR implicit factorization
scheme to solve the flow problems.

Equation (23) can be simplified if all the Jacobians that should be evaluated at the indicated
cell faces are calculated at the local cell centers, and this can be achieved if two-point, one-
sided differences are used. In addition, if we assume that the adjacent cell faces on the
diagonal are approximately equal, say ini direction,

Si+1/2, j,k ' Si−1/2, j,k = SI = 0.5(Si+1/2, j,k + Si−1/2, j,k) (26)

and recognize that

Â+ − Â− = ρÂ (27)

and replace all viscous Jacobians with their spectral radius approximation

Âv ' ρÂv
= νSI

V
I , (28)

then, using the above relations, the LU-SSOR scheme can be written as

[LD−1U]n1Q̂ = RHSn, (29)

where

L = V i, j,k

1t
I + {[(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

− [(Â+ + ρÂv

)
i−1, j,kSi−1/2, j,k +

(
B̂+ + ρB̂v

)
i, j−1,kSi, j−1/2,k

+ (Ĉ+ + ρĈv

)
i, j,k−1Si, j,k−1/2

]}
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D = V i, j,k

1t
I + [(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

U = V i, j,k

1t
I + {[(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

+ [(Â− − ρÂv

)
i+1, j,kSi+1/2, j,k +

(
B̂− − ρB̂v

)
i, j+1,kSi, j+1/2,k

+ (Ĉ− − ρĈv

)
i, j,k+1Si, j,k+1/2

]}
. (30)

The LU-SSOR implicit scheme reduces to the LU-SGS implicit algorithm [16] in the
limit 1t→∞. Thus, Eq. (30) reduces to

L = [(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

− [(Â+ + ρÂv

)
i−1, j,kSi−1/2, j,k +

(
B̂+ + ρB̂v

)
i, j−1,kSi, j−1/2,k

+ (Ĉ+ + ρĈv

)
i, j,k−1Si, j,k−1/2

]
D = [(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

U = [(ρÂ + 2ρÂv

)
SI +

(
ρB̂ + 2ρB̂v

)
SJ +

(
ρĈ + 2ρĈv

)
SK
]

i, j,k

+ [(Â− − ρÂv

)
i+1, j,kSi+1/2, j,k +

(
B̂− − ρB̂v

)
i, j+1,kSi, j+1/2,k

+ (Ĉ− − ρĈv

)
i, j,k+1Si, j,k+1/2

]
. (31)

It is interesting to note that the present implicit algorithm (LU-SGS) permits scalar
diagonal inversion.

Equation (31) is solved in the following three steps:

Step1: L1Q̂∗ = RHSn

Step2: U1Q̂n = D1Q̂∗

Step3: Q̂n+1 = Q̂n +1Q̂n.

(32)

The LU-SGS algorithm employs a series of corner-to-corner sweeps through the flow-
fields and uses the latest available data for the off-diagonal terms to solve Eq. (32). This
algorithm is completely vectorizable oni + j + k= constantoblique planes of sweep.

3.3. Boundary Conditions

The boundary conditions imposed on the solid surface are the no-slip conditions. A zero
normal pressure gradient on the wall is applied. In the far field, a locally one-dimensional
characteristic type of boundary condition is used. The procedures employed here are similar
to those usually used for the compressible flows. The Riemann invariants for the present
system of equations are now given by

R± = p+ 1

2
u2

n ±
1

2
[unc+ β ln(un + c)], (33)

whereun is the component of the velocity normal to the boundary. In all calculations, the
above boundary conditions are treated explicitly.
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4. RESULTS AND DISCUSSION

Presented here are the results of two different three-dimensional laminar flow computa-
tions. These are the flow through a 90◦ bending square duct and lid-driven cavity flow.

4.1. Flow through a90◦ Bending Square Duct

Ducts with rectangular/square cross sections are very frequently used in many engineer-
ing applications, such as aircraft intakes, turbomachinery blade passages, diffusers, and
heat exchangers. A distinguished characteristic of the flow in ducts with strong curvature
is the generation of streamwise vorticity caused by the centrifugal forces which gener-
ate substantial secondary flow and redistribution of the streamwise velocity in the radial
direction.

The experiment of Humphreyet al. [26], in which the flow through a strongly curved
90◦ square bend duct was measured, is selected as a test case in the present study. The
measurements were carried out at Reynolds number Re= 790, based on the inflow bulk
velocity and the hydraulic diameter, with the corresponding Dean’s number De= 368; i.e.,
the problem was nondimensionalized using the side of the square cross section as the
unit length and the average inflow velocity as the unit velocity. In the present work, three
different grid systems with mesh sizes of 25× 17× 17, 49× 33× 33, and 73× 49× 49
with the same artificial compressibility parameterβ = 1.0 were used to solve this problem.

The geometry and the grid system of 25× 17× 17 are shown in Fig. 1. The straight inflow
section before the bend was set to a length of 5.0 and the outflow section downstream of

FIG. 1. The geometry and the grid systems(25× 17× 17) of flow through a 90◦ bending square duct.
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FIG. 2. The convergence history of ENO and WENO schemes for the flow through a 90◦ bending square duct
at the grid systems of 49× 33× 33.

the bend was also set to a length of 5.0. The radius curvature of the inner wall(r i) in
the curved section was 1.8, while that of the outer wall(ro) was 2.8. A fully developed
inflow velocity profile is prescribed at the inlet boundary and the Neumann boundary
conditions (zero normal derivatives for all velocity components) are imposed at the outflow
boundary.

The convergence history of the ENO2 scheme(r = 2) and the WENO scheme(r = 3)
for this problem at the grid system of 49× 33× 33 is shown in Fig. 2. It can be seen that
the rapid convergence rate and monotonous curve were obtained for the WENO3 scheme.
Meanwhile, the corresponding convergence rate of the ENO2 scheme [27] is very poor. It
is clear to see the effectiveness in applying the WENO3 scheme in this three-dimensional
case.

For the grid independence consideration, three different grid systems of 25× 17× 17,
49× 33× 33, and 73× 49× 49 are investigated. Figure 3 shows the comparison of com-
puted results of the WENO3 scheme at those grid systems with the experimental data of
Humphreyet al. [26]. The streamwise velocity(Vθ ) profile is presented in this figure for
six different cross sections along the duct. The location of these cross flow planes is shown
in Fig. 1. In Fig. 3, thex-axis is the normalized radial distance and they-axis is in the
azimuthal direction. Except for the results of coarse grid system, the computed results com-
pare well with the experimental results, particularly at the first four streamwise stations.
However, some discrepancy is found between the numerical and experiment results at the
two downstream planes. This deviation also can be found for the other numerical calcula-
tions of Rogerset al. [19] and Rosenfeldet al. [20]. Nevertheless, the peaks of streamwise
velocity near the outside wall at those stations are very well captured.
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FIG. 3. Comparison of streamwise velocity(Vθ ) profiles at different streamwise locations (midspan) on three
different grids with the experimental results.

Figure 4 shows the comparison of computed results of ENO2 and WENO3 schemes at
the middle grid system (49× 33× 33) with the experimental data. It can be seen that even
thougth the convergences rate of the ENO2 scheme is poor, the accuracy is as good as that
of the WENO3 scheme.

Figure 5 shows the cross-sectional velocity vector fields at the plane ofθ = 0◦, 30◦, 60◦,
and 90◦. The figures show how a pair of secondary vortices are generated. The centers
of these vortices seen to move toward the inner wall between theθ = 30◦ station and the
θ = 60◦ position, and then tend to center again further downstream (θ = 90◦), and at the
same time a secondary pair of vortices near the outer corners is established. This agrees
qualitatively with the observations of the experiment of Humphreyet al. [26].

4.2. Driven Cavity Flow

The lid-driven cavity flow, a classic recirculating flow, is an idealization of many envi-
ronmental, geophysical, and industrial flows. It is a typical benchmark problem for solvers
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FIG. 4. Comparison of the computed streamwise velocity(Vθ ) profiles of ENO and WENO schemes at
different streamwise locations (midspan) with the experimental results.

of the incompressible Navier–Stokes equations. Since the cavity flow problem in either its
two- or three-dimensional case is an ideal configuration for studying complex flow physics
in a simple geometry, this problem has been extensively studied for more than three decades
and draws continuous attention.

This problem choice is prompted by numerous experimental observations of Koseff and
Street [28–30] and Aidunet al. [31]. Three-dimensional calculations have been performed
by Ku et al. [32], Guj and Stella [33], Jianget al. [34], Fujimaet al. [35], and Ho and Lin
[36] for the spanwise aspect ratio (SAR)= 1.0, and by Freitaset al. [37], Freitas and Street
[38], and Chianget al. [39] for SAR= 3.0. For the code validation, numerical simulations
using the WENO3 scheme have been conducted first for the upper-lid-driven flow in a
cubic cavity (SAR= 1.0) at three different Reynolds numbers, Re= 100, 400 and 1000,
and then for the case of SAR= 3.0 over a wide range of Reynolds numbers from Re= 100
to Re= 3200.

The geometry and grid systems of 33× 33× 33 (SAR= 1.0) is shown in Fig. 6. In
Fig. 7, the computed velocity profiles ofu on the vertical centerline andv on the horizontal
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FIG. 5. The cross-sectional velocity vector fields at the plane ofθ = 0◦, 30◦, 60◦, and 90◦ for 73× 49× 49
grid.

FIG. 6. The geometry and the grid systems(33× 33× 33) of the driven square cavity flow.



           

IMPLICIT WEIGHTED ENO SCHEMES 479

FIG. 7. The computed velocity profiles ofu on the vertical centerline andv on the horizontal centerline of
the symmetry plane(z= 0.5) at Re= 100, 400, and 1000 for the driven square cavity flow (SAR= 1.0).

centerline of the symmetry plane(z= 0.5) at Re= 100, 400, and 1000 are compared with
the other calculations by Jianget al. [34]. It is shown that our numerical results compare
very well with the results of Jianget al.

Figures 8 and 9 show the steady velocity vectors plots on three midplanes (a)z= 0.5,
(b) y= 0.5, and (c) x= 0.5 for Re= 400 and 1000, respectively. We can observe on
the symmetric plane (z= 0.5), in Figs. 8a and 9a that the secondary vortices appear in
the two lower corners and the primary vortex moves toward the center of the cube as the
Reynolds number increases. This phenomenon is similar to that in the two-dimensional lid-
driven square cavity, but there does not exist a secondary vortex near the left upper corner.
Figures 8b and 8c illustrate a pair of primary contrarotating vortices near the upstream
wall and near the bottom wall, respectively. Meanwhile, another pair of secondary vortices
appears near the upper corners on the planex= 0.5. Those pairs of primary and sec-
ondary vortices strengthen with increasing Reynolds number and become more distinctive
at Re= 1000, as shown in Figs. 9b and 9c. Those characteristics have also been observed
in other numerical studies [32–36].

The other test case is the lid-driven cavity flow for SAR= 3.0. The geometry and grid
systems of 33× 33× 91 are shown in Fig. 10. This flow problem was calculated for a series
of Reynolds numbers on a fixed nonuniform grid system of 33× 33× 91. Figure 11 shows
the convergence history of lid-driven cavity flow for different Reynolds numbers. We were
able to obtain converged solutions at Reynolds number up to 1200. For higher Reynolds
numbers, attempts to obtain the converged solutions failed. For the Reynolds number around
1200 (i.e., Re= 1000, 1200, 1250, 1300, and 1500), the downstream secondary eddy (DSE)
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FIG. 8. Velocity vectors for Re= 400 on the midplanes: (a)z= 0.5, (b) y= 0.5, and (c)x= 0.5.

size with iteration numbers are plotted in Fig. 12. Figure 12 shows the steady fixed DSE
for Reynolds numbers 1000 and 1200. For Reynolds numbers beyond 1250, the fluctuation
of DSE becomes more distinctive when the Reynolds number is increasing. From Figs. 11
and 12, we can see that flow patterns remain steady up to Re= 1200. With increasing
Reynolds numbers, the flow unsteadiness becomes appreciable at Re= 1250 approximately.
As Re takes on values larger than the critical Reynolds number, the Taylor–G¨ortler-like
(TGL) vortices appear.

Figure 13 shows the comparison of the steady flow separation length DSE of predicted and
the experimental results of Aidunet al. [31]. It shows good agreement with the experimental
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FIG. 9. Velocity vectors for Re= 1000 on the midplanes: (a)z= 0.5, (b) y= 0.5, and (c)x= 0.5.

results. For the cases of Re larger than the critical Reynolds number, the flow patterns are
unsteady. It is difficult to compare quantitatively with experimental results. In Fig. 14, we
try to compare the normalized meanu andv velocity profiles at symmetry plane (z= 1.5)
for Re= 3200. It shows that predicted results compare well with the experimental data of
Koseff and Street [30].

Figures 15 and 16 show the velocity vector plots on three midplanes (a)z= 1.5, (b) y=
0.5 and (c)x= 0.5 for Re= 1000 and 3200, respectively. In Fig. 15, we can see that the flow
characteristic of Re= 1000 is still steady and similar to the case of SAR= 1.0. The velocity
vectors also have a stationary pair of primary contrarotating vortices near the upstream



    

FIG. 10. The geometry and grid systems of 33× 33× 91 of lid-driven cavity flow for SAR= 3.0.

FIG. 11. The convergence history of lid-driven cavity flow for different Reynolds numbers.

FIG. 12. The downstream secondary eddy (DSE) size plotted with iteration numbers for different Reynolds
numbers.
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FIG. 13. The comparison of the steady flow separation length DSE of the predicted and experimental results.

wall for the y= 0.5 plane and near the bottom wall for thex= 0.5 plane and still have
a stationary pair of secondary vortices near the upper corners on the planex= 0.5. For
Re= 3200 (Fig. 16), the TGL vortices which were first predicted by Freitaset al. [37] were
observed. For the different iteration numbers, the structure of TGL vortices is different and
is no longer stationary.

FIG. 14. The normalized meanu-velocity component along vertical centerline andv-velocity component
along horizontal centerline for Re= 3200 at symmetry plane (z= 1.5).
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FIG. 15. The velocity vector plots on three midplanes: (a)z= 1.5, (b) y= 0.5, and (c)x= 0.5 for Re= 1000.

5. CONCLUSIONS

An efficient three-dimensional incompressible Navier–Stokes code based on the artificial
compressibility formulation of Chorin has been developed using the implicit LU-SGS and
LU-SSOR time stepping and the weighted essentially nonoscillatory spatial operator. Ap-
plications to several three-dimensional steady viscous incompressible flow problems have
been carried out to validate and illustrate the code. For the flow problems considered, the
flow through a 90◦ bending square duct and the lid-driven cavity flow, the LU-SGS implicit
algorithm is employed. The use of a weighted ENO spatial operator for the inviscid fluxes
not only enhances the accuracy but also improves the convergence rate for steady-state
computation as compared with using the ENO counterpart. It is found that the solutions of
the present algorithm compare well with experimental data and other numerical results.
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FIG. 16. The velocity vector plots on three midplanes: (a)z= 1.5, (b) y= 0.5, and (c)x= 0.5 for Re= 3200.
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