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A class of lower–upper symmetric Gauss–Seidel implicit weighted essentially nonoscillatory (ENO) schemes for
solving the two- and three-dimensional compressible Navier–Stokes equations with pointwise version of Baldwin–

Barth one-equation turbulence model is presented (Baldwin, B. S., and Barth, T. J., “A One-Equation Turbulence
Transport Model for High Reynolds Number Wall Bounded Flows,” AIAA Paper 91-0610,1991). A weighted ENO
(WENO) spatial operator is employed for inviscid � uxes and central differencing for viscous � uxes. A numerical
� ux of the WENO scheme in � ux limiter form is adopted, which consists of � rst-order and high-order � uxes
and allows for a more � exible choice of � rst-order dissipative methods. The computations are performed for the
two-dimensional turbulent � ows over NACA 0012 and Royal Aircraft Establishment 2822 airfoil and the three-
dimensional turbulent � ow over an ONERA M6 wing. The present solutions are compared with experimental data
and other computational results and exhibit good agreement.

I. Introduction

T HE essentially nonoscillatory (ENO) schemes developed by
Harten et al.1 are uniformly high-order accurate right up to

discontinuities,while keepinga sharp, ENO shock transition.Later,
Shu and Osher2;3 devised an ef� cient � ux version.Since then, ENO
schemes have been successfully applied to many different � elds as
noted in Ref. 4. However, they also have certain drawbacks. One
problemis that the convergencerate for the implicit ENO scheme is
generallypoor. However implicit total variationdiminishing(TVD)
schemes5 as constructedout of Harten’s TVD scheme6 can achieve
good convergence. Another problem is that an ENO scheme is not
effective on vector supercomputers due to its heavy use of logical
statements.

Rogerson and Meiburg7 studied the convergence properties of
ENO schemes, and they found that the numerical solution of ENO
schemes does not converge uniformly. Shu8 proposed a modi� ed
ENO scheme, which recovers the correct order of accuracy for the
test problem. A comparison of � nite volume and � nite difference
implementationof high-order accurate ENO schemes was given by
Casper et al.9

The weighted ENO (WENO) schemes proposed recently by Liu
et al.10 and extended by Jiang and Shu11 can overcome these draw-
backswhile keepingthe robustnessand high-orderaccuracyof ENO
schemes.The primary conceptof WENO schemes is that, insteadof
using only one of the candidate stencils based on divided difference
to form the reconstruction,one uses a convex combination of all of
the candidate stencils. Each of the candidate stencils is assigned a
weight that determines the appropriatecontributionof this stencil to
the � nal approximationof the numerical � ux. Atkins12 also devised
a version of ENO schemes using a different weighted average of
stencils. A class of implicit WENO schemes has been successfully
applied to incompressible� ow problems by Chen et al.13 and Yang
et al.14 based on Chorin’s15 arti� cial compressibility formulation.
Goodconvergencerate to a steady-statesolutionhasbeenillustrated.
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In this paper, followingChen et al.13 and Yang et al.,14 an implicit
version of the WENO scheme (see Ref. 11) is adopted for the two-
and three-dimensional compressible Navier–Stokes equations for
computing steady-state � ows. A numerical � ux of WENO scheme
in � ux limiter form16 is presented that consists of � rst-order and
high-order� uxes and allows for a more � exible choice of � rst-order
dissipativeentropy satisfyingmethods. Many � rst-orderdissipative
schemes can be used. Here, we employ the Roe scheme17 (with
Harten’s entropy � x6) as the basic � rst-order dissipative methods.

For turbulent � ow calculations, a pointwise version of the
Baldwin–Barth one-equation turbulence model18 modi� ed by
Goldberg and Ramakrishnan19 is adopted, which is based on the
· –" two-equation model. This model consists entirely of point-
wise terms, that is, no term involveswall distance explicitly.Conse-
quently, the resulting model provides a desirable tool for numerical
computationof � ow involvingcomplex geometry.The performance
of this model has been tested through comparison with experimen-
tal data of several well-documented� ow cases, covering both wall-
bounded and free shear � ows.19

To improve the ef� ciency and convergence to steady state, the
lower–uppersymmetricGauss–Seidel (LU-SGS) implicitalgorithm
(see Ref. 20) is adopted. It has been demonstrated by Yoon and
Kwak21¡23 that the LU-SGS scheme requires less CPU time per
iteration than most existing time marching methods on Cray super-
computers. The LU-SGS scheme is not only unconditionallystable
but also completely vectorizable in any dimensions. We apply the
resulting schemes to compute standard transonic � ows over NACA
0012 and Royal Aircraft Establishment (RAE) 2822 airfoils and
three-dimensional transonic � ow over ONERA M6 wing to test
both the convergence rate and the accuracy of the methods.

II. Governing Equations
The governing equations are the unsteady, mass-averaged, com-

pressible Navier–Stokes equations, which express the conservation
of mass, momentum, and energy for a viscous gas. The pointwise
version of the Baldwin–Barth one-equation turbulence model18 as
devisedin Ref. 19 is adopted.In the Cartesiancoordinates,the three-
dimensional governing equations are given by
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where

Q D .½; ½u; ½v; ½w; e; R/T

E D [½u; ½u2 C p; ½uv; ½uw; .e C p/u; Ru]T

F D [½v; ½vu; ½v2 C p; ½vw; .e C p/v; Rv]T

G D [½w; ½wu; ½wv; ½w2 C p; .e C p/w; Rw]T (2)
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with

Ev5 D u¿x x C v¿x y C w¿x z ¡ qx

Fv5 D u¿x y C v¿yy C w¿yz ¡ qy

Gv5 D u¿xz C v¿yz C w¿zz ¡ qz

In the preceding equations, ½ is the density; u, v, and w are the ve-
locity components;e is the energy per unit volume; and the variable
R for turbulencemodel is de� ned by k2=", where k is the turbulent
kinetic energy and " is the dissipation rate of k. The pressure p
is related to the dependent variables by the equation of state for a
perfect gas:

p D .° ¡ 1/[e ¡ ½.u2 C v2 C w2/=2] (4)

where ° is the ratio of speci� c heats. The heat � ux terms are given
by
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where Pr D 0:72 and Prt D 0:9 for air. The viscous stress tensors are
obtained from
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where i; j D 1; 2; 3 indicate the three coordinate directions. The
molecular viscosity¹l is calculatedby Sutherland’s law. The source
term is expressed as

H D .0; 0; 0; 0; 0; H6/T

H6 D .C"2 f2 ¡ C"1/.RP/
1
2 C .M1=Re1/[¹l C .2¹t=¾"/]r2R

¯
½

where P is the production term of turbulent kinetic energy per unit
mass and is given by
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The quantities¾" , C"1, and C"2 are empirical constants in the turbu-
lence model:

1=¾" D .C"2 ¡ C"1/C
1
2

¹

¯
·2

C"1 D 1:2; C"2 D 2:0; · D 0:41; C¹ D 0:09

and the eddy viscosity ¹t is given by

¹t D .Re1=M1/C¹½ f¹R

De� ne the turbulent Reynolds number ReT as
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Note that the near-wall functions f2 and f¹ appearing in the pre-
ceding formulation are not dependent on wall distance through the
parameter yC.

The dimensional quantities (denoted by an overbar) are nondi-
mensionalized using freestream conditions (denoted by 1) and NL
(the reference length used in the Reynolds number):

x D Nx= NL; y D Ny= NL; z D Nz= NL; t D Nt Na1= NL

½ D N½= N½1; u D Nu=Na1; v D Nv=Na1; w D Nw=Na1

a D Na=Na1; p D Np
¯

Np1 Na2
1; T D NT = NT1

¹l D N¹l= N¹l1; ¹t D N¹t= N¹l1; R D NR= NL Na1

where Na1 D .° Np1= N½1/1=2 is the freestream speed of sound.
To allow for the development of a discrete control volume for-

mulation, Eq. (1) is presented in integral form:
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where V is the volume of the cell that is bounded by the surface Ä
with the outward unit normal n. Here we de� ne the � ux at general-
ized coordinates (»; ´; ³ ) as

OE D .»x E C »y F C »zG/; OF D .´x E C ´y F C ´z G/

OG D .³x E C ³y F C ³z G/; OEv D .»x Ev C »y Fv C »z Gv/

OFv D .´x Ev C ´y Fv C ´z Gv /; OGv D .³x Ev C ³y Fv C ³z Gv/

where » D »x i C »y j C »zk is the surface area vector in » direction.

III. Numerical Method and Boundary Conditions
Spatial Discretization

A semidiscrete � nite volume method is used to ensure that the
� nal converged solution is independentof the integrationprocedure
and to avoid metric singularityproblems.The � nite volume method
is basedon the local � ux balanceof eachmeshcell. The semidiscrete
form of Eq. (8) can be written as
³
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where .i; j; k/ is the control point of � nite volume. The spatial
differencing adopts WENO schemes11 for the inviscid convective
� uxes . QE; QF ; QG/ and second-order central differencing for viscous
� uxes . QEv; QFv; QGv/. A WENO2 numerical� uxat a cell surface i C 1
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in direction i can be put into the form of a � ux limiter method16 and
is de� ned by

QEi C 1
2 ; j;k D QE L

i C 1
2 ; j;k

C QE H W
i C 1

2 ; j;k
(10)

where QE L is the numerical � ux of a � rst-order dissipative entropy
satisfying scheme (such as an E-scheme24 and QE H W is a high-order
� ux with WENO2 � ux limiter. Here the Roe scheme with Harten’s
entropy � x6 is adopted:
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where QE.Q i; j;k; Si C 1=2; j;k / is the inviscid � ux, the state variables
at cell center .i; j; k/ and the area vectors at cell face .i C 1

2 ; j; k/
are used. R is the similarity transformationmatrix consistingof the
right eigenvectors of the Euler system linearized around the Roe-
averaged state between Q i C 1; j;k and Q i; j;k .

QE H W is a high-order WENO2 � ux, de� ned as
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The weights !§ are de� ned by
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Here " D 10¡30 and I S are the smoothness indicators, de� ned as
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In the preceding equations rs (column vector) and ls (row vector)
are the sth right and left eigenvectors of the Jacobian matrices,
and they are evaluated using Roe17 averages. The rs and ls used
in Eqs. (12) and (14), respectively, are evaluated consistently at
the i C 1

2 interface. Note that the WENO2 method just described is
only second-order accurate because as a � nite difference choice of
� uxes (dimensionbydimension) is appliedto a � nite volumesetting.
However, it is still a genuinely second-order scheme, which does
not degenerate to � rst order at smooth extrema as TVD schemes do.

The high-orderENO � ux QE H E used for comparison in this work
is de� ned as4
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The de� nitions of j1E§
.i C 1=2; j;k/;s j are the same as Eqs. (15) and

(16) and 11E§
.i; j;k/;s are de� ned as
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Time Discretization
An unfactored implicit scheme can be obtained from a nonlinear

implicit scheme by linearizing the � ux vectors about the preceding
time step and dropping terms of second and higher order:
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where I is the identity matrix; n is the time level; ±» ; ±´, and ±³ are
the differenceoperators, OA; OB, and OC are the Jacobianmatricesof in-
viscid � uxes; OD D @ H=@ QI 1Q D Qn C 1 ¡ Qn and is the increment
of conservativevariables; and RHS is right-hand side. Note that the
viscous terms are treated explicitly, and the turbulent source func-
tions are treated implicitly. Because the production term is positive,
its linearization is not possible; however, there is a strong coupling
between the � ow� eld, turbulent viscosity, and the production term.
The stiffness causedby the productionterm can be reducedby using
the following pseudolinearization25:
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The matrix inversion resulting from the source-termlinearizationis
performed before the spatial sweeps:

[I C .1t=V /.±»
OA C ±´
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OC /]1Q i; j;k

D RHS=[I ¡ 1t OD] ´ RHS¤ (28)

The LU-SGS implicit factorizationscheme of Yoon and Jameson20

for Eq. (28) can be derived by combining the advantages of LU
factorizationand SGS relaxation.The LU-SGS scheme can be writ-
ten as

L D¡1U 1Q D RHS¤ (29)
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where
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the Roe-averaged17 state between Q i C 1; j;k and Q i; j;k and the area
vectors at cell face .i C 1

2 ; j; k/. Equation (29) can be inverted in
three steps:

1Q¤ D L¡1RHS¤ (30a)

1Q¤¤ D DQ¤ (30b)
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Note that the present implicit algorithm (LU-SGS) is completely
vectorizable on i C j C k D const oblique plane of sweep.

Boundary Conditions
The mean � ow and turbulent transport equations presented in

preceding sections represent an initia-boundary-valueproblem. To
solve these equations, it is necessary to impose initial and boundary
conditions.A uniform� ow� eld is chosenas the initialconditionsfor
the mean � ow equations.A uniform value of R ¼ 10¡4.ºt ¼ 1000/
is set as the initial guess.

The boundary conditions of mean � ow are set as follows: 1)
No-slip boundary conditions for velocities are adopted on the solid
surface, which is assumed to be an adiabatic wall. 2) The density
and pressure on the wall are set to be equal to the values of the node
points next to the wall. This gives � rst-order accuracy at the wall.
3) In the far � eld, a locally one-dimensional characteristic type of
boundary condition is used. For the turbulent transport equation, a
zeroth-order extrapolation is used to specify conditions at the far
� eld. The value of R is set to zero at the solid wall.

IV. Results and Discussion
Presented here are the results of two different two-dimensional

turbulent � ows and one three-dimensional turbulent � ow compu-
tations to illustrate and test the codes. The two-dimensional cases
are the transonic turbulent � ows over NACA 0012 and RAE 2822
airfoil. The three-dimensionalcase is transonic turbulent � ow over
an ONERA M6 wing. We compare our results with availableexper-
imental data and other computational results for each case.

Flow over NACA 0012 Airfoil
The � rst result is the transonic � ow over a NACA 0012 airfoil at

freestreamcondition M1 D 0:799; ® D 2:26 deg, and Rec D 9£106.
The angle of attack (2.26 deg) used in the computation is obtained
from the measured angle of attack (2.86 deg) using a linear wind-
tunnel-wall correction procedure. For this transonic � ow� eld, a
shock wave exists on the airfoil upper surface at about x=c D 0:5,
which is strong enough to cause signi� cant boundary-layer sepa-
ration. This case represents a severe test for all solution methods
in terms of both numerical algorithm as well as turbulencemodels.
The calculation is performed on an O-type grid. The grid system
(Fig. 1) around the airfoil is 241 £ 45, with 113 points on upper
surface, 113 points on lower surface and 17 points on blunt trailing
edge, that is, base region, The mesh extends from the airfoil surface
to a circle of the far-� eld boundary located approximately50 chord
lengths from the body and the � rst grid line at a distanceof 7 £10¡6

chord length off the wall, which resulted in a min yC < 1:5 over the
entire grid; here yC < u¿ y=v, where u¿ is the friction velocity.

Fig. 1 O-type grid 241 £ £ 45 for NACA 0012 airfoil.

Fig. 2 NACA 0012 airfoil surface pressure distributionat M1 = 0:799;
® = 2:26 deg, and Rec = 9 £ £ 106; comparison of WENO–Roe and ENO–

Roe schemes.

The solutions were calculated using WENO2–Roe and ENO2–

Roe scheme, where Roe refers to the � rst-order � ux Roe scheme.17

The calculations presented here have been computed using local
time steppingat constantCourantnumbersof 3.0.Figure 2 shows the
comparison of surface pressure distributionswith the experimental
data.26 The computed result is in good agreementwith experimental
data exceptfor a slightdiscrepancyin the postshockpositionand the
magnitude of lower surface pressure. Computed lift and drag coef-
� cients of WENO2–Roe scheme are CL D 0:335 and CD D 0:0325.
The experimentalvaluesof lift and drag coef� cients given by Harris
are CL D 0:391 and CD D 0:033. Figure 3 shows the contours of
constant Mach numbers, all of the � ow features including the front
leading edge structure, the supersonicpocket, and shock separation
are clearly resolved. Figure 4 shows the convergence history. Af-
ter the residuals have decayed for three orders of magnitude, the
convergence of ENO2 scheme is leveling off, whereas monotone
convergence can be achieved with WENO2 schemes.

Flow over RAE 2822 Airfoil
The next computationis for the transonic � ow over an RAE 2822

airfoil that has been tested extensively by Cook et al.27 This airfoil
is a supercritical airfoil with a signi� cant amount of aft camber.



2086 YANG, PERNG, AND YEN

Fig. 3 Mach number contours for NACA 0012 airfoil at M 1 = 0:799;
® = 2:26 deg, and Rec = 9 £ £ 106; WENO2–Roe scheme.

Fig. 4 Convergence history for NACA 0012 airfoil at M 1 = 0:799,
® = 2:26 deg, and Rec = 9 £ £ 106 .

Solutions were obtained of this case on four O-type meshes con-
sisting of 241 £ 45, 181 £ 45; 121 £ 45; and 177 £ 45 grid points
in the streamwise and normal directions, respectively. The trailing
edges of the � rst three grid systems are blunt and that of the last
grid system is sharp. The � ne-grid system (Fig. 5) is similar to that
used in the NACA 0012 airfoil test case.

The result is for the transonic � ow over an RAE 2822 airfoil at
freestreamcondition M1 D 0:725, angleof attack® D 2:92 deg, and
referenceReynolds number based on airfoil chord, Rec D 6; 5 £106

corresponding to case 6 in the experimental study of Cook et al.27

Because of the presence of wall interference effects in the experi-
ment, the corrected � ow conditionswith M1 D 0:731 and ® D 2:51
as suggestedby Tatsumi et al.28 are used.This � ow involvesa strong
shock wave at x=c D 0:55 on the upper surface. The lift coef� cient
in this case depends strongly on the predicted shock location. This
requiresa goodresolutionof the shockwave. Jianget al.29 have com-
puted this problem using convective upwind split pressure scheme
with Baldwin–Barth one-equation turbulence model.18

In Fig. 6, the computed pressure coef� cient distributions of the
� ne grid system of WENO2 and ENO2 schemes are shown and
compared with the experiment. The present results are in close
agreement with experimental data in all aspects. Figure 7 shows

Fig. 5 O-type grid 241 £ £ 45 for RAE 2822 airfoil.

Fig. 6 RAE 2822 airfoil surface pressure distribution at M1 = 0:731;
® = 2:51 deg, and Rec = 6:5 £ £ 106; comparison of WENO2 and ENO2
schemes.

Fig. 7 RAE 2822 airfoil surface pressure distribution at M1 = 0:731;
® = 2:51 deg, and Rec = 6:5 £ £ 106; comparison of different grid systems.
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Table 1 Lift and drag coef� cients for RAE 2822 airfoil
at M 1 = 0:725; ® = 2:92 deg, and Rec = 6:5 £ £ 106

Scheme Grid Trailing edge CL CD

AGARD 0.743 0.0127
Jiang et al.29 384£64 0.702 0.0088
WENO2 241£45 Blunt 0.740 0.0151
WENO2 181£45 Blunt 0.737 0.0148
WENO2 121£45 Blunt 0.718 0.0138
WENO2 177£45 Sharp 0.738 0.0148
ENO2 241£45 Blunt 0.719 0.0149

Fig. 8 Skin-friction distribution of the upper surface of RAE 2822
airfoil at M1 = 0:731; ® = 2:51 deg, and Rec = 6:5 £ £ 106; WENO2–Roe
scheme.

the results of the WENO2 scheme on different grid systems. A
comparison of the calculated results of the experimental data and
the Jiang et al.29 results is shown in Table 1. Notice that the � ow is
grid resolved and that the sharp trailing edge produces almost the
same solutionsas that obtainedwith a blunt trailingedge.Computed
skin-friction distribution from the upper surface of the RAE 2822
airfoil for the case just presented is compared with experimental
data in Fig. 8. The skin-frictionvalues are referred to the boundary-
layer edge dynamic pressure.Generally, the computed results are in
good agreement with experiment, with exceptions near the leading
edge, where the skin-frictionquantity is dif� cult to de� ne, and near
the trailing edge. The computed skin-friction coef� cients by Jiang
et al.29 do not agree well with available experimental data. Figure 9
shows the contours of constant Mach numbers. Figure 10 shows
the convergence history. Again, the WENO scheme gives a good
convergencerate. Figure 11 shows the convergenceof lift and drag
of the � ne grid system of the WENO2–Roe scheme.

Our computed results for both the NACA 0012 and RAE 2822
airfoilsare consistentwith those given in the extensivecompendium
of results by Holst.30

Three-Dimensional Transonic Flow over ONERA M6 Wing
The result of a three-dimensionalcase is the transonic � ow over

an ONERA M6 wing at a M1 D 0:8395 and with 3.06-deg angle of
attackand referenceReynoldsnumberRec D 2:6£106. The ONERA
M6 wing is a symmetric airfoil sectionwith a sweep angleof 30 deg.
The wing is taperedwith a taper ratio of 0.56 and has an aspect ratio
of 3.8. Extensive wind-tunnel test data exist for the ONERA M6
wing, in particular,the pressuredata for transonic� ow conditions.31

Takakura et al.32 have computed this problem using the Harten–Yee
TVD scheme (see Ref. 5) together with the Jones–Launder k–"
model.

Our calculation is performed on an O–O-type grid system, con-
taining 160£ 25£ 44 cells in the wraparound,spanwise, and body-
normaldirections,respectively.The outer boundarieswere extended
to a mesh system that extends to 30 chord lengths in all directions.

Fig. 9 Mach number contours for RAE 2822 airfoil at M1 = 0:731;
® = 2:51 deg, and Rec = 6:5 £ £ 106; WENO2–Roe scheme.

Fig. 10 Convergence history for RAE 2822 airfoil at M 1 = 0:731,
® = 2:51 deg, and Rec = 6:5 £ £ 106.

Fig. 11 Convergence of lift and drag coef� cients of WENO2–Roe
scheme for RAE 2822 airfoil at M1 = 0:731; ® = 2:51 deg, and Rec =
6:5 £ £ 106.
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Fig. 12 O-type grid 161 £ £ 45 for ONERA M6 wing at symmetrical
( j = 1) plane.

a) y/b = 0:44

b) y/b = 0:65

c) y/b = 0:80

d) y/b = 0:90

Fig. 13 Steady pressure distributions for ONERA M6 wing at M 1 = 0:8395; ® = 3:06 deg, and Rec = 2:6 £ £ 106.

The � rst grid line is at a distance of 10¡5 chord length off the wall,
which resultedin a min yC < 2:0 over theentiregrid.The gridsystem
was generated by letting the j D 1 plane (Fig. 12) be the plane of
grid points on the upper wing surface at the root section. The j
planes were then distributed nonlinearly along the upper surface to
j D 21 at the upper surface tip. Planes 22–26 were then rotated in
a circular arc to model the wing tip. This wraparound wing tip al-
lows the modeling of the wing tip as it existed in the wind-tunnel
model.

The solutions were calculated using WENO2–Roe schemes at
local Courant–Friedrichs–Lewy number 20.0. In Fig. 13, we show
the surface pressure coef� cients of the present scheme as compared
with experimental data31 and the other calculations by Takakura
et al.32 (The numberof grid points is 191£33£24:/ It is shown that
our numerical results are in good agreement with the experimental
data and are more accuratethan the resultsof Takakuraet al. in terms
of both shock location and strength. This test case was at transonic
condition,which results in a double-shockscon� guration, which is
evident in Figs. 13a–13c. Finally, Fig. 13d shows the shocks having
coalesced to form one at the 0.25 chord position, and this shock
is by far the strongest shock of all of those observed in Fig. 13.
The con� guration obviously results in the lambda double-shock
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Fig. 14 Upper surface pressure contours for ONERA M6 wing at
M 1 = 0:8395; ® = 3:06 deg, and Rec = 2:6 £ £ 106.

Fig. 15 Convergence history for ONERA M6 wing at M 1 = 0:8395;
® = 3:06 deg, and Rec = 2:6 £ £ 106; WENO2–Roe scheme.

pattern for transonic conditions on a swept wing. Figure 14 shows
the pressurecontoursalong the upper surface and the double-shocks
pattern coalescing into a single shock at the tip can be observed.
Figure 15 shows the convergencehistory.

V. Conclusions
High-resolutionnumerical codes for solving the two- and three-

dimensional compressibleNavier–Stokes equations with pointwise
version of Baldwin–Barth18 one-equation turbulence model have
been developed. The present method adopts a numerical � ux in
� ux limiter form for the WENO spatial operator for convective
� ux that allows for a � exiblility to implement various � rst-order
entropy satisfying dissipative schemes. The integration of equa-
tions is via the implicit LU-SGS algorithm. Applications to tur-
bulent transonic � ows over NACA 0012 and RAE 2822 airfoils and
three-dimensional turbulent � ow over an ONERA M6 wing have
been carried out to validate and illustrate the codes. The use of a
WENO spatial operator for the inviscid � uxes not only enhances
the accuracybut also improves the convergencerate for steady-state

computation as compared with using the ENO counterpart. It is
found that, for all cases computed, the solutions of the present algo-
rithms are in good agreement with the experimental data and other
available computational results.
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