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An Efficient Method for Computing Optical
Waveguides With Discontinuous Refractive Index
Profiles Using Spectral Collocation Method With

Domain Decomposition

Chia-Chien Huang, Chia-Chih Huang, and Jaw-Yen Yang

Abstract—An accurate and efficient solution method using spec- approximate or numerical methods to obtain propagation char-
tral collocation method with domain decomposition is proposed for - acteristics of general waveguides is definitely necessary and
computing optical waveguides with discontinuous refractive index of practical importance.

profiles. The use of domain decomposition divides the usual single Th ist ffecti d t ical thod
domain into a few subdomains at the interfaces of discontinuous ere exist many efiective and accurateé numerical methods

refractive index profiles. Each subdomain can be expanded by a for solving optical waveguide problems. These include the
suitable set of orthogonal basis functions and patched at these in- beam propagation method (BPM), [3], [4], finite difference

tgrfaces by matc.hing.the physipal boundary cqnditions. In addi- (FD), [5], [6], and finite element (FE) methods [7], which all
tion, a new technique incorporating the effective index method and produce good results. In the past decade, the series expan-

the Wentzel-Kramers—Brillouin method for the a-priori determi- . thod has b | d has b idel
nation of the scaling factor in Hermite—Gauss or Laguerre—Gauss sion method has became very popular and has been widely

basis functions is introduced to considerably save computational applied in studying the optical waveguide problems due to its
time without experimenting with it. This method shares the same superior accuracy and lower computational storage because
desirable property of the spectral collocation method of providing  of the smaller size of matrix equations required. The spectral
a fast and accurate solution but avoids the oscillatory solutions q||5cation method (SCM) [8] (i.e., the collocation method
and improves the poor convergence problem of the simple spec- . - .
tral collocation method with single domain where regions of dis- in [9] proposed by Sharma and Banerjee) and the _Galerkln
continuous refractive index profiles exist. Applications to several Method [10] are the two most prevalent methods in series
two- and three-dimensional waveguide structures having exact or expansion. More recently, many researchers [11]-[15] have
accurate approximate solutions are given to test the accuracy and successfully implemented the Galerkin method with different
efficiency; all the results are found to be in excellent agreement. orthogonal basis functions to investigate optical waveguides
Index Terms—Biscontinuous refractive index profiles, domain and optical fibers but few pursued SCM. Sharma and Banerjee
decomposition, optical waveguides, orthogonal basis function, [9], [16] first applied SCM with Hermite—Gauss (HG) basis
scaling factor, spectral collocation method. functions in propagation characteristics of optical waveguiding
structures for two kinds of problems as follows. First, for the
l. INTRODUCTION waveguide modal problems, SCM attained the same degree
o . . of convergence compared with the Galerkin method for given
ECENTLY, there has been growing interest in devebp'nl%rms of orthogonal basis functions but needed much less

integrated optics dewces_ n op_tlcgl commun|(_:at|on Sy_%bmputational time, resulting from the avoidance of evaluating
tems. The fundamental operating principle and optimal desi orious integral elements as undertaken by the Galerkin

of optical devices such as modulators, switches, filters, ﬁbel}ﬁethod [16]. Second, the propagation problems using SCM
and semiconductor lasers are often based on the comprehen%@g providea better cé)nvergence than BPM [16]

of optical Waveguide_ theory [1]._Hence, solving the _optica These advantages of SCM produced good results only ap-
waveguide problems is an essential way to clearly realize th feable under the condition of the continuous RIP in interest

devices. However, only a limited number of waveguides, whi main. As for discontinuous RIP, the SCM solutions show

have simple geometry and specific refractive index profi](e[ﬁe oscillatory phenomenon (the so-called Gibbs phenomenon)

(RIPs), have analytic solutions 1], [2].Consequent|y,employl%d induce difficulty to converge, as illustrated in [16]. Causa

etal.[17], [18] also used SCM with HG in some cases, such as

Manuscript received June 9, 2003. This work was supported by the Natioulﬁng'tUdma”y nonuniform, Kerr-nonlinear media and nonlinear
Science Council, Taiwan, R.O.C., under Contracts NSC 89-2212-1-002-151 @arrier diffusion in semiconductor optical devices. Because of
NSC 90-2212-1-002-203, . . __the existence of discontinuous RIP, even though the difference

C.-C. Huang and J.-Y. Yang are with the Computational Electromagnetics anfi f . . iff di . I
Plasma Laboratory, Institute of Applied Mechanics, National Taiwan Universit9, refractive index be.tween different mediums is small, too
10617 Taipei, Taiwan, R.O.C. (e-mail: yangjy@spring.iam.ntu.edu.tw). many terms of HG still were needed (the number of terms of

C.-C. Huang is with the Department of Electrical Engineering and Gradugi¢G gre N = 99) to achieve desirable results. As mentioned
Institute of Electro-Optical Engineering, National Taiwan University, 10617 . . . .
Taipei, Taiwan, R.O.C. above, although SCM is powerful and simple, there still exists

Digital Object Identifier 10.1109/JLT.2003.816895 a major drawback when dealing with the discontinuous RIP

0733-8724/03$17.00 © 2003 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 17, 2008 at 05:09 from IEEE Xplore. Restrictions apply.



HUANG et al. COMPUTING OPTICAL WAVEGUIDES WITH DISCONTINUOUS REFRACTIVE INDEX PROFILES 2285

in interest domain. For the solution of a differential equatiotwo transverse directions, that is, = n(z,y). Here, we are
solved through SCM in terms of a complete set of orthognly concerned with the guided mode solutions, with a periodic
onal basis functions, the expansion coefficients are determinedependence of the forexp(—;3z), whereg is the propaga-

by requiring the expansion to satisfy the differential equatidion constant. When the two polarizationsif and £, (or H,,
exactly at certain discrete points, which are the so-called collaad H,)) are weak for three-dimensional waveguides, the cou-
cation points. Meanwhile, RIP is indicated as an interpolatigsling terms may be neglected [4]. Hence we can individually
of the refractive index at these collocation points; therefordeal with the uncoupled equations termed as the semivector [7],
the discontinuous RIP cannot always be described accurat@jor quasi-vector [15] analysis, as follows:

at the discontinuous interfaces. With this notable flaw, the

merit of the high accuracy of SCM has not been completel&Jrﬂ (ia_”zEw> +82ﬂ+k3(n2_n2)& =0 (3)
exploited, and it can result in poor convergence due to thedx® Oz \n* Oz dy? ‘

existence of discontinuous functions in computational domajgr the quasi-TE modes and

[8]. The larger the difference of refractive index at discontin-

uous interfaces is, the larger the error in describing the actuaf’f. 1 9n* 9H, 9*H, R —n2)H, =0 (4)

RIP in SCM may become. oz? n? 0y Oy oy?
In this paper, our purpose is first to propose SCM WitﬁJr the quasi-TM modes

domain decomposition (DD) to deal with the discontinuous Heren, = f/k, is the effective refractive index. The second

RIP in the interest dor_nain, while SCM with only single domai rms of (3) and (4) are polarization dependence. Furthermore,
usually produces oscillatory results and poor convergence [1ﬁ the weakly guiding approximation is assumed in the whole

second to decide the suitable set of orthogonal basis func“?ﬂl%rest domain, then we can neglect polarization dependence
that naturally describes the electromagnetic characteristich’:\Bbtain the scalar wave equation
g

each subdomain; and finally to derive a technique for choosin
the scaling factor when using HG or Laguerre-Gauss (LG) %0 0%0 5, 5 g, _
basis functions (LGs are usually used in optical fiber of circular oz Oy2 +ho(n” —ne)0 =0, 0 =E; Ho  (5)

structure [19]) avoiding iterative experimenting with it and

enhancing the accuracy. By combining these techniques {ngt considerably reduces the computational time. For three-di-
: rgensional (3-D) structures, we only compute a diffused channel

accuracy of solution can be significantly improved and th A .
computational time of finding a scaling factor is substantiallgavegu'de in this paper, which has_ bee_n solved by _Sharrr_la and
indal [20] assuming scalar approximation. In two-dimensional

reduced. D) struct haspl ides, the derivatives with
This paper is organized as follows. In Section II, we descritgg' ) struc Ures such as planar waveguides, the derivatives wi
spect taz in (3) and (4) are zero if the infinite extension is

the mathematical formulations of the wave equations. The d&: ther-direction. H btain the f |
scription of the SCM with DD is stated in Section Ill. Section Along thez-direction. Hence, we obtain the formulas
analyzes in detail the choice of the scaling factor. In Section V, 5%E, 5, o )
we first compare two cases calculated by Banerjee and Sharma a2 ko(n*(y) —ng)Ex =0 (6)
[16] with the results obtained by the present method; then a few
examples that include planar and diffused channel waveguideg TE modes and
solved by analytical or highly accurate approximate methodsare 92 g 1 On2 OH.

i i 4 k(nP(y) - n?)H, =0 (7)
also tested. After that, we discuss the effect of scaling factor. 9y n2 oy Oy o\ Y e)He
Section VI concludes this paper.

for TM modes.

Il. MATHEMATICAL FORMULATIONS OF WAVE EQUATIONS
) ) o _ _ [Il. SPECTRAL COLLOCATION METHOD WITH DOMAIN

Assuming monochromatic electromagnetic fields with a time DECOMPOSITION
dependence afxp(jwt), propagating along the-direction in ) . , ,
an inhomogeneous medium with refractive indéx. , z), the In this section, we describe how to solve the optical wave-
vector wave equation can be derived from the Maxwell's equgUide problems mentioned previously (5)—(7) by SCM with DD.
tions for a source free region in frequency domain as followsAPparently, to deal with the inaccurate description of discontin-

uous RIP at interfaces encountered by SCM with single domain

1 [16], we need to divide the whole domain into a few subdomains
@ at these interfaces. According to the feature of each subregion,

o ) ~_we may employ different orthogonal basis functions to expand
Similarly, the vector wave equation based on the magnetic figige optical fields in individual subregion. For the internal re-

N N 2
v2E+k§n2E+v[V“ }:0.

AT
n?

vector is given by gions, whose boundaries are finite, Chebyshev polynomials are
_ — vp2 _ the favored choice because of their robustness for nonperiodic
V2H + k2n’H + TRES (VxH)=0 (2) structure [8]. For the outer regions, which include semi-infinite

boundaries, LGs are adequate due to the mathematical charac-
wherek, = 27 /Ao and)\, is the wavelength in free space. Conteristic of the exponentially decay to zero at infinity.
sidering the longitudinally (i.ez-direction) invariant structure,  For illustration purposes, we confine our description to planar
namely,0n?/0z = 0, the refractive index depends only on thavaveguide structures with the transverse spatial diregtiGior
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any dependent variab#éy) such as electric field,.(y) in (6) or  orderN plusy, = 0 as collocation points to facilitate the incor-
magnetic fieldH,.(y) in (7) in each internal region, we expandporation of boundary conditions. We have
it by Chebyshev polynomial€T}(y),j = 0,1,2,..., N} with

y € [-1,1] e—v/? ayLy(ay)

C- = 5 . 13

. V) = 2 Cay Lo (g, oy — ) ¥ 70 9

0(y) = Z ¢iT(y) (8) Finally, using HG (ie., vYnii(ay) =
i=0 exp(—a’y?/2)Hy41(ay)) as  basis functions and

he roots of Hermite polynomialH 5 11 («y) of orderN+1 as

wherec; are the expansion coefficients and in each outer su Bllocation points, we have

domain. We expand it by

e—a2y2/2

7 Hyi1(ay)
N c. _er
0(y) = > c;pilay) 9 stey) e~ "Yi/2 Hy (o)) (ay — ay;)
7=0

sy £y (14)

The basis functions are adequate and efficient only for the con-
where {¢;(ay),7 = 0,1,2,...,N} denotes the LGs, i.e., tinuous RIP along transverse spatial directignasing SCM
¢;i(ay) = exp(—ay/2)L;(ay), y € [0,00), and L;(ay) is With usual single domain as illustrated in [16]. Using SCM, we
the Laguerre polynomial of degree In (9), a is a scaling Substitute (10), based on either (12) for internal regions or (13)
factor to be determined and can influence the accuracy foifai outer regions, into (6) and (7), respectively. Requiring that
given number of terms of basis functions (discussed in tife) and (7) be satisfied at thedé+1 collocation points, these
next section). The independent variablds discretized into lead to
N+1 collocation pointsy; (i = 0,1,...,N). An alterna- 2E
tive expression is that the dependent field varia#(g) is d
directly expanded by the cardinal basis functions [8], [21] dy?

+ kg(n2(yz) - n82)E1|y=yi =0 (15)

y=yi
{Cj(y),j =0,1,2,..., N} and the grid point values of fields
at N + 1 collocation points; = #(y;) as follows: and
d*H, 1 0n?dH,
N 72 |yv=wi o +k§(”2(yi)_’ne2)Haz|y=yi:O~
b(y) = _ Ci(y)b; (10 W’ n* oy dy |,
=S (16)
Subsequently, (6) and (7) are transformed i@ 1 algebraic
where eigenvalues (15) and (16) for each subdomain. We obtain in ma-
) trix form
1/1N+1 Yy .
Ci(y) = ,0<j<N. (11)
W) = 1) (D)6} = k3n2{0) )

nge, Yny1(y) is a basis _fun.ction.of ordeN+1 and the where[D] is an(N + 1) x (N + 1) square matrix{f} =
prime denotes the first derivative with respectjtoy; are the {g,.4,,..., O }T are grid point vectors (eigenvectors), where

collocation points with the conditionS;(y;) = ¢;;, whereé;; T denotes the transpose. The elements of md¥riare
is the Kronecker delta. Thus the computations are operated

in physical spacd; in;tead of in §pectral spaeg. The figld Dij = C](,?)(ay)b:yi + k2n%(y;)65; (18)

profiles then can be directly obtained from the unknoén

(20). In this paper, we use the latter form (10) because of th§ TE modes and

direct obtainment of the field profile8;. The explicit forms L\ oo

of C,(y) for distinct basis functions and collocation points arg, _ ~(2) (1) n 22/ \e

repréégnted below. For instance, in (11), if we take Chebysh%\lf7 =057 () ly=yi =G5 (o) (ﬁ) Oy y=y7+k°n (y:)8is

polynomials as basis functions and Chebyshev Gauss—Lobatto (29)

points as collocation points (i.e., the extrema of Chebyshé&ar TM modes. In the above formulaéj](.") denotes thenth

polynomials together with the endpointgjat 4-1) for internal  derivative of cardinal basis function of degrgwith respect to

finite subdomains, then we have y. The numerical examples of planar waveguides in this paper

are mainly based on (18) and (19).

(=)' (1 = y*)Tx () (12)  Afterexpanding different basis functions in internal and outer

¢iN2(y — y;)

subdomains, we need to employ the boundary conditions of
electromagnetic field at these interfaggs {k = 1,2, ..., 7},

whereT'x (y) denotes Chebyshev polynomial of ord€éyco =  wherer is the number of discontinuity), between different di-

cy = 2,ande¢; = 1 (1 < 5 < N —1). Correspondingly, electric constants to patch these subdomains as follows:

for outer infinite (or semi-infinite) subdomains, we take LG,

namely,¥)n+1(ay) = exp(—ay/2)(ay)Ly(ay) as the basis n _ 0B, (y)  OE.(yy)

functions, and the roots of Laguerre polynomial;(ay) of Ea(yi) = Ealyi), dy - dy

Ci(y) = LY F Y

(20)

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 17, 2008 at 05:09 from IEEE Xplore. Restrictions apply.



HUANG et al. COMPUTING OPTICAL WAVEGUIDES WITH DISCONTINUOUS REFRACTIVE INDEX PROFILES 2287

for TE modes and wheref(y,) = 6;,0 < j < N, are the grid point values as in
_ 10). At each collocation poinfty; } ¥ ,, we obtain
_ _ OH,(y;f OH,(y ( =0
Ho(w) = Koy )on2(yp) ZZ2W) 2y 2 l0) ,
dy dy N
(21) 0(yi) = E Ci(ayi)0(y;), 0<i <N (24)
for TM modes. Herey;" andy; are referred to the locations at =0

the infinitesimally right and left of the interfagg , respectively. L )
As a result of special care taken to treat the discontinuity $f1ich is equivalent to
RIP using DD, the discontinuous RIP in interest domain can be N
correctly represented and the oscillatory solution in usual SCM 9 (E) — Z Cj(y:)0 (U_J) 0<i<N. (25)
with single domain can be efficiently eliminated. a =0 a
Considering the three-dimensional waveguide structures, the ) ) i
dependent variablé(z, ) in any subdomain is expanded by &Or the HG basis functiongy; }, are the zeros ol y11(y)

product of two separable basis sétér) and¥(y) as follows:  With the orderyy <31 < -+ <y, while for LG, {y; };L, are
the zeros of.y (y) plusy, = 0. When solving the differential

N. Ny equations, thath derivatives of dependent varialflig/ «) with
Oz, y) =D Y 05 @)V, (1), 4, (22)  respect ta are also needed and are expanded by

Je=07,=0

N
where®;_ (z) and¥; (y) denote two cardinal basis functions  §(™) (&) = Z anC](.n)(yi)H (&)7 0<i<N (26)
of orderyj, andj, alongz- andy-directions, respectively, and o =0 o

0;..5, = 0(x;,,y;,) now are grid point values in two transverse

directions. Using the similar procedures as mentioned abové]erecj(-n)(yi) (0 <5 <n,0 <4< N)isthe so-calledith
after substituting (22) into (5),N.. + 1) x (N, + 1) algebraic differentiation matrix (DM) [24] of the given basis functions.

eigenvalue equations are obtained. Suppose that the functidiiy /) has a finite suppoft- M, M],
i.e,0(y/a) ~ 0for|y/a|l > M. Thusé(y;/«) has sufficient
IV. CHOICE OF SCALING FACTOR contribution tof(y; /a) in (25) or™)(y; /a) in (26) under the
condition

An important point to note is that any orthogonal basis func-
tion for an infinite interval implicitly contains a scaling facter
to set the extension of the mapping, such as HG or LG [8]. Thus
reasonably choosing can substantially reduce the requiringAccordingly, the following relation determines the scaling
number of basis functions and evade many additional trial cofacctor o associated with givetV terms
putations with it. In SCM, the scaling facteris usually picked
up through trial and error with additional expense of a consider- o = max 75 (27)

Yi
(0%

<M, foral0o<j<N.

able amount of computational time for a given number of terms 0<j<N M

of the pasis functions [16]. He.nce a definite way to detefminf.he above choice of the scaling factor is due to Tang [22],
the optimum value of the scaling factor is thus very desirabigsich he originally applied to known Gaussian-type functions.
and necessary. For given terms of basis functidns: decides However, the value for the finite suppol remains to be
the spread and the extent of cpllocation points in thg transveR&ermined. The finite suppalt in Tang’s work was assumed
direction. In general, there exists an adequafer a givenN 4 pe given by a simple truncation of infinite domain into a
in optical waveguide problems. finite support. In [23], a novel technique has been proposed
In this paper, we adopt techniques from Tang [22] an| Galerkin method with trigonometric basis functions (the
Ramanujanet al.[23] and combine them to offer a new novekgrier method) for the a-priori determination of the finite
approach for determining for HG and LG. In [22], Tang sypport (or numerical window in [23]) of the Fourier method
proposed an interesting and definite procedure to chaoseyy ysing the Wentzel-Kramers—Brillouin (WKB) method and
for Gaussian-type functions that is expanded by the fiftstl  gffective index method (EIM). Here we adopt this technique to
HG of order N using the expression of series coefficients agoterminels for o in (27) in our SCM with DD.
given by (9) in spectral space. Here, another approach, whichccording to the character of guided modes in optical wave-
is based on the expression given by (10) in physical spacegi§ige theory [1], the mode shapes of all guided modes oscil-
used. A more convenient and direct expression than those giyg within the core and exponentially decay beyond the turning
in [22] may be derived to obtain an appropriate For any point, For step-index waveguides, the turning point of all guided
dependent variablé(y) in outer regions, we us€’j(ay) 8 modes locates at the same discontinuous interface that is be-
basis functions. For Chebyshev polynomials used for interngjeen the outermost and its adjacent layers. As for graded index
regions, because of the finite intervalpk [—1, 1], no scaling  yaveguides, the turning point of each guided mode locates on
factor is provided to adjust. In contrast to HG or L&fan be  the gifferent position, where the refractive index is equal to
independently accommodated in each outer region. We Wrjig effective index. If we can obtain the effective index of the
N highest guided mode, the turning points and the decay rates then
0(y) = Z C;(ay)b(y;) (23) _can be estima’Feq. _Indeed, the characteristic o_f th_e optical f_ield
=0 is to extend to infinity; thus, we have to set a criterion to decide
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the finite supportd beyond which the field strength is suffi-wheren,, is the effective index of the original channel wave-
ciently small and can be neglected. For diffused waveguidegiide andn.(0) denotes the value of the symmetric effective
Hocker and Burns [25]-[27] have used WKB method to treatdex profilen.(z) atz = 0. Apply the WKB method again to

the diffused planar waveguides and combined EIM and WKie z-dependent RIR..(z). The dispersion relation equations

to extend to the 3-D diffused channel waveguides. [27, (18)] determining for the equivalent symmetric planner
Suppose we have the following 2-D RIP: waveguides are as follows:
n?(z,y) = P
’ = [ [hp)b(x) =+ < 1)
2 2 2V Y N(2Z _ , V/ ———~ —bdp= g+ |7 34
{ng—l_(nm ns)f(D)h(I’)? ygo/ 00 < T >00 (28) Jo b([]) P q 2 ( )
n;, y>0,—oco<xr>00

wheren, is the substrate index,, is the maximum index at Wherep = 2z/W, p, = 2x,/W, x is the turning point ir:-di-
(z = 0,y = 0), andn, is the cover index. The functiorfgy/D)  rection, which satisfies(2z,/W) = b,andg = 0,1,2.. ., rep-
andh(2z/W) are the normalized profiles of the graded indeX€Sents the mode number along thelirection. Once we have
Here D andW are the parameters of diffusion depthyinand ©Ptainedb, n. can be determined by (33) and is calculated
z-direction, respectively. First, we use the EIM for the profildroughi(2z,/W) = b. Using the same definition as [23], we
in the y-direction at each position and define the normalized denote the decay rates for the mode as

guide depthV (z) and effective index parameteb&e) [27] as
follows: Vye =ko/nZ(0) —n? (353)

)
) Vys(y) =ko/n2(0) —n2(0,y) (35b)
V(z) = koD,\/ (n2, — n2)h (-“”) (29) os (@) =kor/(10)2 — n2(2). (35¢)

w

Accordingly, we can estimate the decay rates of optical fields

and L .
) ) Yyer Vys @long they-direction into cover and substrate sides,
v me(m)® = ng respectively, and,., is along ther-direction into substrate. For
b(z) = 575 (30) e ©s : )
(n2, —n2)h (3%) determining the finite support or numerical windd#, we need

to specify a criterion to assume that the field strengtiMats
much less than the field strength at turning points. Moreover,
the ratio of the field strength at/ relative to the field strength
at turning points has to be adequately and reasonably decided.
e If the ratio is too small, then the spreading we calculate is too
2V (x) /0 V[ (1) = b(w)dn wide to reduce computational time and the number of the basis
function. Contrarily, the large ratio represents the field strength
_ <2p n l) 7+ 2tan~! b(z) + a(x) (31) atM may not be negligible.. In this paper, foIIowing_Ramanqje_\m
2 1 —b(x) et al. [23], we take the ratio as 0.01. Hence, to find the finite
support in each direction, we first let

wheren.(z) is the effective index, which depends enThen
for a specified value of employing the WKB theory, we can
find b(z) by the dispersion relation [26, (10)] as follows:

wheren = y/D, n. = y: /D, andy; is the turning point, which

satisfiesf(y:/D) = b(x) at a givenz; andp = 0,1,2,..., E(Ay,) Ay,

denotes the order of mode along thedirection. Once we 7(0) =exp —/ Vycdy] =0.01 (36a)
have b(z), we can obtainn.(z) at eachz through (30). L 70

Here, the phase shift at the turning poipt £ y;) is —7/2, E(y: — Ays) Ye =AY b
and that at the interface of air and materigl = 0) is T E(y) P _/y, Tysdy| = 0.01 (36b)
—2tan™! \/(b(z) + a)/(1 — b(z)). As shown in [26],a(z) - N

denotes the asymmetry index for a givenand its value is E(z¢ + Azy) —exD | — /’T”'+ e dz| = 0.01 (36¢)
variant for TE grg = (n2 — n2)/(n2(z) — n2)) and T™ E(w) Y|/, T =0

(arn = (ni(x)/n)(n? — nd)/(n(x) — n2)]) modes,

ni(z) = n? + (n2, — n2)h(2z/W). A set of datag,,n.(z;)) asindicated in Fig. 1, and determiney., Ay., andAz, from
then can be obtained point by point through the repeaté¥pa)—(36c). Then the finite support alonglirection isM, =
computations from (29)—(31), and the equivalent planar waviex| + Azs. For they-direction, M. = Ay. and M,, =
guide to the original channel waveguide can be representeed +Ays are the finite supports along cover and substrate sides,
by the symmetric index profile..(x) along thez-direction. respectively. We want to emphasize here that the a-priori choice

The normalized guide deptii and effective index of the of the numerical window only needs the roughly approximate

equivalent planar waveguide can be defined by values, because the main function of scaling factan HG
~ or LG is to redistribute the collocation points corresponding to
V = koW+/n2(0) —n2 (32) « = 1 (noscaling) to more efficiently describe the field profiles.
and Thus the tolerance a¥/ may not be so strict.

After that, we can adjust the density of collocation points
by choosing suitable and concerning more collocation points

(33) near the regions where the field values change explosively. It
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Fig. 2. Refractive index profile for a three-layer step-index waveguide divided
into three subdomains by the vertical dotted lines, where the refractive indexes
of core and cladding are. = 1.45 andn., = 1.447 636, respectively, and

W =3 pmatA = 1.3 pum.
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Fig. 1. lllustration of modal profiles for the cross-sectional view of a diffused @)
channel waveguide having symmetric and asymmetric graded index profiles

along z- and y-directions in (a) and (b), respectively. In (a), the dotted lines

represent the location of the turning points fat.), 7. is decay rate, and ,120,)
x; + Ax, is position of spreading for a given mode. For (b), the turning points

are at zero ang,, wherev,,, v,. denote decay rates and — Ay, Ay, are ] I[
spreadings for substrate and air sides, respectively.

is noted that in [23], the numerical window is used in Galerkin

method with trigonometric functions. Due to the characteristics

of trigonometric basis set, the boundary conditions at infinity ,,CZ
of optical field cannot be satisfied; hence the requirement to

decide numerical window is severe and the accuracy strongly

depends on the parametef. In the present method, the HG or y
LG can automatically satisfy the boundary conditions at infinity d

and no enclosed window is needed. Indeed, the a-priori choice (b)

of scaling factor can substantially reduce the computational tin'g_e 3 Schematic d ¢ refractive ind flos 1 ic araded
. . ig. 3. Schematic diagrams of refractive index profiles for asymmetric grade
and efficiently improve the convergence. index waveguides divided into two regionsiat= 0. (a) Gaussian profile in
region ll, n, = 1.512, n, = 1, and the diffused deptd = 2.66 pum at
wavelengthh = 0.6328 pm. (b) Exponential profile in region Ibp, = 2.47,
n. = 1,d = 2.5 pum, and the wavelength = 0.633 xm.

V. NUMERICAL RESULTS AND DISCUSSION

We first discuss two numerical examples in detail that allothe accuracy of this method, several waveguides are investi-
the existence of discontinuous RIP in interest domain, as studgated, including asymmetric graded index waveguide, which
in [16], to demonstrate the significant improvement of convepossesses high-order modes, metal-clad waveguide, planar di-
gent behavior of effective refractive index using DD and theectional coupler, and diffused channel waveguide. Finally, we
a-priori choice of scaling factor in SCM. Second, to examingiscuss the effect of scaling factor.
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CONVERGENCE OF THEEFFECTIVE INDEX n. OF ATHREE—-[AAEIE_IESII'EPJNDEX STRUCTURE AT THEWAVELENGTH A = 1.3 um
Exact |Table 4 in[16] This work (M ;; = My, =15.77 um)

n, N n, Ny Ny Npyg a ne
1.44890 40  1.44886 3 3 3 0.217 1.449005
50  1.44875 5 3 5 0.596 1.448978
60  1.44895 6 3 6 0.802 1.448978
68  1.44888 3 5 3 0.217 1.448925
5 5 5 0.596 1.448898
‘ 6 5 6 0.802 1.448898

TABLE I

CONVERGENCE OF THEEFFECTIVE INDEX 1. OF A ASYMMETRIC GRADED INDEX STRUCTURE AT THEWAVELENGTH A = 0.6328 pm

Exact |Table 4 in [16] This work (M ; = 0.38um, M ;; =3.06um)

n, N n, N; Np ag ag n
1.57911 | 40  1.57995
50 1.57982

e

5 8.98 3.07 1.578895
8.98 522 1.579172
8.98 6.34 1.579161
8.98 7.47 1.579161
16.55 3.07 1.578834
16.55 5.22 1.579118
16.55 6.34 1.579107
16.55 7.47 1.579107

S B B IV VLW LW
O 00 3 LiVv 0

A. The Fundamental Mode of Slab Waveguide for Symmetri&v = 40 — 68 terms of HG in single domain, our solutions obvi-
Step Index and Asymmetric Graded Index Profiles in [16]  ously eliminate the oscillatory phenomenon and can achieve the

We study two examples that have been solved by Banerf%?éaCt solution using merely 15 terms of orthogonal basis func-
and Sharma in [16]. The first example is a three-layer syrIonS altogether. _ , _ ,
metric step-index slab waveguide (see Fig. 2), which supports! € second example is an asymmetric graded index profile
single mode. The refractive indexes of core and claddings &8P Waveguide as depicted in Fig. 3(a). Here, the RIP is a
n. = 1.45 andny = 1.447 636, respectively. The half-width Gaussian profile described as follows:
of the core isW = 3 um, and the optical wavelength is =
1.3 um. We divide the whole domain into three subdomains gt ,
the two interfaces of discontinuous RIP as indicated in Fig. 2. Y 5 o2
Region | is expanded by Chebyshev polynomials, because of%ébg + 2nsAnexp(=§) + (An) exp(—), y =0 (37)
finite boundary; however, region Il and region Ill are both ex- "¢ y <0
panded by LG due to the semi-infinite extension in each region.

Using the transcendental equation of TE mode for three-lay@heren, = 1.512, n. = 1.0, An = 0.0833, andd = 2.66 um
step-index waveguide [2] to find the effective index, and a@t A = 0.6328 pum. The interest domain is divided into two
cording to (35) and (36), the decay rates and spreadings are teebdomains, and we obtain the spreadingjs= 0.38 pm for
obtained. Here, we have the spreadiddgs = 15.77 um and region | andMy; = 3.06 pm for region Il, which are calcu-
My = 15.77 um for the two outer regions Il and Ill, respec-lated by the WKB method (through (29)—(31) at= 0). In
tively. In Table |, Ny, N1, and N1 represent the number of[16], only the fundamental mode of the example is solved. Even
terms of orthogonal basis functions in each region. We first ftkough the number of the terms of HG is upNo= 50 in usual

N7 and simultaneously adjusf;; and Nyi; because of the sym- single domain, the effective index seems to have difficulty in
metry. WhenN; = 3, the convergent mode value only achievesonvergence. Similar to the first example, we Bgt= 4 and
1.448 978 no matter how many termséf; and Ni; are used. increase the number d¥y; to 8. The exact result is attained
After increasing taV; = 5, the result nearly converges to thewith a total of 12 terms of LG, as given in Table Il. At the
exact solution 1.448 90 associated wity = Nip = 5. After  same timep; = 16.55 andap = 6.34 are determined. From
that, a;1 = agr = 0.596 (hamely, scaling factors for regionthese two examples, we can see the superior convergence of the
Il and region lll, respectively) can be evaluated by (27). Conpresent method and its ability to completely exclude oscillatory
paring to the results of [16, Table 4], which were obtained usirplutions. Meanwhile, the a-priori choice of scaling factor has
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TABLE Il
COMPARSION OF THEEFFECTIVE INDEXES . FOR TE AND TM MODES ATA = 0.633 pm
Mode TE Mode TM Mode
Order |Exact [30] Ref. [31] This work |Exact [30] Ref. [31] Ref. [32] This work

m (N = 400)

0 2.50898 2.50918 2.50898 2.50832 2.50851 2.50839 2.50832

1 2.49578 2.49594 2.49578 2.49528 2.49542 2.49532 2.49528

2 2.48706 2.48718 2.48706 2.48666 2.48678 2.48670 2.48666

3 2.48088 2.48099 2.48088 2.48058 2.48067 2.48061 2.48058

4 2.47647 2.47654 2.47647 2.47625 2.47632 2.47627 2.47625

5 2.47341 2.47346 2.47341 2.47325 2.47330 2.47327 2.47325

6 2.47142 2.47145 2.47142 2.47133 2.47136 2.47133 247133

7 2.47033 2.47305 2.47033 2.47029 2.47030 2.47029 2.47029
been implemented. Otherwise, more computational effort must e This work
be spent, if determined through trial and error.

Exact (m=0)
B. The High-Order Modes of Asymmetric Planar Waveguide — — — Exact (m=4)
With Exponential RIP ’{g e Exact (m=7)
To investigate optical waveguides, including high-order S
modes is also important in precisely designing many devices &' g‘- .
such as multimode fiber and multimode interference used % . -
in dense wavelength-division multiplexing (DWDM). For £ o HIMbG e e
examining the accuracy for high-order mode problems, we
solved an asymmetric slab waveguide with exponential RIP, as =
shown in Fig. 3(b), which supports eight TE and TM modes.
The exact solutions have been obtained in [28]. The RIP is
described as follows: : ' '
) ., - 15 20 25
n2(y) = {Z§7+ 2nsAnexp(—%), ?Z'j 2 0 (38) y(um)

. . . Fig.4. TE mode profiles obtained by the present method (filled circles) versus
wherens = 2.47 is the substrate index,. = 1.0 is the cover exact solutions for modes 0 (solid line), 4 (dashed line), and 7 (dotted line) at

index,An = 0.06 is the maximum index changé—= 2.5 umis the wavelengtth = 0.633 pm.

the depth of diffusion, and = 0.633 um is the wavelength, re-
spectively. The interest domain is divided into two subdomains.
In our calculation for TE modes, the spreadings afe =
0.21 pm and M = 26.44 um. The number of LG in region
lis N1 = 5 and in region Il isNy; = 25, for whichay = 45.74
andagr = 3.08 are obtained. Likewise, for TM modes/; =

0.21 pmandMy; = 27.26 pm are calculatedy; = 5, Ny = 25

are used, and we have = 45.74 ando = 2.99. The exact
[28] and approximate [29] solutions of effective indexes of TE
and TM modes together with ours are listed in Table Ill. In ad-
dition, the results of TM modes solved by expanding both the
index profile and modal field into a Fourier series [30] are also
added in. There were a few modifications for the exact effec-
tive indexes [28] calculated by Noro and Nakayama displayed
in [29] using the characteristic equations [28, (8) and (13)] for
TE and TM modes, respectively. Most of the data are correct,
but the third order (m= 2) and the sixth order (ra&= 5) of TM
modes show slight deviation. We recalculated them using secant
method, and found that the effective index of the third order is

2.486 660 2 and sixth order is 2.473 250 7. After rounding off q@?

I

()

11

Re(ny,)

the data of effective indexes, the values are shown in Table Hgion I is complex.
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TABLE IV
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COMPARSION OF THECOMPLEX PROPAGATION CONSTANTS OFTE AND TM M ODES FORASYMMETRIC METAL-CLAD WAVEGUIDE WITH EXPONENTIAL
INDEX PROFILE FORa = 5 pm

Mode a=>5um

Order| f (Analytical) [35] S (Numerical) [35] Ref. [37], N=300 This work
TE, | 14.9820-i0.2357(-4)  14.9820-i0.2385(-4)  14.9820-i0.2449(-4)  14.9820- i0.2385(-4)
TE, | 14.9459-i0.1684(-4)  14.9459-i0.1714(-4)  14.9459-i0.1760(-4)  14.9459-i0.1714(-4)
TE, 14.9236-10.1194(-4) 14.9236-10.1221(-4) 14.9236-10.1259(-4) 14.9236-10.1221(-4)
™, 14.9787-10.1533(-3) 14.9787-10.1450(-3) - 14.9787-10.1451(-3)
™, 14.9435-10.1095(-3) 14.9436-10.1019(-3) --- 14.9436-10.1020(-3)
TM, | 14.9219-10.7767(-4)  14.9219-10.7137(-4) 14.9220- i0.7145(-4)

The present method achieves better accuracy than [29] and [30],
which usedV = 400 terms of Fourier series, and shows the in-
distinguishable result with exact solution within 30 terms of LG.
Fig. 4 shows the mode profiles of modes 0 (solid line), 4 (dashed
line), 7 (dotted line) of TE by exact method [28] and our solu-
tions (filled circles); they are all in excellent agreement. From

o1y

the results of this case, our method can accurately provide the ef- e
fective indexes and mode profiles for optical waveguide modes n
simultaneously, even when they support higher order modes. WS w cl

C. The Metal-Clad Optical Waveguides

We have illustrated the accuracy obtained by our method for : i
lossless optical waveguides in above cases. Here, the SCM with H i : y
DD is extended to analyze the lossy optical or the so-called
metal-clad optical waveguides. The metal-clad waveguidgg. 6. Schematic diagram of refractive index profile for the two parallel slab
provide many applications in integrated optics devices, ferveguide structures (located in regions Il and Ill) divided into five subdomains
example, polarizers and mode filters. Many researchers h% nef?su\r/;ﬁg'b‘"‘lg' dotted lines, whe¥® = 2 um, 5 = 1.95 um, n; = 2.19,
investigated the metal-clad waveguides theoretically and ex- * ’
perimentally for step index [31], [32] and graded index profiles
[33]-[35]. In this case, we solve the exponential RIP liképreadings of TE and TM modes. Accordingly, the spreadings
case B but the refractive index is replaced by the complex of the highest mode (m= 2) are M; = 0.13 pm in region |
refractive indexn?2,, as illustrated in Fig. 5. This problemandMp = 15.54 um in region Il. We usedVy = 5, Ni1 = 12,
has been studied by an analytical, highly accurate numerieal = 72.27, andag; = 2.86 for a = 5 um.

method in [33] and by a Galerkin method with trigonometric In Table IV (@ = 5 um), our solutions still show highly accu-
basis functions in [35]. The profile is given as follows: rate results as compared with the accurate numerical solutions

) ) in [33] no matter whether the real or image part of propagation
n(y) = {"%[1 —2A(1—exp(=3))l, ¥ >0 constants is encountered. Here, the total number of terms of LG
Mims y<0 in the present method is within 20. In [35] (only TE modes were
solved), even usingy = 300 Fourier series, the solutions were
n2 = —10.3 — i, the gold cladding, and is the depth of dif- still inferior. This case exhibits that the optimal scaling factors

fusion at the wavelength = 0.6328 um. Regions | and Il in (@7 = 72.27 andan = 2.15) are extremely hard to achieve

Fig. 5 are both expanded by LG. Because of the difficulty &woughtrial apd error. Furthermore,.throgghthe DD, the sc_aling
finding the spreading of the imaginary part of the optical fiel ctor can be independently determined in each subdomain; un-

in advance, we only consider the real partdf to approxi- Ike SCM applied in single domainy is the same in the whole

mately calculate the spreading of the real field of the highe(\s(i’mpuv’““’”‘"‘I domain and_ IS Ch‘?se” inflexibly. !—Ience, the con-
mode by WKB [(35) and (36)]. Although this idea is not rig_ve_rgence fo_r our methqd is achieved more quickly than SCM
orous, the small error is acceptable for the approximate preditsnd only single domain.

tion of spreading due to the fact that the spreading of real fields o

is close to the imaginary fields, as illustrated by [32, Fig. 7]. IF- The Planar Directional Coupler

addition, because the difference of refractive indexes at the in-A directional coupler is an interesting optical device that often
terface ¢ = 0) of metal and surface of material is large (i.e.is used as a beam splitter, filter, optical switcher, etc. Due to
n? — Re(n2)) = 12.59592), the phase shift at = 0 may be the wide applications in optical communications, it is necessary
assumed as-7 [25], [26]; thus we obtain the same values ofo understand how a directional coupler works. In general, the

(39)

where the waveguide index parameters afe = 2.29592,
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simplest directional coupler consists of two parallel slab waveg-
uides, as shown in Fig. 6. When a directional coupler is used as 04 An=0.0
an optical switcher, the modulation fields in the two waveguides
(locatedinregions Il and lllin Fig. 6) are usually applied with an
equal amount of electric field but with opposite sign to change
refractive indexes due to the electrooptic effaat of crystals,
resembling lithium niobate (LiNbG). The refractive index of
the right waveguide (region Ill) is then increaseddy /2 and
decreased byAn /2 in the left waveguide (region Il). Generally,
An is often a tensor quantity for anisotropic medium, but here,
only an isotropic change of refractive index is considered. The
widths of the two waveguides al& = 2 ym. For the zero
modulation fields at wavelength = 1.06 um, the refractive

Ex(Arbitrary Units)

indexes of the two waveguides arg = 2.2. The separation P B A ] .
between the guides is= 1.95 um. Except the guides, the re- -8 4 0 4 3
fractive indexes are.; = 2.19 everywhere. Here, we divide the

whole domain into five subdomains at these discontinuous in- y(m)

terfaces. The spreadings calculated in regions IV and V are ob- @

tained by regarding the guides as isolated (i.e., weakly coupled
approximation) in this structure. However, the spreadings we
obtained areVlyy = My = 5 um for all the differentAn due

to the weakly coupled approximation, which are calculated by
the same dispersion relation for a three-layer step index wave-
guide as adopted in the first example in case A. If the coupling
is strong, we need additional analysis to evaluate the spreading.
The optical fields under three various refractive indexes induced
by different modulation fields\n = 0.0000, An = 0.0008,

An = 0.0020 are illustrated in Fig. 7(a)—(c), respectively. In
Fig. 7(a)—(c), the real lines and dashed lines represent the even
and odd modes, respectively. Under variant applied fields, the i
induced change of refractive index&s is indicated in Table V,
and the propagation constants of the evgr) @nd odd (,)
modes calculated by the present method using 31 basis func- L
tions altogether are exact compared with analytical solutions -8 -4 0 4 8
and the solutions obtained by finite element method [36] using

04 “ An=0.0008

Ex(Arbitrary Units)

4000 mesh divisions. Here, we used seven Chebyshev polyno- y(pm)

mials in regions I, Il, and Ill ; = Ny = Ny = 7) and five (b)

LG inregions IV and V (Viy = Ny = 5). The present method

can be straightforwardly extended to some devices containing 04 ,’“\ An=0.0020

anisotropic and layered waveguide structures.

E. The Diffused Channel Waveguide

In the last case, this method is extended to investigate dif-
fused channel waveguide, which is formed by diffusing titanium
(T?) into LINDO; in z- andy-directions and hence produces
graded RIP. The RIP is given by (28), wheig = n2+2n,An,

f(y/D) = exp(—y?/2D?), and

2erf (2\/§D)

Here, erf denotes error function and the parameterdare -8 4 0 4 8
3.35 um, W = 6.0 um, n, = 2.203, n. = 1, wavelength

A = 1.3 um, andV = ko(W/2)y/2n,An is the normalized y(pum)

frequency. Sharma and Bindal [20] listed a few results solved ©

by scalar variational analysis using different trial fields, and the, = . oo 0 ec ot the even (solid fine) and odd (dotted line)
solutions obtained by [37] were acclaimed as the most accur?ﬁ&]es of TE supermodes for different change of refractive indexs(ax= 0.0,

variational analysis by them. We tested our method using scaigran = 0.0008, (c) An = 0.0020.

Ex(Arbitrary Units)
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TABLE V
THE EVEN AND ODD TE SUPERMODES OF THECOUPLED WAVEGUIDE ARE CALCULATED BY DIFFERENTMETHODS IN THIS PAPER, THE SPREADING OFOUTER
REGIONSARE ABOUT Mty = My = b pum FORDIFFERENTAR. N} = Ni; = Nyjp = 7, Nty = Ny = 5 ARE USED TOACHIEVE THE CONVERGENCEV ALUES
AN [38] FEM [38] This work
An ﬂe ﬁo ﬁe ﬁo ﬂe ﬂo
0.0000 13.01634 13.01096 13.01634 13.01096 13.01634 13.01096
0.0004 13.01649 13.01081 13.01649 13.01081 13.01649 13.01081
0.0008 13.01691 13.01040 13.01691 13.01040 13.01691 13.01040
0.0010 13.01719 13.01013 13.01719 13.01013 13.01719 13.01013
0.0015 13.01803 13.00933 13.01803 13.00933 13.01803 13.00933
0.0020 13.01900 13.00841 13.01900 13.00841 13.01900 13.00841
1
3
a. B
z 0.6 -
=
2 -
&
B 04
N
Té R
n g
S S -
Z 0.2
Fig. 8. The cross-sectional view of general diffused channel waveguide i
divided into two regions at the interface 9f= 0, wheren(z, y) is diffused 0 ] ) [

refractive index profile along- andy-directions.

wave (5) to this case and divided the computational domain into Y (pm)

two subdomains, region ly(> 0)and region Il § < 0), as
illustrated in Fig. 8.

In (22), the optical field along the-direction is expanded by
HG due to the continuous RIP, and thalirections in region |
and region Il are individually expanded by LG due to the dis-
continuous RIP the same as previous cases. The spreadings ob
tained areM,. = 0.48 pm for different values o¥/, which are
nearly the samé/,; = 11 — 19 pm andM,, = 11 — 27 pm
for V.= 3.179 — 2.119, respectively. For the cadé = 3.179,
the spreading/,, = 11.5 um, andM,, = 11.3 pm, the con-
vergence is obtained by using,. = 4 (a,. = 12.98) terms
of LG for region | alongy-direction into cover,N,; = 10 p
(ays = 2.3) terms of LG for region Il along-direction into 7,
substrate, andV,, = 13 (a,, = 0.36) HG along+z-direc- 0.15F 7
tion. The cross-section of modal profile at= 0 for the case %
V = 3.179 calculated by this method is plotted in Fig. 9, and the 0.1 ' ' ' ' '
characteristics of rapid decay in the interface (as illustrated by 28 3
the dashed line in Fig. 9) between air and the surface of material ’
can be seen. Our solutions of normalized propagation constants
b = [(B/ko)? — n2]/2n,An versusv compared with results vV
in [20] are shown in Fig. 10. We can see that our results are

closer to the results in [37] than those obtained by evanescEf#it 10:
[ ] Y V" of diffused channel waveguide obtained by this method and a few variational

secant hyperbolic (ESH) or secant hyperbolic (SH) trial fieldgnaiysis using different trial fields SH, ESH, and the more accurate variational
The propagation constants can be efficiently and accurately abalysis in [37].

tained because the spreadings solved by WKB and EIM yield

good approximation with actual optical fields, as depicted in Finally, we note that for all the cases studied in this section,
Fig. 9. we have used the a-priori choice of scaling factamn HG or LG

Fig. 9. Modal profiles along-direction (atz = 0) for the caséd” = 3.179.

---------- This work
[37]

0.35F

03 |

0.25

32

Normalized propagation constantersus the normalized frequency
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for optical waveguide problems and obtained efficient convesealar wave equation is solved here. However, this method can
gence to effective indexes. In principle decides the extension be further extended to semivector or full-vector formulas [4]
of collocation points. Hence, for a given number of terms dbr investigating more complicated devices, which require the
basis functions, ifv is chosen too small, the too-sparse densifyolarization dependence and coupling terms to be considered.
of collocation points is used to accurately describe the modaktension of this method of full-vectorial modal analysis of
profiles, which change explosively. In contrastyifs too large, dielectric waveguides will be reported elsewhere.

the narrower distribution of collocation points cannot properly
take into account the contribution of long extension of higher
order modes. In some previous works, using Galerkin method

with HG [13], [15] or with LG [19] for step index or trun-  [q]
cated parabolic optical fibers, a fixed value of the scaling factor

2
ac = 1/ (koy/n? — n3)/a was chosen, where, is the refrac- A
tive index of the coreps is the index of cladding, and rep- 3]

resents the radius of the core for step index circular fiber or is
half the width of channel waveguides. However, for asymmetric 4]
diffused waveguides of general profiles, this scaling faoter
cannot be certainly assigned for the region | in Fig. 3(a) and
(b) or Fig. 5 due to the indefinite parameterAccordingly, the
a-priori determination ofr by the present method not only can
be used in step index or symmetric graded index waveguides buf!
also can be used in asymmetric graded index waveguides.

(5]

(7]

VI. CONCLUSION [8]

We have proposed an efficient solution method that com-[°]
bines spectral collocation method and domain decomposition
for computing optical waveguides with discontinuous refrac{10]
tive index profile. Through domain decomposition, one can
flexibly expand different basis functions in distinct subdomains; 4
depending on the extension of each region. In addition, we
have presented a new approach to choose the scaling factor to
optimally determine the spreading of the highest guided modg,
of optical waveguides by combining Tang’s work [22] and
the technique proposed by Ramanujatral. [23]. The major 3]
factor to improve the convergence is to divide the whole do-
main into a few subdomains at the interfaces of discontinuous
refractive index profile to enable that interpolation of the refrac-
tive index at these collocation points can faithfully represen{ml
the discontinuous refractive index profile. Consequently, the
oscillatory solutions obtained by spectral collocation method®]
with usual single domain [16] can be completely eliminated
and the degree of convergence can be improved. Moreover,
the a-priori choice of scaling factor in Hermite—Gauss or La-16l
guerre—Gauss functions materially reduces the computational
time without trial and error. Merging these two techniques,[17]
namely, the domain decomposition and the optimal choice of
scaling factor, into conventional spectral collocation methoﬂlS]
renders the present solution method both accurate and effi-
cient. Our results have demonstrated significant improvement
of convergence over the solutions obtained using usual singl%gl
domain for spectral collocation method. A wide range of wave-
guide problems has been tested, such as planar, metal-clad
directional coupler, and diffused channel waveguides, and aFd]
the results obtained are found in excellent agreement with
exact or other best available accurate approximate solution&]
Also, significant saving of computational time has been il-55
lustrated. For the three-dimensional channel waveguide, only
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