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A novel kinetic beam scheme for the ideal quantum gas is presented for the computation
of quantum gas dynamical flows. The quantum Boltzmann equation approach is adopted
and the local thermodynamic equilibrium quantum distribution is assumed. Both Bose–
Einstein and Fermi–Dirac gases are considered. Formulae for one spatial dimension is
first derived and the resulting beam scheme is tested for shock tube flows.
Implementation of high-order methods is also outlined. We only consider the system
in the normal phase consisting of particles in excited states and both the classical limit
and the nearly degenerate limit are computed. The flow structures can all be accurately
captured by the present beam scheme. Formulations for multiple spatial dimensions are
also included.
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1. Introduction

The ideal classical gas dynamics can be described by the Maxwell–Boltzmann
distribution, which corresponding to the lowest order solution of the classical
Boltzmann equation when Chapman–Enskog procedure is employed (Chapman &
Cowling 1970). The conservation laws based on the Maxwell–Boltzmann
distribution is the well-known Euler equations of gas dynamics. In classical
mechanics, a system of N identical particles which are distinguishable because it
is possible, at least in principle, to label them according to their trajectories in
phase space and they satisfy the Maxwell–Boltzmann statistics. In quantum
mechanics, identical particles are absolutely indistinguishable from one another
and an N-particle system can be described by a wave function with permutation
symmetry. In nature, it is found that particles with antisymmetric wave
functions are called fermions, which obey Fermi–Dirac statistics and particles
with symmetric wave functions are called bosons, which obey Bose–Einstein
statistics. The statistical properties of fermion and boson systems are profoundly
different at low temperature. However, in the classical limit, both quantum
distributions reduce to the Maxwell–Boltzmann distribution. Similar to the
classical Boltzmann equation, a quantum Boltzmann equation for transport
phenomenon can be developed for fermions and bosons, see Kadanoff & Baym
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(1962). This work considers numerical methods for solving the equilibrium limit
solution of the quantum Boltzmann equation.

An interesting explicit scheme, which is called the beam scheme has been
presented by Sanders & Prendergast (1974) for solving the equilibrium limit of
the classical Boltzmann equation. The derivation was based on the local
thermodynamic equilibrium Maxwell–Boltzmann distribution and resulted in a
novel method for solving the transport processes governed by the Euler equations
of Newtonian gas dynamics. Later, the beam scheme was successfully extended to
relativistic Boltzmann transport equation based on the Jüttner distribution by
Yang et al. (1997). In the beam scheme, a presumed local thermodynamic
equilibrium distribution function is approximated by a combination of several
distinct Dirac delta functions or discrete beams of particles in each cell. These
beams are permitted to move over a time-step transporting mass, momentum
and energy into adjacent cells. The motion of each beam is followed to first-order
accuracy. The transport is taken into account to determine the new mass,
momentum and energy in each cell; and these macroscopic moments are used to
describe the new local equilibrium distribution for each cell. The entire process is
then repeated and advanced to the next time-step. The choice of the size of the
time-step is dictated by the Courant–Friedrichs–Lewy stability condition that
physically no beam of gas particles travels farther than one cell spacing in one
time-step. The beam scheme, although it is a particle scheme, has all the
desirable features of modern characteristics-based wave propagating numerical
methods for hyperbolic conservation laws of gas dynamics. For further details
and discussion of the beam scheme, see Sanders & Prendergast (1974) and Yang
et al. (1997). Both the beam scheme and the lattice Boltzmann methods (Benzi
et al. 1992; Succi 2001) are gas kinetics based schemes for solving
hydrodynamics. A study on the connection between the beam scheme and the
lattice Boltzmann method has been given by Xu & Luo (1998), which analysed
and compared both methods in detail. The distinct difference between the two
methods lies in their equilibrium distribution function. The lattice Boltzmann
equation expands the equilibrium at zero mean velocity and uses a polynomial
(of mean velocity) to approximate the Maxwellian, while the beam scheme
obtains particle beams around the average velocity of the Maxwellian
distribution thus avoiding the low Mach number expansion. The basic beam
scheme is first-order accurate and thus numerically diffusive like most of the
exact or approximate Riemann solvers for the classical gas dynamics (Hirsch
1988; Toro 1999). However, this numerical diffusion of first-order upwind
methods can be significantly reduced by the implementation of higher-order
methods. A class of high-order methods using essentially non-oscillatory methods
were also presented for the beam scheme (Yang et al. 1997).

In this work, we shall adopt the concept of beam scheme to devise a numerical
method for the computation of ideal quantum gas dynamics. We consider the
equilibrium limit of the quantum Boltzmann transport equation, in which the
particles obey the quantum statistics and the particles of the system are in the
excited states. It is well known that the boson or fermion particles in the excited
states are in the gas phase and in the low-density (or high-temperature) limit
(bmzKN), they behave like classical ideal gas governed by the Maxwell–
Boltzmann distribution. Here, m is the chemical potential and bZ1/kBT, with kB
the Boltzmann constant and T the temperature. At low temperatures, in the
Proc. R. Soc. A (2006)



1555Quantum beam scheme
neighbourhood of degeneracy temperature, T0, corresponding to nl3BZ1, (here, n
is the number density and lB is the thermal de Broglie wavelength), the quantum
effects become important (onset of quantum effects). The present method
considers both the Bose–Einstein and Fermi–Dirac gas behaviours in the regime
between the nearly degenerate (onset of quantum effects) limit and the classical
limit. In Bose–Einstein statistics, the condensed phase of boson gas is not
considered. Thus, similar to the ideal classical gas dynamics based on Maxwell–
Boltzmann distribution, we can claim that the present method is for ideal
quantum gas dynamics based on the Bose–Einstein and Fermi–Dirac distri-
butions. Considering the existing extensive works on experimental and
computational classical gas dynamics, the present quantum beam scheme can
be potentially useful for revealing various dynamical aspects of ideal quantum
gas through mathematical and physical analogies. We are also alert to the
limitation of the present beam scheme, which considers only ideal non-
interacting quantum particles. Interacting quantum particle systems which
include Bose–Einstein condensates and ultracold fermions are beyond the scope
of the present study. An excellent review on the development of numerical
techniques for solving the mean-field problems and for studying the strongly
correlated regimes of atomic quantum gases has been given by Minguzzi et al.
(2004).

The paper is organized as following. We first briefly describe the elements of
quantum Boltzmann transport equation in §2. In §3, the basic kinetic beam
scheme in one spatial dimension based on the local thermodynamic equilibrium
Bose–Einstein distribution and Fermi–Dirac distribution are derived. Implemen-
tations of high-order methods using weighted essentially non-oscillatory
(WENO) schemes are outlined in §4. In §5, numerical experiments with
quantum shock tube flows in both classical and nearly degenerate limits are given
to illustrate the method. Lastly, discussion and concluding remarks are given in
§6. Formulations for multiple spatial dimensions are given in appendix A.
2. Elements of quantum Boltzmann equation

In this section, we briefly describe the elements of quantum Boltzmann transport
equation appropriate for the development of the present work. Following
Kadanoff & Baym (1962), we consider the Boltzmann equation,

v

vt
C

p

m
$VxKVUðx; tÞ$Vp

� �
f ðp;x; tÞZ df

dt

� �
collision

; ð2:1Þ

where m is the particle mass, U is the externally applied field and f (p, x, t) is the
distribution function which represents the average density of particles with
momentum p at the space-time point x, t. The (df/dt)collision denotes the collision
term. A formal solution procedure which generalizes the Chapman–Enskog
method to solve equation (2.1) was given by Uehling & Uhlenbeck (1933), where
the first and second approximations of the distribution function and expressions
for the viscosity and heat conductivity coefficients were given. In recent years,
the development of numerical methods for solving the quantum Boltzmann
equation has become an active research subject (Markowich & Pareschi 2002;
Proc. R. Soc. A (2006)
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Garcia & Wagner 2003). A recent review of the numerical methods for the
dynamics and transport of atomic quantum gases has been given (see Minguzzi
et al. 2004 and references therein). Here, we consider only the lowest order (first
approximation) of solution of the above Boltzmann equation, requiring that

df

dt

� �
collision

Z 0: ð2:2Þ

The solution to equation (2.1) is given by:

f ðp; x; tÞZ exp
ðpKmuðx; tÞÞ2

2mkBTðx; tÞ Kmðx; tÞ=kBTðx; tÞ
� �

Cq

� �K1

; ð2:3Þ

where qZC1 denotes the Fermi–Dirac statistics and qZK1 the Bose–Einstein
statistics. To complete the equilibrium solution we have to determine the five
unknown functions T(x, t), m(x, t) and u(x, t), which appear in equation (2.3).
These five flow parameters can be determined by making use of the conservation
laws for number of particles, momentum and energy. These conservation laws are

obtained by multiplying equation (2.1) by 1, p or p2/2m, and then integrating

the resulting equations over all p. The integrals of the collision terms in all three
cases vanish automatically and we have the differential conservation laws for the
conserved macroscopic quantities, i.e. the particle number density n(x, t), the
momentum density, JZmj, and the energy density, eðx; tÞ as follows:

vnðx; tÞ
vt

CVx$jðx; tÞZ 0; ð2:4Þ

vmjðx; tÞ
vt

CVx$

ð
dp

h3
p
p

m
f ðp; x; tÞZKnðx; tÞVxUðx; tÞ; ð2:5Þ

veðx; tÞ
vt

CVx$

ð
dp

h3
p

m

p2

2m
f ðp;x; tÞZKjðx; tÞ$VxUðx; tÞ; ð2:6Þ

where

nðx; tÞZ
ð
dp

h3
f ðp;x; tÞ: ð2:7Þ

j(x, t) is the number density flux,

jðx; tÞZ
ð
dp

h3
p

m
f ðp; x; tÞ ð2:8Þ

and

eðx; tÞZ
ð
dp

h3
p2

2m
f ðp; x; tÞ: ð2:9Þ

Other higher-order moments can also be defined such as stress tensor and the
heat flux vector. For the local equilibrium solution, one can obtain these
macroscopic quantities in closed form in terms of the Bose or Fermi function
(Huang 1987; Pathria 1996). In this work, to derive the basic quantum beam
scheme and without loss of generality, we shall first neglect the effect of the
Proc. R. Soc. A (2006)



1557Quantum beam scheme
externally applied field U(x, t). To illustrate the method, we first consider the
following local equilibrium Bose–Einstein distribution in one spatial dimension:

f1ðpx ; x; tÞZ
1

zK1e½pxKmuxðx;tÞ�2=2mkBTðx;tÞK1
; ð2:10Þ

where zðx; tÞZemðx;tÞ=kBTðx;tÞ is the fugacity and ux(x, t) is the mean velocity. Then
the number density n(x, t) is given by

nðx; tÞZ
ðN
KN

dpx
h

f1ðpx ; x; tÞZ
g1=2ðzÞ

l
; ð2:11Þ

the momentum j(x, t),

jðx; tÞZ
ðN
KN

dpx
h

px
m

f1ðpx ; x; tÞZnðx; tÞuxðx; tÞ; ð2:12Þ

and the energy density e(x, t),

eðx; tÞZ
ðN
KN

dpx
h

p2x
2m

f1ðpx ; x; tÞZ
g3=2ðzÞ
2bl

C
1

2
nu2

x ; ð2:13Þ

where lZ
ffiffiffiffiffiffiffiffi
bh2

2pm

q
is the thermal wavelength and bZ1/kBT(x, t).

In the above, gn(z ) denotes the Bose function of order n which is defined by

gnðzÞh
1

GðnÞ

ðN
0
dx

xnK1

zK1exK1
Z
XN
lZ1

zl

ln
: ð2:14Þ

We note that Bose functions with n%1 diverge as z/1 and g3/2(z) remains finite
at zZ1 but with infinite slope while gn(z) with nO3/2 have finite values and
slopes at zZ1.

In the case of Fermi gas, we start with the Fermi–Dirac distribution. The
definitions for the number density, momentum and energy densities for the
Fermi–Dirac gas are completely identical to the above procedures except that we
only need to replace the Bose function with Fermi function which is defined by

fnðzÞh
1

GðnÞ

ðN
0
dx

xnK1

zK1ex C1
Z
XN
lZ1

K
ðKzÞl

ln
: ð2:15Þ

We note that fermi functions fn(z)/z for small z. Since the chemical potential for
a dilute system is large and negative, the classical limit corresponds to small z.
Conversely, at low temperature the chemical potential approaches the Fermi
energy so that the fugacity for a Fermi system is large. An asymptotic expansion
of the Fermi function for large fugacity z is due to Sommerfeld.

Since we will derive beam schemes from one to three spatial dimensions
and they involve the Bose (or Fermi) functions gd/2(z), gd/2C1(z), and gd/2C2(z)
(or fd/2(z), fd/2C1(z), and fd/2C2(z)) for the beam scheme in d spatial dimensions
(dZ1, 2, 3). It is also noted that thermodynamic functions and the Bose–Einstein
condensation of an ideal (non-interacting) gas of N bosons are peculiarly
related to the space dimensionality (de Groot et al. 1950; Aguilera-Navarro et al.
1999). Correspondingly, it is also noted that thermodynamic functions and the
Proc. R. Soc. A (2006)
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Fermi–Dirac degeneracy of an ideal gas of N fermions are peculiarly related to
the space dimensionality (Grether et al. 2003). Although these results look quite
similar, the two functions behave differently in the nearly degenerate limit. For
example, in boson gas, the fugacity z cannot be larger than 1 because of non-
negative density while in Fermi gas such a restriction does not exist.
3. The kinetic beam scheme

In this section, the basic first-order beam scheme is derived. We consider the
problems in one spatial dimension in which the macroscopic quantities are
assumed to be functions of x and t. Divide the space into a number of cells of size
DxiZxiC1Kxi. Without loss of generality, we assume that the cells are of equal
size Dx. The local state of gas in each cell i at any particular time t is specified by

the three conserved macroscopic properties QiZðmnðx; tÞ;mjðx; tÞ; eðx; tÞÞTi ,
which are the mass density, momentum density and energy density in cell i,
respectively. The fundamental approximation of the beam scheme of Sanders &
Prendergast (1974) for classical gas dynamics is to approximate the Maxwell–
Boltzmann distribution by a combination of a finite number of Dirac delta
functions of discrete velocities (or discrete beams of particles) which will
reproduce the appropriate moments of the original continuous distribution
function. Here in the ideal quantum gas dynamics, we first approximate the
distribution function f1(px, x, t) in each cell i at a given time t by

f1ðpx ; x; tÞZ qiðpxÞyaidðpxKp0ÞCbidðpxKp0KDpÞCbidðpxKp0 CDpÞ: ð3:1Þ

The unknown parameters in each cell i in equation (3.1) are ai, bi, p0 and Dp, and
they are determined in such a way that the following macroscopic moments are
preserved:

nðx; tÞZ
ðN
KN

dpx
h

qiðpxÞZ
1

h
ðaC2bÞ; ð3:2Þ

jðx; tÞZ
ðN
KN

dpx
h

p

m
qiðpxÞZ

1

h
ðaC2bÞ p0

m
; ð3:3Þ

eðx; tÞZ
ðN
KN

dpx
h

p2x
2m

qiðpxÞZ
1

2mh
½ðaC2bÞp2oC2bðDpÞ2�: ð3:4Þ

We have four unknowns, ai, bi, Dp and p0, but with only three equations, an
auxiliary condition is needed to close the equations. Here, we employ the fourth-
order moment,ðN

KN

dpx
h

ðpxKpoÞ4f1ðpx ; x; tÞZ
ðN
KN

dpx
h

ðpKpoÞ4qiðpxÞ;

0
2m

b

� �5=2

G
5

2

� �
g5=2ðzÞZ 2bðDpÞ4: ð3:5Þ
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With the four equations we can solve the coefficients a, b, p0 and Dp as follows:

a Z

ffiffiffiffiffiffiffiffiffiffi
2pm

b

r
g1=2ðzÞK

g23=2ðzÞ
3g5=2ðzÞ

" #
; ð3:6Þ

bZ
1

6

ffiffiffiffiffiffiffiffiffiffi
2pm

b

r
g23=2ðzÞ
g5=2ðzÞ

; ð3:7Þ

DpZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

b

g5=2ðzÞ
g3=2ðzÞ

s
; ð3:8Þ

po Zmux : ð3:9Þ
After obtaining the parameters a, b, Dp and p0, we can determine the
conservative quantities carried by each beam in cell i as Qs,iZ(Rs,i, Ms,i, Es,i)
with

Rs;i Z

ð
dpx
h

cs;idðpxK�ps;iÞ; ð3:10Þ

Ms;i Z

ð
dpx
h

cs;i
px
m

dðpxK�ps;iÞ; ð3:11Þ

Es;i Z

ð
dpx
h

cs;i
p2x
2m

dðpxK�ps;iÞ; ð3:12Þ

where, �ps;i denote p0,i, p0,iCDp and p0,iKDp, respectively, and cs,iZai for sZ1
and cs,iZbi, if sZ2, 3. We can write the macroscopic quantity of each beam as
follows:

Q1 Z

ai
h

aip0;i
mh

ai
p20;i
2mh

2
666666664

3
777777775
; Q2 Z

bi
h

bi
p0;i CDpi

mh

bi
ðp0;i CDpiÞ2

2mh

2
6666666664

3
7777777775
; Q3 Z

bi
h

bi
p0;iKDpi

mh

bi
ðp0;iKDpiÞ2

2mh

2
6666666664

3
7777777775
:

It is noted that
P3

sZ1 Qs;iZQi.

Denote DuZDp/m and define the velocity of each beam, Vs,i, (sZ1, 2, 3) in
cell i as

V1;i Z
p0
m

Z ux ; V2;i Z ux CDu; V3;i Z uxKDu: ð3:13Þ

During an interval of time Dt, these discrete beams will move and transfer mass,
momentum and energy into adjacent cells. The time-step Dt is subjected to the
condition that no single beam can move farther than a cell width Dx during Dt, i.e.

Dt%
Dx

maxðjVs;ijÞ
; ð3:14Þ

which is the well-known Courant–Friedrichs–Lewy (CFL) stability condition.
During time-stepDt, particle beam s in cell imoves a distance either into the left

cell iK1 or into the right cell iC1or remains in cell i depending on the sign of the
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beam velocity. Define the fraction that transfers from cell i into cells kZiG1 as

aiG1
s;i ZG

1

2
ðVs;iGjVs;ijÞ

Dt

Dx
; ð3:15Þ

and the fraction that remains in cell i is

ai
s;i Z 1KjVs;ij

Dt

Dx
: ð3:16Þ

After the time-step Dt, the new values of density, momentum and energy in each
cell, QnC1

i , taking into account transfer of these quantities from adjacent cells are
given by

QnC1
i Z

1

Dx

X3
sZ1

ðai
s;iK1Q

n
s;iK1 Cai

s;iQ
n
s;i Cai

s;iC1Q
n
s;iC1Þ: ð3:17Þ

Now the three conservation laws in one space dimension become

vQ

vt
C

vFðQÞ
vx

Z 0; ð3:18Þ

where

QZ

r

rux

e

2
64

3
75 F Z

rux

ru2x Cp

uxðeCpÞ

2
664

3
775: ð3:19Þ

Here,Q is the conserved state vector,F(Q) is the flux vector, r(x, t)Zmn(x, t) is the
mass density and p is the gas pressure. Denoting U as the internal energy density,
we have

pZ 2U Z
g3=2ðzÞ
2bl

: ð3:20Þ

At this stage, we have completed the description of the beam scheme for the Bose–
Einstein gas. In the computation, we employ dimensionless quantities and they are
defined by the following:

â Z
a

U
Z T̂

1=2
g1=2ðzÞK

g23=2ðzÞ
3g5=2ðzÞ

" #
;

b̂Z
b

U
Z

1

6
T̂

1=2 g
2
3=2ðzÞ
g5=2ðzÞ

;

D̂u Z
Du

x
Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T̂

g5=2ðzÞ
g3=2ðzÞ

vuut ; ûx Z
ux
x
;

n̂ Z
n

ðU=hÞ ; ĵ Z
j

ðUx=hÞ ; êZ
e

ðmUx2=hÞ
;

where UZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBTref

p
, xZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkBTrefÞ=m

p
and T̂ZT=Tref .

We get new macroscopic properties (n, ux, e) after one-step beam transfer. We
also need new values of fugacity z and temperature (or b) to determine the beam
parameters (involving Bose functions gn(z)) in each cell as required by equations
(3.6)–(3.8). Here, we can solve the equation for fugacity z through the
combination of the three macroscopic equations (in dimensionless form) which
Proc. R. Soc. A (2006)
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define ðn̂; ĵ; êÞ, i.e. equations (2.11)–(2.13), in the following form:

c1ðzÞZ 2êK
n̂

g1=2ðzÞ

 !3

g3=2ðzÞK
ĵ
2

n̂
Z 0: ð3:21Þ

The above equation can be solved by the numerical method. After obtaining
fugacity z, we can get temperature T easily and we can advance the solution for
the next time-step.

The derivations of the kinetic beam scheme for the Fermi–Dirac gas are
completely identical to the above procedures except that we only need to replace
the Bose functions by Fermi functions correspondingly.

We note that the external potential terms on the right-hand side of equations
(2.5) and (2.6) can be treated as source terms and directly added without much
modification to the basic beam scheme.
4. Implementation of WENO schemes

For the purpose of implementing high-order methods we can further express the
basic quantum beam scheme defined by equation (3.17) in terms of numerical
flux as follows:

QnC1
i ZQn

i K
Dt

Dx
ðFN

iC1=2KFN
iK1=2Þ; ð4:1Þ

where the numerical flux FN
iC1=2 is given by

FN
iC1=2 ZFC

i CFK
iC1: ð4:2Þ

Here, the split fluxes FG
i are defined by

FG
i Z

X3
sZ1

FG
s;i;F

G
s;i ZVG

s;iQs;i ð4:3Þ

and

VG
s;i Z ðVs;iGjVs;ijÞ=2: ð4:4Þ

It is noted that the basic beam scheme turns out to be in the form of a flux split
method.

The above scheme is of first-order accuracy and thus is very diffusive. In
practical applications we need high-order methods. In this section, we adopt the
WENO interpolation method (Liu et al. 1994; Jiang & Shu 1996) to the basic
first-order quantum beam scheme to result in a class of high-resolution methods
for the computation of quantum ideal gas dynamical flows. The numerical flux
defined in equation (4.2) is further expressed as

FN
iC1=2 ZFNC

iC1=2CFNK
iC1=2: ð4:5Þ

Here, we consider a fifth-order accurate (rZ3) WENO scheme for the spatial
difference of numerical fluxes. The WENO scheme for rZ3, denoted as WENO3,
Proc. R. Soc. A (2006)
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can be expressed as

FNC
iC1=2 ZuC

0 ð2FC
iK2K7FC

iK1 C11FC
i Þ=6CuC

1 ðKFC
iK1 C5FC

i C2FC
iC1Þ=6

CuC
2 ð2FC

i C5FC
iC1KFC

iC2Þ=6;
ð4:6Þ

uC
k Z

aCk
aC0 CaC1 CaC2

; k Z 0; 1; 2; ð4:7Þ

aC0 Z
1

10ðeCISC
0 Þ2

; aC1 Z
6

10ðeCISC
1 Þ2

; aC2 Z
3

10ðeCISC
2 Þ2

; ð4:8Þ

ISC
0 Z

13

12
ðFC

iK2K2FC
iK1 CFC

i Þ2C
1

4
ðFC

iK2K4FC
iK1 C3FC

i Þ2;

ISC
1 Z

13

12
ðFC

iK1K2FC
i CFC

iC1Þ2 C
1

4
ðFC

iK1KFC
iC1Þ2;

ISC
2 Z

13

12
ðFC

i K2FC
iC1 CFC

iC2Þ2 C
1

4
ð3FC

i K4FC
iC1 CFC

iC2Þ2:

9>>>>>>>>>=
>>>>>>>>>;

ð4:9Þ

The numerical flux for the negative part is given by

FNK
iC1=2 ZuK

0 ðKFK
iK1C5FK

i C2FK
iC1Þ=6CuK1 ð2FK

i C5FK
iC1KFK

iC2Þ=6

CuK2 ð11FK
iC1K7FK

iC2C2FK
iC3Þ=6; ð4:10Þ

uKk Z
aKk

aK0 CaK1 CaK2
; k Z 0; 1; 2; ð4:11Þ

aK0 Z
3

10ðeCISK
0 Þ2

; aK1 Z
6

10ðeCISK
1 Þ2

; aK2 Z
1

10ðeCISK
2 Þ2

; ð4:12Þ

ISK
0 Z

13

12
ðFK

iK1K2FK
i CFK

iC1Þ2C
1

4
ðFK

iK1K4FK
i C3FK

iC1Þ2;

ISK
1 Z

13

12
ðFK

i K2FK
iC1CFK

iC2Þ2 C
1

4
ðFK

i KFK
iC2Þ2;

ISK
2 Z

13

12
ðFK

iC1K2FK
iC2 CFK

iC3Þ2 C
1

4
ð3FK
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Similar expressions for the case of third-order accurate WENO scheme (rZ2),
denoted as WENO2, can be given.
5. Numerical experiments

In this section, we report some numerical experiments to illustrate the
present quantum beam scheme. We consider ideal quantum gas flows in a shock
tube. Both Bose–Einstein and Fermi–Dirac gases are considered. In this problem
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Figure 1. Quantum shock tube solution (example 1): (a) number density; (b) velocity; (c) energy
density; (d ) temperature; (e) fugacity and ( f ) chemical potential.

1563Quantum beam scheme
a diaphragm, which is located at xZ0.5, separating two regions, each remains in a
constant equilibrium state at initial time tZ0. Themacroscopic properties on both
sides of the diaphragm are different. Then the diaphragm is removed and flow
structures consisting of moving shock wave, contact line and expansion fan,
Proc. R. Soc. A (2006)
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are generated which are similar to that in the classical gas dynamics. We consider
two cases for each quantum gas. The first two cases are set up for boson gas in such
a way that one corresponds to the classical limit and the other is set up with
conditions that z is very close to unity which corresponds to the nearly degenerate
limit. The third and fourth cases are set up for fermion gas. One corresponds to the
classical limit and the other is set up for large z, close to the nearly degenerate limit.

Example 1 (Boson gas in near classical limit). The initial condition is specified
as (mZ1 assumed) Q̂LZðn̂L; ûx;L; êLÞZ(2.33756, 0, 0.62985) for 0!x%0.5
and Q̂RZðn̂R; ûx;R; êRÞZ(1.24938, 0, 0.248107) for 0.5!x!1. This corresponds
to zLZ0.8 and zRZ0.7 and we assume that mLZmR. The solution behaviours are
similar to that in the classical limit. The calculations were done using several
different grid cells with cell size DxZ0.005, 0.0025 and 0.00125, respectively.
The results are output at time tZ0.3 (dimensionless time) and the CFL number
used was 0.7. The computed number density, velocity, energy, temperature,
fugacity and chemical potential profiles are depicted in figure 1 for several grid
systems. Open square denotes the solution using 200 cells, open triangle that using
400 cells, and the solid line the solution using the finest 800 cells. The flow
structures of moving shock, contact line and expansion fan can be identified and
captured by the present beam scheme. It can be seen from the figures that when
the grid is getting finer, the profiles becoming crisper indicates the grid
convergence of the solution. A plot of the Bose–Einstein distribution functions
f1(px, x, t) at several x stations at time tZ0.3 is also shown in figure 2. Here, 20
lines are plotted for 0%x%1 with equal spacing DxZ0.05. The profiles at most
stations are close to Gaussian (Maxwell–Boltzmann) distribution in this near
classical limit condition.

Example 2 (Boson gas in nearly degenerate limit). The initial condition in this
case is set as Q̂LZðn̂L; ûx;L; êLÞZ(16.2218, 0, 1.13583) for 0!x%0.5, and
Q̂RZðn̂R; ûx;R; êRÞZ(7.76706, 0, 0.374899) for 0.5!x!1. We assume mLZmR
and set the values of fugacity as zLZ0.99 and zRZ0.98 which are quite close to
unity. Although in one spatial dimension Bose–Einstein condensation does not
occur because the excited states can accommodate essentially infinite particle
Proc. R. Soc. A (2006)
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Figure 3. Quantum shock tube solution (example 2): (a) number density; (b) velocity; (c) energy
density; (d ) temperature; (e) fugacity and ( f ) chemical potential.
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number due to that boson functions may diverge at zZ1. This example was
selected to simulate the situation close to degenerate limit. Again, the
calculations were done using several different grid cells with cell size DxZ0.005,
0.0025 and 0.00125, respectively. The results are output at time tZ0.3 and the
CFL number used was 0.7. The same macroscopic properties as in figure 1
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are depicted in figure 3 for three grid systems (200, 400 and 800 cells). The finest
grid solution is represented by solid lines and used for comparison. It can be seen
from the figures that when the grid is getting finer, the profiles are becoming
sharper which indicates the grid convergence of the solution. The general flow
Proc. R. Soc. A (2006)
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1567Quantum beam scheme
structures of shock wave, contact line and expansion wave can be captured quite
well. Finally, a plot of the Bose–Einstein distributions of this nearly degenerate
limit case at several stations at time tZ0.3 is depicted in figure 4. It can be seen
that the distributions steepen markedly with high peaks and narrower spreads
which reflect the fact that the fugacity value z is close to unity in this case.

Example 3 (Fermion gas in near classical limit). The initial condition
is specified as Q̂LZðn̂L; ûx;L; êLÞZ(0.521880, 0, 0.319701) for 0!x%0.5 and
Q̂RZðn̂R; ûx;R; êRÞZð0:377640; 0; 0:141658Þ for 0.5!x!1. This corresponds to
zLZ0.8 and zRZ0.7 and we assume that mLZmR and mZ1. The solution
behaviours are similar to that in the classical limit. The calculations were done
using two grid cells with uniform cell size DxZ0.005 and 0.0025, respectively.
The results are output at time tZ0.06 (dimensionless time) and the CFL number
used was 0.7. The computed number density, energy density, temperature and
chemical potential profiles are depicted in figure 5 for these two grid systems.
Open square denotes the solution using 200 cells and solid line using 400 cells.
The flow structures of moving shock, contact line and expansion fan can be
identified and captured by the present beam scheme. It can be seen from the
figures that the grid convergence of the solution is ensured. Computations using
WENO2 and WENO3 schemes with 200 cells for example 3 are also given in
figure 6. The improvement of accuracy and resolution of the flow structures as
Proc. R. Soc. A (2006)



n

3.515

3.520

3.525

3.530

3.535

3.540

e

11.88

11.91

11.94

11.97

12.00

x

m

0.25 0.50 0.75 1.00

9.87

9.88

9.89

9.90

9.91

9.92

9.93

9.94

x

T

0.25 0.50 0.75 1.00

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

(b)(a)

(d )(c)

Figure 7. Quantum shock tube solution in nearly degenerate limit (example 4): (a) number density;
(b) energy density; (c) chemical potential and (d ) temperature.

J.-Y. Yang and Y.-H. Shi1568
compared to the first-order method can be easily seen in every aspect. A plot of
the Fermi–Dirac distribution functions f1(px, x, t) at several x stations at time
tZ0.06 is also shown in figure 6d. Here, 20 lines are plotted for 0%x%1 with equal
spacing DxZ0.05 and the range of px, K5%px%C5. The profiles at most stations
are close to Gaussian (Maxwell–Boltzmann) distribution in this near classical
limit condition.

Example 4 (Fermion gas in nearly degenerate limit). The initial condition in
this case is set as Q̂LZðn̂L; ûx;L; êLÞZ(3.53544, 0, 23.7423) for 0!x%0.5, and
Q̂RZðn̂R; ûx;R; êRÞZ(3.52148, 0, 23.9943) for 0.5!x!1. We assume mLZmR and
set the values of fugacity as zLZ20 000 and zRZ1500, using Sommerfeld
expansion to get Fermi function.

Again, the calculations were done using two grid systems with cell size
DxZ0.05 and DxZ0.0025, respectively. The results are output at time tZ0.05
(dimensionless time) and the CFL number used was 0.5. The same macroscopic
properties as in figure 5 are depicted in figure 7 for two grid systems (200 and 400
cells). The fine grid solution is represented by solid lines. Again, the grid
convergence of the solutions can be observed. The general flow structures of
shock wave, contact line and expansion wave can be captured quite well.
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Computations using WENO2 and WENO3 schemes with 400 cells for example 4
are also given in figure 8. The improvement of accuracy as compared to the basic
first-order method can be clearly observed. A plot of the Fermi–Dirac
distributions of this nearly degenerate limit case at several stations at time
tZ0.05 is also depicted in figure 8d. Twenty lines with DxZ0.05 are plotted and
the range of px is K8%px%C8. The approach to the typical double step function
shape distribution is quite obvious in this large fugacity limit.

Although only one-dimensional method and results are presented here,
however, the extension of the present numerical scheme to multiple dimensions
can be done directly using Strang-type dimensional splitting (see Strang 1968).
6. Concluding remarks

In this work, the basic first-order beam schemes of Sanders & Prendergast for
Newtonian gas dynamics and that of Yang et al. for relativistic gas dynamics
have been successfully generalized to the ideal quantum gas dynamics based on
Bose–Einstein statistics and Fermi–Dirac statistics. The beam scheme is first
Proc. R. Soc. A (2006)
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derived for one spatial dimension and then tested and illustrated by computing
shock tube flows in ideal quantum gases. The regimes in the classical limit and
nearly degenerate limit are tested. Numerical experiments indicate that the flow
structures such as shock wave, contact line and expansion fan can be properly
captured using the present quantum beam scheme. The derivation of the
quantum beam schemes in multiple dimensions is also given in appendix A.
Higher-order methods using WENO scheme are implemented to yield a class of
efficient and accurate quantum Euler solvers. The present method applies for
Bose–Einstein gases and Fermi–Dirac gases at temperatures above the critical
temperature, provided that the hydrodynamic limit is applicable. Our purpose
here is simply to give all the elements of the underlying method of beam scheme,
which will allow us to build more complex and sophisticated (say parallel) codes
to treat more general problems later. For example, together with general
coordinates system, one will be able to tackle practical flows in ideal quantum
gas dynamics just as one does for the Euler equations in classical gas dynamics.
We also note that the discrete beam transfer provides a natural way to
implement parallel computing similar to that of the lattice Boltzmann method.
Although we did not consider the external potential due to magnetic or optical
fields that are used to cool and hold the atomic gas in experiments, we note that
it can be directly added into the present beam scheme without much
modification. This will be the subject of a future study.

The authors thank Dr J. C. Huang for many fruitful discussions on high-order beam schemes.
This work is done under the auspices of National Science Council, TAIWAN through grants NSC
92-2210-E002-039 and 93-2210-E002-040.

Appendix A

In this appendix, we give the elements of the quantum beam scheme in three
spatial dimensions. Derivation for two spatial dimensions can be easily reduced.
The number density, momentum vector and energy are defined by

nðx; tÞZ
ðN
KN

d3p

h3
f ðp;x; tÞZ

g3=2ðzÞ
l3

; ðA 1Þ

jðx; tÞZ
ðN
KN

d3p

h3
p

m
f ðp;x; tÞZnu; ðA 2Þ

eðx; tÞZ
ðN
KN

d3p

h3
p2

2m
f ðp;x; tÞZ

3g3=2ðzÞ
2bl3

C
1

2
nu2: ðA 3Þ

First, we approximate the distribution in three spatial dimensions, f3ðp;x; tÞ by

f3 Z qðpx ; py; pzÞyadðpxKpxo; pyKpyo; pzKpzoÞCbdðpxKpCxo; pyKpyo; pzKpzoÞ
CbdðpxKpKxo; pyKpyo; pzKpzoÞCcdðpxKpxo; pyKpCyo; pzKpzoÞ
CcdðpxKpxo; pyKpKyo; pzKpzoÞCddðpxKpxo; pyKpyo; pzKpCzoÞ
CddðpxKpxo; pyKpyo; pzKpKzoÞ; ðA 4Þ
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where pGioZpi0GDpiðiZx; y; zÞ. For clarity, we have not labelled the variables
with subscripts i, j, k (the grid label for three spatial dimensions). But we know
that they are different in different cells. Now we have 10 unknowns, a, b, c, d,
Dpx, Dpy, Dpz and px 0, py0, pz0, we add three fourth-order moment equations to
close the equations.ðN

KN

dp

h3
ðpxKpxoÞ4qjðpxÞZ

ðN
KN

dp

h3
gðpxKpxoÞ4;

ðN
KN

dp

h3
ðpyKpyoÞ4qjðpyÞZ

ðN
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dp

h3
gðpyKpyoÞ4;

ðN
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dp

h3
ðpzKpzoÞ4qjðpzÞZ

ðN
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dp

h3
gðpzKpzoÞ4:

9>>>>>>>>>=
>>>>>>>>>;

ðA 5Þ

We further make isotropic assumptions, i.e. DpxZDpyZDpz. We then obtain the
parameter coefficients

a Z
2pm

b

� �3=2

g3=2ðzÞK
g25=2ðzÞ
g7=2ðzÞ

" #
; ðA 6Þ

bZ
1

6

2pm

b

� �3=2 g25=2ðzÞ
g7=2ðzÞ

Z cZ d; ðA 7Þ

Dpx Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

b

g7=2ðzÞ
g5=2ðzÞ

s
ZDpy ZDpz ; ðA 8Þ

pxo Zmux ; pyo Zmuy; pzo Zmuz : ðA 9Þ

Once one has obtained the parameters, one can determine the conservative
quantities carried by each beam, the beam velocities, the a’s and the final beam
scheme as described in §3.

The fugacity z can be obtained by solving iteratively the following equation:

c3ðzÞZ 2êK3
n̂

g3=2ðzÞ

 !5=3

g5=2ðzÞK
ĵ
2

n̂
Z 0: ðA 10Þ

Once we have z, we can obtain temperature, T, easily.
The results for two spatial dimensions can be similarly deduced and they are

given, respectively, by

a Z
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Dpx ZDpy Z
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