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A class of lower–upper symmetric Gauss–Seidel implicit weighted essentially nonoscillato-
ry (WENO) schemes is developed for solving the preconditioned Navier–Stokes equations
of primitive variables with Spalart–Allmaras one-equation turbulence model. The numer-
ical flux of the present preconditioned WENO schemes consists of a first-order part and
high-order part. For first-order part, we adopt the preconditioned Roe scheme and for
the high-order part, we employ preconditioned WENO methods. For comparison purpose,
a preconditioned TVD scheme is also given and tested. A time-derivative preconditioning
algorithm is devised and a discriminant is devised for adjusting the preconditioning
parameters at low Mach numbers and turning off the preconditioning at intermediate or
high Mach numbers. The computations are performed for the two-dimensional lid driven
cavity flow, low subsonic viscous flow over S809 airfoil, three-dimensional low speed vis-
cous flow over 6:1 prolate spheroid, transonic flow over ONERA-M6 wing and hypersonic
flow over HB-2 model. The solutions of the present algorithms are in good agreement with
the experimental data. The application of the preconditioned WENO schemes to viscous
flows at all speeds not only enhances the accuracy and robustness of resolving shock
and discontinuities for supersonic flows, but also improves the accuracy of low Mach num-
ber flow with complicated smooth solution structures.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

It is well known that most of the numerical algorithms developed for compressible flows are often inefficient or even
inaccurate at low Mach numbers. When the flow Mach number becomes relatively small in comparison with the acoustic
speed, the convective terms of the time dependent system of equations become stiff and this may deteriorate the conver-
gence when time marching schemes are used. Also, the pressure gradient term in momentum equation becomes singular
and may increase roundoff error [1]. For the type of low Mach number flow, that the velocity in entire flowfield is low,
the stiffness problems can be avoided by solving incompressible equations instead. But for the type of low Mach number
flow contains some regions of incompressible flow while other regions of compressible flow, extending the solver for com-
pressible equations to low Mach number flows seems to be a viable choice. The basic principle of extending compressible
algorithms to incompressible flow limit is to precondition the usual compressible Navier–Stokes equations to overcome
the mentioned difficulties. Convergence can be made independent of Mach number by altering the acoustic speeds of the
system such that all eigenvalues become of the same order. Multiplying the preconditioning matrix to normalize the system
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eigenvalues is a successful and popular approach. Over the past two decades, a number of preconditioning methods have
been proposed [2–7].

The weighted essentially nonoscillatory (WENO) schemes proposed by Liu et al. [8] and extended by Jiang and Shu [9] can
achieve good convergence property while keeping robustness and high-order accuracy of ENO schemes. The WENO schemes
have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution
structures. For low speed incompressible flow, a class of implicit WENO schemes has been successfully applied to incom-
pressible flow problems by Yang et al. [10] based on artificial compressibility formulation. Good convergence rate to a stea-
dy-state solution has been illustrated. Yang et al. [11] also proposed a method which adopts a numerical flux in flux limiter
form for the WENO spatial operator for convective flux that allows for more flexibility to implement various first-order en-
tropy satisfying dissipative schemes.

In this paper, we present a high-order accurate WENO scheme for solving the preconditioned Navier–Stokes equations.
This scheme is a direct extension of a WENO scheme of flux limiter form by Yang et al. [11,12], which has been successfully
applied to 2D/3D aerodynamic problems. Following the procedures proposed by Weiss and Smith [4], the preconditioning
matrix is derived. We also introduced a discriminant for adjusting the preconditioning parameters at low Mach numbers
and turning off the preconditioning at intermediate or high Mach numbers. For turbulent flow calculations, Spalart–Allmaras
one-equation turbulence model [13] simplified by dropping the transition terms is adopted. The model provides a desirable
tool for numerical computation of flow involving complex geometry. The performance of this model has been tested. To im-
prove the efficiency and convergence to steady state, the lower–upper symmetric Gauss–Seidel (LU-SGS) implicit algorithm
is adopted. We apply the resulting implicit preconditioned WENO schemes to compute several aerodynamic flows with wide
speed range to test both the convergence rate and the accuracy of the methods. The main contribution of the present work is
to validate the WENO scheme applied to the preconditioned Navier–Stokes equations, and to point out the efficiency of com-
putation over a wide range of Mach numbers. The preconditioned Navier–Stokes equations are stated in Section 2 and the
basis of the numerical scheme are presented in Section 3. In Section 4, the computational results with a wide range of free-
stream Mach numbers in both two and three space dimensions are presented to validate the effectiveness of the present
method. Some concluding remarks are given in Section 5.

2. Governing equation

2.1. The Navier–Stokes equations

The non-dimensional unsteady Reynolds averaged Navier–Stokes equations with the Spalart–Allmaras one-equation tur-
bulence model in general curvilinear coordinates (n,g,f) system are expressed as
@Q̂
@t
þ @ðÊ� ÊvÞ

@n
þ @ðF̂ � F̂vÞ

@g
þ @ðĜ� ĜvÞ

@f
¼ Ĥ; ð1Þ
where t is time, Q̂ is the vector of conservative variables, Ê, F̂ and Ĝ are convective flux vectors, Êv, F̂v and Ĝv are diffusive flux
vectors in n, g, f direction, respectively. The source vector defined as Ĥ ¼ ½0;0;0;0;0;H6�T , where H6 is the source term asso-
ciated with turbulence eddy viscosity production, conservative and nonconservative diffusion and near wall turbulence
destruction [14]. Here, only the fluxes in the n direction are shown as
Q̂ ¼ 1
J
½q;qu;qv;qw; e; em�T ;

Ê ¼ 1
J
½qU;quU þ nxp;qvU þ nyp;qwU þ nzp; ðeþ pÞU; emU�T ;

Êv ¼
1

Re1J
½0; Ev2; Ev3; Ev4; Ev5; Ev6�T ;
where the elements Ev2, Ev3, Ev4, Ev5 and Ev6 are defined as
Ev2 ¼ sxxnx þ sxyny þ sxznz;

Ev3 ¼ sxynx þ syyny þ syznz;

Ev4 ¼ sxznx þ syzny þ szznz;

Ev5 ¼ uEv2 þ vEv3 þwEv4 þ qxnx þ qyny þ qznz;

Ev6 ¼
1
re

l‘

q
þ ð1þ CB2Þem� �

@em
@x

nx þ
@em
@y

ny þ
@em
@z

nz

� �
:

Similar expressions can be given for the fluxes in the g and f directions. In the above equations, J is the Jacobian of coordinate
transform, q is density, u,t and w are velocity components in x, y and z direction, respectively, e is total energy per unit vol-
ume. The static pressure p is related to the dependent variables by the equation of state for a perfect gas
p ¼ ðc� 1Þ½e� qðu2 þ v2 þw2Þ=2�, where c is the ratio of specific heats. qx, qy, qz are heat fluxes in x, y and z direction, respec-
tively. U ¼ unx þ vny þwnz is contravariant velocity in n direction, sxx, sxy, sxz, syy, syz, szz are shear stresses. l‘ is molecular
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viscosity, which is calculated by Sutherland’s law in present study. em is the turbulent variable in the Spalart–Allmaras one-
equation model, re and CB2 are empirical constants. The detailed form of the source terms and empirical constants for tur-
bulent equation can be found in Refs. [13,14]. The equations are non-dimensionalized by characteristic length L, freestream
velocity V1 and other reference quantities as follows:
x ¼ �x=L; t ¼ �tV1=L; q ¼ �q=�q1; u ¼ �u=V1;

p ¼ �p=�q1V2
1; T ¼ T=T1; l‘ ¼ �l‘=�l‘1; em ¼ �q1�em=�l‘1:
2.2. The preconditioned system

The preconditioned version of Eq. (1) is given as
C
@Q̂ p

@t
þ @Ê
@n
þ @F̂
@g
þ @Ĝ
@f
¼ @Êv

@n
þ @F̂v

@g
þ @Ĝv

@f
þ Ĥ; ð2Þ
where Q̂ p ¼ ½p;u; v;w; T; em�=Jis the vector of primitive variables. The preconditioning matrix C defined by Weiss and Smith [4]
was given as
C ¼

H 0 0 0 qT 0
Hu q 0 0 qT u 0
Hv 0 q 0 qT u 0
Hw 0 0 q qT w 0

HH0 � 1 qu qv qw qT H0 þ qCp 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; ð3Þ
with
H ¼ 1
V2

r

� qT

qCp
: ð4Þ
It is noted that the transport equation of turbulent variable is not preconditioned in our work. Hence, elements of the 6th
column and 6th row in preconditioning matrix are zeros except for the diagonal ones. In Eqs. (3) and (4), H0 is the total en-
thalpy, Cp ¼ 1=ðc� 1ÞM2

1 is constant-pressure specific heat and qT ¼ @q=@T , Vr ¼ Mrc is reference velocity, c is local sonic
speed and Mr is a reference Mach number, defined as
Mr ¼min½1;maxðM;Mr;minÞ�; ð5Þ
where M is Mach number of local flowfield, Mr;min is the minimum value of reference Mach number Mr , which is defined by
Weiss and Smith [4] to prevent H from diverging and its value is Mr;min ¼ 10�5. Refs. [5,6] proposed the following formula
M2
r;min ¼ 3M2

1; ð6Þ
which is a function of freestream Mach number and is used in OVERFLOW code. In Ref. [7], Edwards and Roy proposed the
following formula for the reference velocity
V2
r ¼ min½c2;maxðjV j2;KjV1j2Þ�; ð7Þ
where V is local velocity and V1 is freestream velocity, and the parameter K ¼ 0:5 was suggested. Turkel [2] suggested that
K ¼ 0:4 for inviscid flow and K ¼ 1:0 for viscous flow. He also pointed out that K can be setting up to 3.0 in some cases if
necessary. In the present study, we summarize the above experiences and propose the rules for choosing Mr;min values as
follows:
M2
r;min ¼

3M2
1 if M1 6 0:05;

0:15M1 if 0:05 6 M1 6 0:3;
0:5M2

1 if M1 P 0:3:

8><>: ð8Þ
For viscous flow computations, Weiss and Smith [4] pointed out that the reference velocity Vr must be larger than the
parameter of viscous velocity m=ðRe1DxÞ, where m is local kinematic viscosity (including turbulent effects), Dx is the length
scale of grid, representing the diffusion phenomenon. Here, we set Dx equal to the shortest cell length among three direc-
tions of a grid cell. In viscous flow computation, the reference Mach number is written as
Mr ¼maxfmin½1;maxðM;Mr;minÞ�;Mr;visg; ð9Þ
where Mr;vis ¼ m=ðRe1cDxÞ. The flux Jacobian matrix of the preconditioned system is AC ¼ C�1Ap, where Ap is defined as
@Ê=@Q̂p. The inverse of the preconditioning matrix C�1 could be obtained by some symbolic operations. The flux Jacobian
matrix ÂC is given as
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AC ¼

ðqCp þ qTðH0 � q2ÞÞ=d0 qT u=d0 qT v=d0 qT w=d0 �qT=d0 0
jx=q �u 0 0 0 0
jy=q 0 �u 0 0 0
jz=q 0 0 �u 0 0

ð1þ 0:5Hq2Þ=d0 Hu=d0 Hv=d0 Hw=d0 �H=d0 0
0 0 0 0 0 �u

2666666664

3777777775
; ð10Þ
where
d0 ¼ qCpHþ qT ¼
q

½ðc� 1ÞTM2
r �
:

The eigenvalues of matrix AC are
k1 ¼ k2 ¼ k3 ¼ k6 ¼ �u; k4 ¼ u0 þ c0; k5 ¼ u0 � c0:

u0 ¼ �uð1þM2
r Þ=2 and c0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�u2ð1�M2

r Þ þ 4M2
r c2

q
=2:
where �u is defined as ukx þ vky þwkz, and ðkx; ky; kzÞ ¼ rk=jrkj, k ¼ n;g; f is a unit vector. The eigenvalues will be degener-
ated automatically to the non-preconditioned system at Mr ¼ 1. Since the non-dimensional quantities are different between
current paper and Pandya et al. [6], the matrices of right and left eigenvectors of AC are shown here,
R ¼

0 0 0 c5=2c0 c4=2c0 0
0 �kz ky kx=2qc0 �kx=2qc0 0
kz 0 �kx ky=2qc0 �ky=2qc0 0
�ky kx 0 kz=2qc0 �kz=2qc0 0
kx ky kz c5=2qCpc0 c4=2qCpc0 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
; ð11Þ

L ¼

�kx=qCp 0 kz �ky kx 0
�ky=qCp �kz 0 kx ky 0
�kz=qCp ky �kx 0 kz 0

1 qc4kx qc4ky qc4kz 0 0
1 �qc5kx �qc5ky �qc5kz 0 0
0 0 0 0 0 1

0BBBBBBBB@

1CCCCCCCCA
: ð12Þ
The parameters c4 and c5 in above equations are defined as
c4 ¼ u0 þ c0 þM2
r �u and c5 ¼ �u0 þ c0 þM2

r �u:
3. Numerical method

3.1. Spatial discretization

A semi-discrete finite volume method is used to ensure that the final converged solution is independent of the integration
procedure and to avoid metric singularity problems. The finite volume method is based on the local flux balance of each
mesh cell. The semi-discrete form of Eq. (2) can be written as
Ci;j;k
ðQ̂nþ1

p � Q̂ n
pÞi;j;k

Dt
¼ � eEiþ1

2;j;k
� eEi�1

2;j;k

h inþ1
� eF i;jþ1

2;k
� eF i;j�1

2;k

h inþ1
� eGi;j;kþ1

2
� eGi;j;k�1

2

h inþ1
þ Ĥnþ1

i;j;k ; ð13Þ
where ði; j; kÞ is the control point of finite volume. The spatial differencing adopts conservative upwind schemes for the invis-
cid convective fluxes ðeE; eF ; eGÞ and second-order central differencing for viscous flux ðeEv; eF v; eGvÞ. Weiss and Smith [4] pro-
posed the Roe’s scheme in preconditioned system. The numerical flux at cell interface iþ 1=2 in direction i is written as
eEP-Roe
iþ1=2 ¼

1
2
½Êi þ Êiþ1 þ Ciþ1=2Riþ1=2jK̂iþ1=2jLiþ1=2ðQ p;iþ1 � Q p;iÞ�: ð14Þ
The matrix of right and left eigenvectors R and L, the diagonal matrix of eigenvalues K̂, and C are evaluated by the primitive
flow parameters, including density q, velocities u, t, w and total enthalpy H0, which are defined at cell interface and are eval-
uated by the formulas of Roe’s averages [15].

To manifest the characteristics of WENO schemes in preconditioned system, we also extend the symmetric TVD scheme
by Yee [16] for the Euler equations to the present preconditioned Navier–Stokes equations for comparison purpose. The sym-
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metric TVD, WENO2 and WENO3 schemes in preconditioned system which designated as P-STVD, P-WENO2 and P-WENO3
are derived as follows.

3.1.1. P-STVD scheme
Referring to the original TVD scheme of Yee [16], the numerical flux at cell interface iþ 1=2 for the present preconditioned

second-order symmetric TVD scheme can be written as
eEP�STVD
iþ1=2 ¼ 1

2
Êi þ Êiþ1 þ Ciþ1=2Riþ1=2Uiþ1=2

jrnj
J

� �
iþ1=2

" #
; ð15Þ
where Uiþ1=2 is modified flux vector [16]. In this work, the entropy parameter is defined as d ¼ be �maxðj�uj; j�u0 þ c0j; j�u0 � c0jÞ,
which equals a factor be times the maximum absolute eigenvalue. The factor be is selected to be under 0.005 for low Mach
number flow (M1 < 0:1), 0.01 to 0.1 for subsonic or transonic flow (0:1 < M1 < 1:0) and 0.1–0.5 for supersonic or hyper-
sonic flow (M1 > 1:0).

3.1.2. P-WENO2 scheme
Next, we reformulate the new type WENO scheme used for compressible flow computations proposed by Yang et al. [11]

to implement the preconditioned system. A P-WENO2 numerical flux at a cell surface iþ 1=2 in direction i can be defined by
~EP-WENO2
iþ1=2 ¼ Ciþ1=2ð~EL

iþ1=2 þ ~EH2
iþ1=2Þ ¼ ~EP-Roe

iþ1=2 þ Ciþ1=2
~EH2

iþ1=2; ð16Þ
where eEL
iþ1=2 is the numerical flux of a first-order dissipative entropy satisfying scheme. Here the preconditioned Roe scheme

is adopted. eEH2
iþ1=2 is a high-order flux with P-WENO2 limiter, defined as
~EH2
iþ1=2 ¼

X5

s¼1

~EH2
iþ1=2;srs: ð17Þ
The sth element of eEH2
iþ1=2 is
~EH2
iþ1=2;s ¼

1
2
½xþ0;sDEþi�1=2;s þxþ1;sDEþiþ1=2;s �x�0;sDE�iþ1=2;s �x�1;sDE�iþ3=2;s�; ð18Þ
where
DE�iþ1=2;s ¼ ls � DE�iþ1=2;

DEþiþ1=2 ¼ C�1
iþ1=2Eiþ1 � ~EL

iþ1=2;

DE�iþ1=2 ¼ ~EL
iþ1=2 � C�1

iþ1=2Ei:
In the preceding equations rs (column vector) and ls (row vector) are the sth right and left eigenvectors of the Jacobian matri-
ces, and they are evaluated using Roe’s averages. The weights x� are defined as
x�k;s ¼
a�

k;s

a�0;sþa�1;s
; ðk ¼ 0;1Þ;

aþ0;s ¼ 1
3 ðeþ ISþ0;sÞ

�2
; aþ1;s ¼ 2

3 ðeþ ISþ1;sÞ
�2
;

a�0;s ¼ 2
3 ðeþ IS�0;sÞ

�2
; a�1;s ¼ 1

3 ðeþ IS�1;sÞ
�2
:

Here � ¼ 10�7, and the smoothness indicators ISk;s, k ¼ 0;1 were given in Ref. [11].

3.1.3. P-WENO3 scheme
Similar to the construction of P-WENO2 scheme, the P-WENO3 numerical flux is split to first-order and high-order parts.

The first-order part for P-WENO3 scheme is the same as that for P-WENO2 scheme,
~EP-WENO3
iþ1=2 ¼ Ciþ1=2ð~EL

iþ1=2 þ ~EH3
iþ1=2Þ ¼ ~EP-Roe

iþ1=2 þ Ciþ1=2
~EH3

iþ1=2: ð19Þ
The high-order flux of P-WENO3 scheme is defined as
~EH3
iþ1=2;s ¼

1
6

xþ0;s�q
þ
0 þxþ1;s�q

þ
1 þxþ2;s�q

þ
2 þx�0;s�q

�
0 þx�1;s�q

�
1 þx�2;s�q

�
2

h i
; ð20Þ
where
�qþ0 ¼ �2DEþi�3=2;s þ 5DEþi�1=2;s; �qþ1 ¼ DEþi�1=2;s þ 2DEþiþ1=2;s;

�qþ2 ¼ 4DEþiþ1=2;s � DEþiþ3=2;s; �q�0 ¼ DE�i�1=2;s � 4DE�iþ1=2;s;

�q�1 ¼ �2DE�iþ1=2;s � DE�iþ3=2;s; �q�2 ¼ �5DE�iþ3=2;s þ 2DE�iþ5=2;s:
The definition of DE�iþ1=2;s in the preceding equations is same as the P-WENO2 scheme. The weights x� are defined as
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x�k;s ¼
a�

k;s

a�
0;s
þa�

1;s
þa�

2;s
;

aþ0;s ¼ 1
10 ðeþ ISþ0;sÞ

�2
; aþ1;s ¼ 6

10 ðeþ ISþ1;sÞ
�2
; aþ2;s ¼ 3

10 ðeþ ISþ2;sÞ
�2
;

a�0;s ¼ 3
10 ðeþ IS�0;sÞ

�2
; a�1;s ¼ 6

10 ðeþ IS�1;sÞ
�2
; a�2;s ¼ 1

10 ðeþ IS�2;sÞ
�2
:

The smoothness indicators IS�k;s, k ¼ 0;1;2 can be found in Ref. [11]. In regions of smooth flow, the linear combination of
the �q�k (k = 0,1,2) given in Eq. (20) should reduce to the central scheme and give the optimal convergence properties pos-
sible [17]. These weights are thus known in the literature as the ideal weights or linear weights. These weights are given
by
aþ0;s ¼ 1
10 ; aþ1;s ¼ 6

10 ; aþ2;s ¼ 3
10 ;

a�0;s ¼ 3
10 ; a�1;s ¼ 6

10 ; a�2;s ¼ 1
10 :
3.2. Time discretization

The unfactored implicit equation is obtained by linearizing the flux vectors about the preceding time and dropping terms
of second and higher order:
I þ Dtðd�n ÂþC þ dþn Â�C þ d�g B̂þC þ dþg B̂�C þ d�f ĈþC þ dþf Ĉ�CÞ � DtD̂
h in

DQ̂ n
p;i;j;k ¼ Dt C�1

i;j;kðRHSÞ
h in

; ð21Þ
where ðRHSÞ represents the right-hand-side of Eq. (13), I is the identity matrix, DQn
p ¼ Qnþ1

p � Qn
p is the increment of primitive

variables, d�n , d�g and d�f are backward difference operators and dþn , dþg and dþf are forward difference operators in n, g and f
directions, respectively, and Â�C , B̂�C and Ĉ�C are splitted Jacobian matrices of inviscid fluxes. The matrices are constructed
so that the eigenvalues of ‘+’ matrices are non-negative and those of ‘�’ matrices are non-positive, that is, for example
the matrices in n direction Â�C are obtained by
Â�C ¼ RnðK̂�n � mnIÞL�n ;
where Rn and Ln are similarity transformation matrices of the left and right eigenvectors of ÂC, and K̂�n ¼ ðK̂n � jK̂njÞ=2, where
K̂n is the diagonal matrix of eigenvalue of ÂC. The viscous corrected term mn is defined as [18]
mn ¼ 2
lmax

q

� �
jrnj2=J

Re1
;

where lmax must take the maximum value of diffusive coefficients in the system [19].
The stiffness caused by the turbulent production term can be reduced by treating the turbulent source functions implic-

itly. But the Jacobian of production term maybe positive, especially in the turbulent core region (yþ > 30), can be destabi-
lizing the implicit system [20]. To compensate the destability, the Jacobian of the source term D̂ ¼ @Ĥ6=@em which was
evaluated by the pseudolinearization method proposed by Spalart and Allmaras [13] is used in the present study.

The LU-SGS implicit factorization scheme of Yoon and Kwak [21] for Eq. (21) can be derived by combining the advantages
of LU factorization and SGS relaxation. The LU-SGS scheme can be written as
ðLþ DÞD�1ðDþ UÞDQ̂ p ¼ �DtC�1
i;j;kðRHSÞn: ð22Þ
The operators L, U and D are detailedly described in Ref. [3] and Eq. (22) can be solved in three steps [3,21].

3.3. Boundary condition

The mean flow and turbulent transport equations presented in preceding sections represent an initial–boundary-value
problem. To solve these equations, it is necessary to impose initial and boundary conditions. A uniform flowfield is chosen
as the initial conditions for the mean flow equations. A uniform value of em ¼ Oð1Þ is set as the initial guess.

The boundary conditions of the mean flow are set as follows: (1) No-slip boundary conditions for velocities are adopted
on the solid surface, which is assumed to be an adiabatic wall. (2) The density and pressure on the wall are set to be equal to
the values of the node points next to the wall. This gives first-order accuracy at the wall. (3) In the far field, a locally one-
dimensional characteristic type of boundary condition is used. The flow values on far-field boundary Q p;b can be evaluated by
Q p;b ¼
1
2
ðQp;1 þ Q p;IÞ �

1
2

sgnðACÞðQ p;1 � Q p;IÞ;
where Qp;1 is the values of primitive variables on freestream status, Q p;I is the values on the nearest inner point,
sgnðACÞ ¼ RsgnðKÞL, and sgnðKÞ is a diagonal matrix, whose elements are þ1 or �1 for positive or negative eigenvalue of
matrix AC, respectively. For the turbulent transport equation, a zeroth-order extrapolation is used to specify conditions at
the far field. The value of em is set to zero at solid wall.
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4. Results and discussions

4.1. 2D driven cavity flow

The first testing problem is the lid driven squared cavity flow with domain length 1. A 65� 65 non-uniform grid is used
and the grid points are exponentially stretched away from the wall and the minimum grid spacing near the wall is 0.005.
Results were obtained for Reynolds number of 3200 which is based on lid velocity and length of cavity, under an isothermal
condition and a Mach number of 0.001 for the moving lid. Three numerical schemes, P-STVD, P-WENO2, P-WENO3 are em-
ployed. Fig. 1(a)–(c) shows the results of streamline contours calculated by the three different schemes. The streamline plots
show a large primary vortex near the center of cavity, along with two secondary vortices at the bottom corners and one sec-
ondary vortex near the upper-left corner. The size of the secondary vortex at the bottom corners by P-STVD scheme is smal-
ler than that by P-WENO2 and P-WENO3 schemes. Also, the secondary vortex at the upper-left corner by P-STVD scheme is
not present, but obviously exists by P-WENO2 and P-WENO3 schemes. To verify the accuracy of numerical solutions, Fig. 2(a)
and (b) depicts, respectively, the comparison of u velocity component along the vertical centerline and t velocity component
Fig. 1. Streamline contours for flow in a driven cavity for Re1 ¼ 3200 by (a) P-STVD, (b) P-WENO2, (c) P-WENO3 scheme. (The contourlines with min.
�0.0034, max. 0.1 and increment 0.0004 for negative values and 0.005 for positive values.)



Fig. 2. Comparison of (a) u velocity along the vertical centerline, and (b) t velocity along the horizontal centerline for the driven cavity at Re1 ¼ 3200.
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along the horizontal centerline with numerical solutions by Ghia et al. [22] using a fine 129� 129 uniform grid. Excellent
agreement can be observed for the results of P-WENO3 scheme even with the current coarse grid.

Fig. 3 shows the comparison of convergence histories among P-Roe, P-STVD, P-WENO2 and P-WENO3 schemes. In these
cases, the CFL number is fixed to 30. A reasonably good convergence rate to steady-state solution can be obtained. For P-Roe
scheme, it requires about 1600 iterations for seven orders of L2 norm convergence. And it requires 4000 and 6400 iterations
for P-STVD and P-WENO2 scheme, respectively. The convergence rate is related to the damping of numerical scheme. The
high-order schemes, P-WENO2 and P-WENO3, converge relatively slower than P-Roe or P-STVD schemes. The convergence
histories of high-order schemes contain a flowfield evolution process, which generated by vortices interaction. It is suspected
that the process is due to the strong transient nature of the flow where several significant secondary vortices appear and
interact with the main circulating vortex. The superior performance of P-WENO scheme to the P-STVD scheme can be clearly
seen for this flow that is characteristized by multiple vortices.

The computational costs per time step for 2D cavity flow with P-STVD, P-WENO2 and P-WENO3 scheme are 0.079, 0.091
and 0.093 s, respectively. With the same cases, but using non-preconditioned STVD, WENO2 and WENO3 schemes, the com-
putational costs per time step are 0.049, 0.054 and 0.056 s, which are around 60% of that of preconditioned schemes. The
computational costs per time step with P-WENO2 and P-WENO3 schemes are around 1.15 and 1.17 times of that of P-STVD
Fig. 3. Convergence history for cavity flow at Re1 ¼ 3200.
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scheme, respectively. With maximum CFL number 30, the time steps for reaching seven orders of convergence with P-
WENO2 and P-WENO3 schemes are around 1.5 and 2.0 times to the P-STVD scheme, respectively. Therefore the total com-
puting time are 1.73 and 2.34 times more for the P-WENO2 and P-WENO3 schemes, respectively.

Fig. 4(a) and (b) depicts, respectively, the comparison of u velocity component along the vertical centerline, and t velocity
component along the horizontal centerline between nonlinear and linear weights P-WENO3 scheme. Fig. 5 shows the com-
parison of convergence history. It is found that the results of nonlinear weights agree very well with the linear weights for
the case of low speed flow. Obviously, the usage of the linear weights will reduce the computational cost. But the compu-
tational cost depends on several modules of the code, for examples, the implicit module would be the major consumer of
CPU time. In current computations, the overall cost of the computation by linear weights was reduced by about 5% compared
with that nonlinear weights.

4.2. Low subsonic viscous flow over S809 airfoil

The second problem considers viscous flow over airfoil at moderate angle of attack. The S809 airfoil was designed spe-
cially for horizontal-axis-wind-turbine (HAWT) applications. The thickness ratio of the airfoil is 21%. A 600 mm chord length
model of the S809 airfoil has been tested in a 1.8 m � 1.25 m low turbulence wind tunnel [22]. Four grid systems of C-type
topology are generated for grid-independency testing. The grid points are 185� 49, 273� 73, 409� 109 and 601� 145 from
coarse to fine grid system, and there are 137, 207, 321 and 481 points on airfoil surface, respectively, and the outer boundary
for all four grid systems is about 20 chord lengths away from airfoil. The grid points in the direction normal to the airfoil
surface are exponentially stretched away from the airfoil surface with a minimum grid spacing 10�5 chord length at airfoil
surface. Grid points are clustered at the leading and trailing edges with a spacing of 0.0004 and 0.0015 chord length, respec-
tively. A close-up view of the coarsest grid system is shown in Fig. 6. The freestream Mach number is 0.001, Reynolds number
is 2� 106 and angle of attack is 9.22�. The computational results of lift and drag coefficients for various computational grid
systems with P-STVD, P-WENO2 and P-WENO3 schemes, and along with the experimental data by Somers [23] are listed in
the following table:
Grid
Fig. 4. Comparison of (a)
between linear weights an
P-STVD
u velocity along the vertical centerline, and (b
d nonlinear weights P-WENO3 scheme.
P-WENO2
) t velocity along the horizontal centerline for
P-WENO3
CL
 CD
 CL
 CD
 CL
the driven cavity at R
CD
185 � 49
 1.0651
 0.03793
 1.0856
 0.02373
 1.0742
 0.02054

273 � 73
 1.0758
 0.02812
 1.0870
 0.02123
 1.0829
 0.02008

409 � 109
 1.0819
 0.02373
 1.0892
 0.02036
 1.0843
 0.02005

601 � 145
 1.0838
 0.02213
 1.0893
 0.02015
 1.0846
 0.02005
Exp. data b
 [23]
 C ¼ 1:0
 C ¼ 0:0
y Somers
 L 385
 D 214
e1 ¼ 3200



Fig. 5. Comparison of Convergence history for cavity flow at Re1 ¼ 3200 between linear weights and nonlinear weights.
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As shown in the table, the lift coefficients computed by all twelve cases agree with one another, and are slightly higher
than the experimental data. The discrepancies in lift coefficients by all three schemes over various grid systems are under 5%.
The drag coefficients computed by P-STVD scheme are obviously dependent on grid systems. It can be seen that only the
finest grid system (601� 145) attains accurate results. In contrast, the drag coefficients computed by P-WENO3 scheme with
various grid systems agree very closely with one another and are slightly lower than the experiment data being 5% in dif-
ference. The drag coefficients computed by P-WENO2 scheme are also in good agreement except for results using the coars-
est grid system (185� 49). This is readily discerned by looking at the table. The sensitivity study among the grid systems
demonstrated that the 273� 73 grid and finer grids can give reasonable results by using P-WENO2 or P-WENO3 schemes.

The distributions of pressure coefficients obtained by P-STVD and P-WENO3 schemes with various grid systems are pre-
sented in Fig. 7(a) and (b), respectively, along with the experimental data [23]. As can be seen, the distributions agree rea-
sonably well with the experimental data except slight differences in the upper surface near the trailing edge region in which
separation occured. The results of the P-WENO3 scheme with various grid systems are almost the same, but for the results of
the P-STVD scheme, small deviations in the upper surface near the leading edge are caused by the effects of using different
grid systems. This deviations are depicted in Fig. 8 which shows the close-up of leading edge region. Excellent agreement can
be observed for the P-WENO3 results even with the 185� 49 coarse grid system.

The convergence histories of all three schemes with 185� 49 and 601� 145 grid systems are shown in Fig. 9(a) and (b).
All three schemes have similar convergence history. After the residuals have decayed for two orders of magnitude in 1000
iterations, the rate of convergence is slowing down. The preconditioned system requires about 4500 iterations to reduce the
L2 norm by four orders of magnitude.
Fig. 6. A close-up view of 185� 49 grid system for S809 airfoil.



Fig. 7. S809 airfoil surface pressure distribution at M1 ¼ 0:001, a ¼ 9:22� , Re1 ¼ 2� 106; comparison of different grid systems by (a) P-STVD scheme and
(b) P-WENO3 scheme and along with experimental data.
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4.3. 3D low speed viscous flow over 6:1 prolate spheroid

The flow past a prolate spheroid has been extensively studied and is a benchmark problem for studying three-dimen-
sional separated flow structures. A multi-block point matched grid system, which composed of an O–O type and an H–H type
grid topologies, is used for the computations. A representative O–O type grid system of 57ðnÞ � 25ðgÞ � 57ðfÞ is shown in
Fig. 10 for the bare prolate spheroid, where n is in the streamwise direction, g in the circumferential direction and f in
the normal direction. The grid points are clustered in the normal direction near the body surface for resolving the thin vis-
cous layers. The minimum grid spacing in the normal direction normalized with the major axis is taken to be 2 � 10�5. To
avoid the polar singularity, an H–H type grid of 7� 13� 57 was designed near the leading and trailing points and extended
upstream and downstream as shown in Fig. 10. The outer boundary shape of the computational domain was elliptic, extend-
ing 25 major axes length in front of and in the downstream directions. To investigate the effects of grid refinements, calcu-
lations also performed on a coarse grid system with 29ðnÞ � 13ðgÞ � 29ðfÞ points, which was taken as every other point from
the fine grid system. The freestream Mach number of 0.01, Reynolds number of 1:6� 106 and angle of attack of 10� have
Fig. 8. S809 airfoil surface pressure distribution at M1 ¼ 0:001, a ¼ 9:22� , Re1 ¼ 2� 106; comparison of different schemes with 185� 49 grid system (with
experimental data and close-up of leading edge region).



Fig. 10. A composite grid system of O–O type and H–H type grid topologies for 6:1 prolate spheroid.

Fig. 9. Convergence history for S809 airfoil with (a) 185� 49 (b) 601� 145 grid systems at M1 ¼ 0:001, a ¼ 9:22� , Re1 ¼ 2� 106.
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been used as flow conditions. The computational results are obtained by P-STVD and P-WENO3 schemes with fine and coarse
grid systems. The computed surface pressures and the experimental results by Meier and Cebeci [24] have been compared at
symmetric plane on the prolate spheroid and presented in Fig. 11(a) and (b) for coarse and fine grid system. Fig. 12(a) and (b)
depicts the close-up view of the leading edge region for the P-STVD and P-WENO3 schemes. The comparisons show a rea-
Fig. 11. Symmetric plane surface pressure distribution for 6:1 prolate spheroid at M1 ¼ 0:01, a ¼ 10� , Re1 ¼ 1:6� 106; comparison of various schemes
with (a) coarse and (b) fine grid systems.



Fig. 12. Symmetric plane surface pressure distribution for 6:1 prolate spheroid at M1 ¼ 0:01, a ¼ 10� , Re1 ¼ 1:6� 106; comparison of different schemes by
(a) P-STVD and (b) P-WENO3 scheme (close-up of leading edge region solid line: fine grid, dash line: coarse grid).
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sonable agreement except for the region near the rear end where the pressure changes rapidly. The deviations near the rear-
stagnation points might be attributed to usage of one-equation turbulence model which is not accurate for the separation
flow. It can also be seen that there are almost no differences in the pressure distributions between coarse and fine grid sys-
tems in the P-WENO3 scheme, but for the results of the P-STVD scheme, some obvious deviations occur. The effects of grid
refinement make evident that accurate results are obtained by the P-WENO3 scheme even with the corresponding coarse
grid system, but not by the P-STVD scheme.

The convergence histories for all three schemes with fine grid systems are shown in Fig. 13, where the averaged L2-norm
of residuals is plotted vs iteration number. It can be seen that faster convergence was obtained by P-STVD scheme, which
requires about 2000 iterations for five orders of magnitude, but P-WENO3 scheme requires 4000 iterations.

4.4. Transonic flow over ONERA-M6 wing

Transonic turbulent flow over the three-dimensional ONERA-M6 wing has been chosen to verify the characteristics of the
preconditioned system at transonic speed solved by WENO scheme. The ONERA M6 wing is a no-twist, semi-span wing with
sweep angle of 30�. The airfoil section is an ONERA D symmetric section with 0.1 maximum thickness-to-chord ratio at 37.6%
chord length from sectional leading edge. The wing is tapered with a taper ratio of 0.562 and has an aspect ratio of 3.8. Data
for comparison consists of pressure coefficients at sections along the span of the wing obtained in the experiment performed
by Schmitt and Charpin as reported in the AGARD report [25].
Fig. 13. Convergence history for flow over 6:1 prolate spheroid at M1 ¼ 0:01, a ¼ 10� , Re1 ¼ 1:6� 106, with fine grid system.
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An C–O type grid system containing 145� 49� 25 grid points in streamwise, spanwise and body normal directions,
respectively. The outer boundaries are extended to 20 chord lengths in all directions. The grid points in the normal direction
are exponentially stretched away from the wing surface with the minimum grid spacing 3� 10�4 semi-span. The freestream
Mach number of 0.84, Reynolds number of 1:74� 107 based on wing semi-span, and angle of attack of 3:06� have been used
as flow conditions. At these flow conditions, shock boundary interactions occur at upper and lower wing surface, and induce
complex flow topology. The solutions were calculated using P-STVD, P-WENO2 and P-WENO3 schemes. The surface pressure
distributions in Fig. 12 show the comparisons between experimental data [25] and computational results by all three
schemes at various spanwise stations: y=b ¼ 0:2;0:44;0:9;0:95, where b is the wing semi-span. Transonic flow over wing
upper surface results in a double-shock flow topology near the wing root region, which is depicted in Fig. 14(a) and (b). How-
ever, in the region near the wing tip, the shocks coalesced to form one at the position of 25% chord length which are shown in
Fig. 14(c) and (d), and the shocks are stronger than the previous ones. There are no apparent discrepancies in pressure dis-
tribution and shock-wave position occured between P-WENO2 and P-WENO3 schemes, and both results are in reasonable
agreement with experimental data and are more accurate than those of P-STVD scheme in terms of both shock location
and strength. Fig. 15(a) and (b) shows the pressure contours along the upper surface computed by P-STVD and P-WENO3
schemes. The surface flow obviously results in the lambda shock pattern for transonic flow on a swept wing. Clearly, the re-
sults of the P-WENO3 scheme are more refined. The convergence histories of the three different schemes are shown in
Fig. 16. It can be seen that faster convergence was obtained by the P-STVD scheme, which requires about 5000 iterations
for five orders of convergence, while for the P-WENO3 scheme, it requires 6000 iterations for almost four orders.

Fig. 17(a) and (b) shows the comparison of surface pressure distribution at span y/b = 0.2 and y/b = 0.8, respectively, be-
tween the results using P-WENO2 (with preconditioning) and WENO2 (without preconditioning) schemes based on same
grid system. The results agree well with each other except for very small deviations near the shock on upper surface. The
comparison of convergence history is shown in Fig. 18. The P-WENO2 scheme converges relatively slower than the WENO2
scheme.
Fig. 14. Surface pressure distribution for ONERA M6 wing at M1 ¼ 0:84, a ¼ 3:06� and Re1 ¼ 1:74� 107; comparison of schemes along spanwise chordline
(a) y=b ¼ 0:2, (b) y=b ¼ 0:44, (c) y=b ¼ 0:9 and (d) y=b ¼ 0:95.



Fig. 15. Upper surface pressure contours for ONERA M6 wing at M1 ¼ 0:8395, a ¼ 3:06� and Re1 ¼ 1:74� 107; comparison of schemes by (a) P-STVD and
(b) P-WENO3.

Fig. 16. Convergence history for ONERA M6 wing at M1 ¼ 0:84, a ¼ 3:06� and Re1 ¼ 1:74� 107.
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4.5. Hypersonic flow over HB-2 model

The hypervelocity ballistic-type model, designated HB-2, was designed in accordance with specifications originally sug-
gested by the von Karman Gas Dynamics Facility (VKF) in 1959. The purpose of designing and testing this model was to ex-
tend the speed range for correlation of wind tunnel data, after the manner adopted by the AGARD many years ago for the
transonic and supersonic regimes [26]. Until now, the HB-2 model has been widely used to evaluate aerodynamic test facil-
ities and consequently, a large amount of experimental data is available.

The configuration of the HB-2 model is blunted cone-cylinder-flare geometry. The geometric parameters include the ra-
dius of blunted nose of 0:3d, where d is the diameter of cylinder, the half cone angle of 25�, the cone length of 0.362d, the
length of cylinder of 2.536d and the flare angle of 10�. The non-dimensional total length of the model is 4.9d. Fig. 19 shows
the composite grid system. A C–O type grid discretized most of the computational domain with 101 points in the streamwise
direction, 49 points in the circumferential direction, and 65 in the normal direction. The grid points are clustered in the nor-
mal direction near the body surface for resolving the thin viscous layers. The minimum grid spacing in the normal direction
is taken to be 3� 10�5. To avoid the polar singularity, an H–H type grid of 13� 25� 65 was designed near the blunted nose
and extending to upstream.

The freestream Mach number of 5.1, Reynolds number of 2:32� 106, and angle of attack of 15� have been used as flow
conditions. At these flow conditions, the flow structures consist of bow shock, cross flow separation and re-attachment,



Fig. 17. Comparison of surface pressure distribution for ONERA M6 wing at M1 ¼ 0:84, a ¼ 3:06� and Re1 ¼ 1:74� 107; along spanwise chordline (a)
y=b ¼ 0:2, (b) y=b ¼ 0:8, between P-WENO2 and WENO2 scheme.

Fig. 18. Comparison of convergence history between P-WENO2 and WENO2 scheme for ONERA M6 wing at M1 ¼ 0:84, a ¼ 3:06� , and Re1 ¼ 1:74� 107.

Fig. 19. A composite grid system of C–O type and H–H type grid topologies for HB-2 model.
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Fig. 20. Surface pressure distribution for HB-2 model at M1 ¼ 5:1, a ¼ 15� and Re1 ¼ 2:32� 106; comparison of schemes at circumferential stations (a)
/ ¼ 30� , (b) / ¼ 90� and (c) / ¼ 150� .

Fig. 21. Limiting streamline for HB-2 model by (a) P-STVD, (b) P-WENO2, and (c) P-WENO3 scheme, with the conditions M1 ¼ 5:1, a ¼ 15� , and
Re1 ¼ 2:32� 106.
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embedded oblique shock in front of flare, and shock boundary layer interactions. The solutions were calculated using P-
STVD, P-WENO2 and P-WENO3 schemes. The surface pressure distributions in Fig. 20(a)–(c) show comparisons between
experimental data by Gray and Lindsay [27] and computational results by all three schemes at various circumferential lines:



Fig. 22. Convergence history for HB-2 model at M1 ¼ 5:1, a ¼ 15� and Re1 ¼ 2:36� 106.

J.-C. Huang et al. / Journal of Computational Physics 228 (2009) 420–438 437
/ ¼ 30�, 90� and 150�, respectively. For / ¼ 30�, which is on the windward side, the computational results depict almost no
differences between the three schemes and are in good agreement with experimental data. For / ¼ 90�, which is the sideline
of the body, the computational results also depict no differences between the three schemes, and are in a reasonable agree-
ment with experimental data except for the rear part of the flare where the computational surface pressure is higher than the
corresponding experimental data. It is suspected that the deviations might be attributed to the use of turbulence model
which is less accurate in regards to separation flow. For / ¼ 150�, which is on the leeward region of the body, the compu-
tational results by the three schemes also agree with each other except for the part near the front end of the flare where the
shock boundary layer interaction occurs. The limiting streamlines in Fig. 21 show comparisons between the computational
results by the three schemes. The topologies of limiting streamline, including the primary separation line, and re-attaching
line and secondary separation line are shown. The positions of the primary separation line by P-WENO2 and P-WENO3
scheme agree well, but the limiting streamline by P-STVD scheme shows no secondary separation line and no clear re-
attaching line. It depicts the applicability of the high-order accurate schemes, P-WENO2 and P-WENO3, in solving the pre-
conditioned system. The convergence histories are shown in Fig. 22. It shows that the P-STVD and P-WENO2 schemes have
similar convergence history, they require 4500 iterations for three to four orders of magnitude. While for the P-WENO3
scheme, after three orders of magnitude converged, the convergence rate is slowing down.

5. Conclusions

Implicit high-resolution numerical codes for solving the preconditioned Navier–Stokes equations with Spalart–Allmaras
one-equation turbulence model have been developed based on WENO methods and efficient lower–upper symmetric Gauss–
Seidel implicit method. The resulting schemes have been successfully applied to the computations of various 2D/3D aerody-
namic problems covering wide range of flow Mach numbers. The present scheme is a direct extension of the implicit WENO
schemes for Navier–Stokes equation by Yang et al. [11] to the preconditioned Navier–Stokes system such that the stiff and
slow convergence problem at low Mach number flows of the unconditioned system can be overcome. A discriminant for
automatically adjusting both the preconditioning parameters at low Mach numbers and switching off the preconditioning
at intermediate or high Mach numbers has also been introduced. Applications to lid driven cavity flow, low subsonic viscous
flow over S809 airfoil, low speed viscous flow over a prolate spheroid, transonic flow over ONERA-M6 wing, and hypersonic
flow over HB-2 model have been carried out to validate and illustrate the codes. It is found that, for all the cases computed,
the solutions of the present algorithms are in very good agreement with the available experimental data. The combined use
of preconditioned Navier–Stokes system and the WENO methods not only allows us to compute flows at all speeds but also
enhances the accuracy of shock capturing for problems with shocks and improves the accuracy of low Mach number flows
with complicated smooth flow structures.
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