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Abstract—The natural frequencies and critical velocities of laminated circular cylindrical shells with
fixed—fixed ends conveying fluids are studied. Equations of motion are derived by the Hamilton principle
under the scope of the Mindlin-type first-order transverse shear deformable cylindrical shell theory. Fluid
pressure acting on the wall is obtained through the nonpenetration condition and the assumption of
ideal flow. Dynamic characteristic equations are then obtained under the assumption of harmonic
motion. Using linear superposition, the natural frequencies corresponding to each flow velocity are found
by satisfying dynamic characteristic equation and boundary conditions. Critical velocities are those
where the natural frequencies vanish, wherein the static divergence, i.e. buckling, occurs. Numerical
examples are presented, in which the parameter studies include stacking angle, length-to-thickness and
radius-to-thickness ratios.

INTRODUCTION Holmes [16] can only buckle but not flutter. The

natural frequencies at each fluid velocity and
the critical velocities corresponding to zero natural
frequency, where static divergence occurs, are found
for cylindrical shells with various stacking angle,
length-to-thickness and radius-to-thickness ratios.
Equations of motion are derived by Hamilton's prin-
ciple under the scope of Mindlin-type first-order
transverse shear deformable cylindrical shell theory.
Fluid pressure acting on the wall is obtained through
the continuity condition and the assumption of the
ideal flow. Dynamic characteristic equations are
then obtained under the assumption of harmonic
motion. Using linear superposition, the natural fre-
quencies corresponding to each flow velocity are
found by satisfying the dynamic characteristic
equation and boundary conditions. Numerical
examples are presented.

Pipes conveying fluids are very commonly used in the
petroleum, food, chemical and power industries. The
dynamic behavior of such structures has received a
great deal of attention over the last 30 years. The
decreased natural frequencies with increasing fluid
velocity causes susceptible pipes to resonate and
eventually failure through fatigue. In the case of
larger fluid velocity, the pipes may become unstable
(divergence or flutter). More than a hundred publi-
cations have appeared (sec the monograph by
Chen [1]). Most of the works considered the lateral
motion of long pipes, which were treated as beams
(for examples, see [2-10]). When the length-to-thick-
ness ratio of a pipe is small, cylindrical shell theory
must be applied [11-16].

Recent advances in composite materials has meant
that laminated or filament wound cylindrical shells
have been used more frequently. However, the rel-
evant works on dynamic behavior of composite cylin-
drical shells are rather meager. The only exception is
Chen and Bert’s work [8], which, however, considered

GOVERNING EQUATIONS

Stress—strain relationship

only long pipes. Hence, this paper deals with the
problem of laminated circular cylindrical shells with
fixed—fixed ends conveying fluids, which according to

The stress—strain relationship for the kth layer
of the laminated circular cylinder in its material
principal axes is [17]
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The relations between Q, and engineering elastic
constants are given as

Qi = E (1 —vyuvy,)/S
On=E( —vyv;)/S
Ou=E(1 —v;vy)/S
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Under the coordinate transformation from the local
material principal axes 1-2-3 into the global x—y—z
axes, the transformed stress—strain relation can be
shown as
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Moderately thick cylindrical shell theory

Consider a circular shell. The cylindrical shell
theory used in this study is based on the improved
(Fligge) theory[18). The following Mindlin-type
displacement field is adopted

u=u’=zu°
v=0v"+zv°
w=w" (6)
The related linear strains can be shown to be
€. =%+ zy,
€9 = (€5 + 2xp)/(1 + z/a)
Yoo = (B +2B%) + By + 2B5)/(1 + z[a)
0
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Yo. = u3/(1 + z/a)

In this work, the usual assumption of .=0 is

made, then eliminating ¢, from eqn (1) yields
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Equation (4) is the extended version of conventional
plane-stress reduced stress—strain relationship.
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The equation of motion can be obtained through
the application of Hamilton’s principle. Let p, denote
the density of the shell. The kinetic energy 7, strain
energy V and external work W done by internal fluid
pressure p* can be written as follows:
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Thus, according to the Hamilton principle one can
write

n L n hi2
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which can be shown to lead to the set of equations of
motion
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and the set of associated boundary conditions
N.6i®=0
N6 =0
M 6id°=0
M,66°=0

0.6w°=0 (14)
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Fig. 1. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0),] laminated cylindrical
shell with thickness-to-radius ratio s/a = 0.05.

in which o = 4?/(12a%), and
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Fig. 2. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0),] laminated cylindrical
shell with thickness-to-radius ratio 4/a = 0.04.
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Only inviscid and incompressible fluid is con-
sidered in this work. Thus the velocity field of fluid
can be expressed as

oy
o= U 4 —
U, +6x
_161,0
Uo_rc"@
oY
), = — 16
o= (16)

in which U is the uniform (unperturbed) fluid velocity
along the axial direction and ¥ is the perturbed
velocity potential. Let p; denote the density of the
fluid. The fluid pressure p* can be found through
the potential flow theory and the nonpenetration
condition at the wall, which turns out to be [14]
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in which 7, is the modified Bessel function of the first
kind, order n.

To find the natural frequencies, we assume the
following harmonic forms of the displacement field

| (2 on)
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Fig. 3. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0),] laminated cylindrical
shell with thickness-to-radius ratio #/a = 0.03.
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in which A, » and w are respectively the longitudinal

(18)
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Fig. 4. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0),] laminated cylindrical
shell with thickness-to-radius ratio A/a = 0.02.
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natural frequency. Now define
dimensionless quantities

the following

X=x/a

ty = Uy/a
u,=u,

by =vy/a

v, =0,

Wy = W, /a
T=1/T,

Q=w/w,
U=U/jU,

[JO= AV EO/px'

Then (18) can be rewritten in the following form
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Substituting the equations (7), (17)—(19) and the
stress—strain relations of each orthotropic layer [15]
into (13), one can obtain the following dynamic
characteristic equations

ay  dip a3 4y 4 4
wa |G G2 G Gy Gy B
J. ay ap ay ay ay | dz<C = {0}
—h2
41 Qaz Qq3 Qg Gys D
ds; Qs; Qsy Qsq Ass E
(20)

Details of a; are given in the Appendix. To obtain
nontrivial solutions, the determinant, denoted as f, of
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Fig. 5. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0),] laminated cylindrical
shell with thickness-to-radius ratio 4 /a = 0.01.

the above homogeneous set of equations must vanish,
which can formally be written as

FAQ U, n; 041/ alh)=0. @n

Given a dimensionless fluid velocity I/ and circum-
ferential wavenumber #, one then solves the above
equation to yield a set of 4 for any estimated
frequency Q. The correct Q is the one that the
deformation of the cylindrical shell formed by the
corresponding set of 1; must satisfy the appropriate
set of boundary conditions (14). To this end, the true
deformation of the cylindrical shells can be written,
by mode expansion, as

& A _
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Fig. 6. Effect of h/a on the dimensionless frequencies of
a [(0),] laminated cylindrical shell with zero fluid velocity.
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The boundary conditions specified by eqn (14)
should be able to be satisfied by the above equations
if the correct set of A, which depends on the
dimensionless frequency €, is used. If so, then the
estimated value of Q is correct. Otherwise, iteration
is necessary to find the correct Q. It should be noted
that the relations between modal components A4,
B, C;, D, can be related to E;, corresponding
to the eigenvalue 4;, by solving eqn (20). In other
words, for each longitudinal mode, there is only
one unknown in the eigenvector, say E;. Now since
there are only 10 boundary conditions, 10 lowest
values of A; can be picked from the solution of
eqn (21). Thus the substitution of (22) into (14) will
result in

[B]mx 10{E}10 = {0} (23)

The satisfaction can be reached by setting the deter-
minant of [B] to zero.

NUMERICAL RESULTS AND DISCUSSION

The following dimensionless material constants for
a single layer, in its material principal axes, are used
in the numerical calculation, in this paper

E [Ey=21, E,JEy=E,/Ey=11

Gy Ey= Gp3/Ey =065 Gy/E,=0639

p:/p, = 0.001362. (24)
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Fig. 7. Effect of h/a on the dimensionless critical velocities

of a {(0),] laminated cylindrical shell when the natural

frequencies vanish.
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Fig. 8. Relationship of the dimensionless natural frequency
vs dimensionless velocity of [(0),] cylindrical shell with
hja =0.02 and I//a = 15.

In addition, the clamped boundary conditions at both
ends are used
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The results are presented in Figs 1-18, which are
discussed below. In the figures m = 1, 2, 3 represents

the first, second and third lowest fundamental
frequencies.

1. Effect of thickness-to-radius ratio

Figures 1-5 show the relationship of the dimen-
sionless natural frequencies vs dimensionless velocity
of a [(0),] cylindrical shell under various values of the
thickness-to-ratio A/a. As it is already well known,
the natural frequencies decrease as the fluid velocity
increases. The circumferential mode n =2 (which
corresponds to an elliptical shape of the deformed

~

2}

Dimensionless frequency (x100)
~N

n=2,mxc1

0.0-
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Fig. 11. Effects of //a on the dimensionless natural

frequencies at zero fluid velocity.
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Fig. 12. Effect of //a on the dimensionless natural
frequencies on the dimensionless critical velocity when the
natural frequencies vanish.

cross-section) is the dominant mode. Figure 6 shows
the effect of #/a on the dimensionless frequencies
when the fluid velocity is zero; in contrast, Fig. 7
shows the effect of 4/a on the dimensionless critical
velocities when the natural frequencies vanish. It is
seen from Fig. 6 that the natural frequencies are
affected more by the shell thickness when there are
more circumferential deformation (larger n). In the
case of n = 1, which corresponds to rigid body move-
ment of the cross-section, the thickness has almost
no effect on the dimensionless natural frequencies. In
contrast, all of the dimensionless critical velocities are
affected by the ratio 4/a as revealed in Fig. 7.

2. Effect of length-to-radius ratio

Figures 8-10 show the relationship of the
dimensionless natural frequencies vs dimensionless
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o n =1
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Fig. 13. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(90),] cylindrical shell with
h/a=0.02 and //a = 25.
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Fig. 14. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(45),] cylindrical shell with
hja =0.02 and //a = 25.

velocity of [(0),] cylindrical shell with h/a =0.02
under various values of the length-to-radius ratio //a.
As the figures show, the dimensionless natural fre-
quency curves corresponding to various modes get
closer as the value of //a becomes larger. In the case
of l/a = 45, the lowest natural frequency switches its
mode from n =2 to n = 1 near the value 0.65 of the
dimensionless fluid velocity. Similar to Figs 6 and 7,
Figs 11 and 12 summarize the effects of //a on the
dimensionless natural frequency at zero fluid velocity
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Fig. 15. Relationship of the dimensionless natural frequency

vs dimensionless velocity of [(0/90/90/0)] cylindrical shell
with #/a =0.02 and //a = 25.
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Fig. 16. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(0/90/90/0)] cylindrical shell
with 2/a =0.02 and //a = 25.

and on the dimensionless critical velocity. In contrast
to the monotone effects of 4/a, it is shown that the

effects of //a are more complex and depend on each
individual mode.

3. Effect of stacking angle

Figures 13 and 14 show the relationship of the
dimensionless natural frequencies vs dimensionless
velocity of [(90),] and [(45),] cylindrical shell with
hja =0.02 and //a = 25. Compared to Fig. 2, these

13
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Fig. 17. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a {(45/ —45/ — 45/45)] cylindrical
shell with A/a =0.02 and //a = 25.
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Fig. 18. Relationship of the dimensionless natural frequency
vs dimensionless velocity of a [(45/ —45/—45/45)] cylindrical
shell with A/a =0.02 and //a = 25.

two figures show the effects of strengthening in the
circumferential direction and weakening in the
longitudinal direction due to the layup angle. This
is particularly noticeable when n =1 becomes the
dominant mode of [(45),] layup and partially domi-
nant mode of {(90),] layup. The results of the other
more complex stackings are presented in Figs 15-18.

CONCLUDING REMARKS

The natural frequencies and critical velocities of
laminated circular cylindrical shells with fixed—fixed
ends conveying fluids are studied based on a trans-
verse shear deformable theory for the moderately
thick cylindrical shells. Numerical examples are pre-
sented, in which the parameter studies include stack-
ing angle, length-to-radius and thickness-to-radius
ratios. It is found that the thickness-to-radius ratio
has a monotone effect on the natural frequencies and
critical velocities; in contrast, the length-to-radius
ratio has more complex effects on the natural fre-
quencies and critical velocities. Finally, as expected,
the layup angle changes the stiffness of the shell and
hence the natural frequencies as well as the critical
velocities and further, the mode of the lowest funda-
mental frequencies.
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