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Abstract-The natural frequencies and critical velocities of laminated circular cylindrical shells with 
fixed-fixed ends conveying fluids are studied. Equations of motion are derived by the Hamilton principle 
under the scope of the Mindlin-type first-order transverse shear deformable cylindrical shell theory. Fluid 
pressure acting on the wall is obtained through the nonpenetration condition and the assumption of 
ideal flow. Dynamic characteristic equations are then obtained under the assumption of harmonic 
motion. Using linear superposition, the natural frequencies corresponding to each flow velocity are found 
by satisfying dynamic characteristic equation and boundary conditions. Critical velocities are those 
where the natural frequencies vanish, wherein the static divergence, i.e. buckling, occurs. Numerical 
examples are presented, in which the parameter studies include stacking angle, length-to-thickness and 
radius-to-thickness ratios 

INTRODUCTION 

Pipes conveying fluids are very commonly used in the 
petroleum, food, chemical and power industries. The 
dynamic behavior of such structures has received a 
great deal of attention over the last 30 years. The 
decreased natural frequencies with increasing fluid 
velocity causes susceptible pipes to resonate and 
eventually failure through fatigue. In the case of 
larger fluid velocity, the pipes may become unstable 
(divergence or flutter). More than a hundred publi- 
cations have appeared (see the monograph by 
Chen [l]). Most of the works considered the lateral 
motion of long pipes, which were treated as beams 
(for examples, see [2-lo]). When the length-to-thick- 
ness ratio of a pipe is small, cylindrical shell theory 
must be applied [1 I-161. 

Recent advances in composite materials has meant 
that laminated or filament wound cylindrical shells 
have been used more frequently. However, the rel- 
evant works on dynamic behavior of composite cylin- 
drical shells are rather meager. The only exception is 
Chen and Bert’s work [8], which, however, considered 
only long pipes. Hence, this paper deals with the 
problem of laminated circular cylindrical shells with 
fixed-fixed ends conveying fluids, which according to 

Holmes [16] can only buckle but not flutter. The 
natural frequencies at each fluid velocity and 
the critical velocities corresponding to zero natural 
frequency, where static divergence occurs, are found 
for cylindrical shells with various stacking angle, 
length-to-thickness and radius-to-thickness ratios. 
Equations of motion are derived by Hamilton’s prin- 
ciple under the scope of Mindlin-type first-order 
transverse shear deformable cylindrical shell theory. 
Fluid pressure acting on the wall is obtained through 
the continuity condition and the assumption of the 
ideal flow. Dynamic characteristic equations are 
then obtained under the assumption of harmonic 
motion. Using linear superposition, the natural fre- 
quencies corresponding to each flow velocity are 
found by satisfying the dynamic characteristic 
equation and boundary conditions. Numerical 
examples are presented. 

GOVERNING EQUATIONS 

Stress-strain relationship 

The stress-strain relationship for the kth layer 
of the laminated circular cylinder in its material 
principal axes is [ 171 
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The relations between Qil and engineering elastic 
constants are given as 

Q,, = E,(l - v,~vdlS 

QE = J%U - v,,v,,YS 

Q,, = -&Cl - v,,v,,YS 

Qu = G,, Qs = G,x, Qss = G,z 

Qn = (%I + ~31 v23E 1s = (~2 + v,,v,,)~,lS 

Q,, = (~3, + v2,~32)E,IS = (~13 + v12v23bWS 

Q23 = (“32 + v12v31 W2/S = (V23 f “21 v,3)4/S 

s = 1 - v12v21 - v23v32 - v31 vl3 - 2v2, v13v32 

vv= _Cj/Ci. (2) 

Under the coordinate transformation from the local 
material principal axes l-2-3 into the global x-y-z 
axes, the transformed stress-strain relation can be 
shown as 

Moderately thick cylindrical shell theory 

Consider a circular shell. The cylindrical shell 

theory used in this study is based on the improved 
(Fltigge) theory [18]. The following Mindlin-type 
displacement field is adopted 

n = uo = z@ 

v = v” + zvO 

w=wo. (6) 

The related linear strains can be shown to be 

G=~:+zXX 

6~ = (G + zx0)/(1 + z/a) 

Ylu = (BP + ZP”,) + (B”o + zI%)/(l + z/a) 

YXZ = PZ 

~0~ = AX1 + z/a) 

cz = 0 (7) 
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In this work, the usual assumption of uI = 0 is 
made, then eliminating cI from eqn (1) yields 

k\=Ei “i 4: is5 jlj:? 

(4) 

where 

a:,=a..-2 

(5) 

Equation (4) is the extended version of conventional 
plane-stress reduced stress-strain relationship. 

in which a is the mean radius and 
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The equation of motion can be obtained through 
the application of Hamilton’s principle. Let p, denote 
the density of the shell. The kinetic energy T, strain 
energy V and external work W done by internal fluid 
pressure p* can be written as follows: 

L n 

IS s hi:! 

(22 + ti2 + ti2) 
0 -n -h/2 

x (1 + z/a@ dx d6’ dz (9) 

x (1 + z/a)a dx d0 dz, i, j =x, r, 0 (10) 

*L * 

w= is p *wa dx dt’. (11) 
0 -Z 

Thus, according to the Hamilton principle one can 
write 

6 6XLJX2 
(T-V+ W)dVdl=O (12) 

which can be shown to lead to the set of equations of 
motion 

32, m aw 
&-Co:- +z - N,,=a3hpsy+ap* 

ax at (13) 

and the set of associated boundary conditions 

N&i0 = 0 

N CO 68’= 0 

M,&i” = 0 

Mxo68” = 0 

Dimensionless Velocity 

Fig. 1. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] laminated cylindrical 

shell with thickness-to-radius ratio h/a = 0.05. 

in which LX = h2/(12a2), and 

0 .oo 1.00 2.00 3.00 4.00 

Dimensionless Velocity 

Fig. 2. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] laminated cylindrical 

shell with thickness-to-radius ratio h/a = 0.04. Qxc5~‘0 = 0 (14) 
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Only inviscid and incompressible fluid is con- 
sidered in this work. Thus the velocity field of fluid 
can be expressed as 

(15) 

h/o = 0 03 
I/a = 25 
layer - toI 

1 a* 
vu=-- 

r dfl 

(16) 

in which U is the uniform (unperturbed) fluid velocity 
along the axial direction and $ is the perturbed 
velocity potential. Let p, denote the density of the 
fluid. The fluid pressure p* can be found through 
the potential flow theory and the nonpenetration 
condition at the wall, which turns out to be [14] 

P*(x>e,t)= -P,~~[~+ugJwl,~i 
a 

n + nr,,+r;;.w 

a a2 

x at+% [ 1 WI,=, (17) 

in which I,, is the modified Bessel function of the first 
kind, order n. 

To find the natural frequencies, we assume the 
following harmonic forms of the displacement field 

lb0 2 bo 3’00 

DImensIonless Velocity 

Fig. 3. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] laminated cylindrical 

shell with thickness-to-radius ratio h/a = 0.03. 
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in which 1, n and w are respectively the longitudinal 
wavenumber, circumferential wavenumber and 
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Dimensionless Veloaty 

Fig. 4. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] laminated cylindrical 

shell with thickness-to-radius ratio h/a = 0.02. 
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natural frequency. Now define the following 
dimensionless quantities 

17, = IA (I 

Co = voja 

Go = v, 

W. = we/a 

t= t/T,, 

R = w/w0 

l7 = u/u, 

To=ad%% 

uo = ,/Eo IP, . 

Then (18) can be rewritten in the following form 

u” = A exp 

u”=Bexp 

v”=Dexp 

(19) 

Substituting the equations (7), (17)-(19) and the 
stress-strain relations of each orthotropic layer [ 151 
into (13), one can obtain the following dynamic 
characteristic equations 

Details of ai, are given in the Appendix. To obtain 
nontrivial solutions, the determinant, denoted asf, of 
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Dimensionless Velocity 

Fig. 5. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] laminated cylindrical 

shell with thickness-to-radius ratio h/a = 0.01. 

the above homogeneous set of equations must vanish, 
which can formally be written as 

f(A,i’l, ~,nn;&,I/h,a/h)=O. (21) 

Given a dimensionless fluid velocity 0 and circum- 
ferential wavenumber n, one then solves the above 
equation to yield a set of 1, for any estimated 
frequency R. The correct R is the one that the 
deformation of the cylindrical shell formed by the 
corresponding set of Lj must satisfy the appropriate 
set of boundary conditions (14). To this end, the true 
deformation of the cylindrical shells can be written, 
by mode expansion, as 

cc 
u”= 1 A,exp i 

j=l [( 
3, +ne +Q? a 

> 

cc 

u“= c B,exp 
1 
-12 +ntl +Qi 

,=I a > 

11.5, 

Fig. 6. Effect of h/a on the dimensionless frequencies of 
a [(0),] laminated cylindrical shell with zero fluid velocity. 
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The boundary conditions specified by eqn (14) 
should be able to be satisfied by the above equations 
if the correct set of A,, which depends on the 
dimensionless frequency a, is used. If so, then the 
estimated value of R is correct. Otherwise, iteration 
is necessary to find the correct R. It should be noted 
that the relations between modal components A,, 
B,, C,, D, can be related to E,, corresponding 
to the eigenvalue Aj, by solving eqn (20). In other 
words, for each longitudinal mode, there is only 
one unknown in the eigenvector, say Ei. Now since 
there are only 10 boundary conditions, 10 lowest 
values of Aj can be picked from the solution of 
eqn (21). Thus the substitution of (22) into (14) will 
result in 

PI 10x ,oIEJ,o = (0). (23) 

The satisfaction can be reached by setting the deter- 
minant of [B] to zero. 

NUMERICAL RESULTS AND DISCUSSION 

The following dimensionless material constants for 
a single layer, in its material principal axes, are used 
in the numerical calculation, in this paper 

E,/E,=21, E21Eo=E,/Eo= 1.7 

G,JE,, = G,JE, = 0.65, G,,/E, = 0.639 

pi/p3 = 0.001362. (24) 
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Fig. 7. Effect of h/a on the dimensionless critical velocities 
of a [(O),] laminated cylindrical shell when the natural 

frequencies vanish. 

Dfmensionless Velccity 

Fig. 8. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of [(O),,] cylindrical shell with 

h/a = 0.02 and I/a = 15. 

In addition, the clamped boundary conditions at both 
ends are used 

jo = 0 

rjo = 0 

p” = 0 

1.60 2.bO 
Dimensionless Velocity 

Fig. 9. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] cylindrical shell with 

h/a = 0.02 and l/a = 15. 
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I/o I45 
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i 
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Fig. 10. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(0),] cylindrical she11 with 

h/a = 0.02 and l/a = 15. 

WO=O. (25) 

The results are presented in Figs 1-18, which are 
discussed below. In the figures m = 1,2,3 represents 
the first, second and third lowest fundamental 
frequencies. 

1. Effect of thickness-to-radius ratio 

Figures l-5 show the relationship of the dimen- 
sionless natural frequencies vs dimensionless velocity 
of a [(0),] cylindrical shell under various values of the 
thickness-to-ratio h/a. As it is already well known, 
the natural frequencies decrease as the fluid velocity 
increases. The circumferential mode n = 2 (which 
corresponds to an elliptical shape of the deformed 

0 oh 
,000 ,500 2oclo 2502 3000 3500 4000 4500 soco 

‘/a 

Fig. Il. Effects of l/a on the dimensionless natural 
frequencies at zero fluid velocity. 

IO 20 00 3000 4000 50 00 60 00 7000 8, 

I/O 

0 

Fig. 12. Effect of l/a on the dimensionless natural 
frequencies on the dimensionless critical velocity when the 

natural frequencies vanish. 

cross-section) is the dominant mode. Figure 6 shows 
the effect of h/a on the dimensionless frequencies 
when the fluid velocity is zero; in contrast, Fig. 7 
shows the effect of h/a on the dimensionless critical 
velocities when the natural frequencies vanish. It is 
seen from Fig. 6 that the natural frequencies are 
affected more by the shell thickness when there are 
more circumferential deformation (larger n). In the 
case of n = 1, which corresponds to rigid body move- 
ment of the cross-section, the thickness has almost 
no effect on the dimensionless natural frequencies. In 
contrast, all of the dimensionless critical velocities are 
affected by the ratio h/a as revealed in Fig. 7. 

2. Eflect of length-to-radius ratio 

Figures 8-10 show the relationship of the 
dimensionless natural frequencies vs dimensionless 

Dimensionless Velocity 

Fig. 13. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(90),] cylindrical she11 with 

h/a = 0.02 and l/a = 25. 
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h/o I 0 02 

000 050 1.00 1.50 200 

Dbmensfonless Velocity 

Fig. 14. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(45),] cylindrical shell with 

h/a = 0.02 and l/a = 25. 

velocity of [(0),] cylindrical shell with h/a = 0.02 
under various values of the length-to-radius ratio I/a. 
As the figures show, the dimensionless natural fre- 
quency curves corresponding to various modes get 
closer as the value of l/a becomes larger. In the case 
of l/a = 45, the lowest natural frequency switches its 
mode from n = 2 to n = 1 near the value 0.65 of the 
dimensionless fluid velocity. Similar to Figs 6 and 7, 
Figs 11 and 12 summarize the effects of l/a on the 
dimensionless natural frequency at zero fluid velocity 

h/a = 0.02 

1 bo 2.60 0 

DImensIonless Velocity 

050 l.dO l.kO ? ‘00 
DimensIonless Velocity 

Fig. 15. Relationship of the dimensionless natural frequency Fig. 17. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of [(O/90/90/0)] cylindrical shell vs dimensionless velocity of a [(45/ - 45/ - 45/45)] cylindrical 

with h/a = 0.02 and l/a = 25. shell with h/a = 0.02 and I/a = 25. 

16 
h/a = 0.02 
I/o : 25 

5 
& 
L 8 

:: 

I 
i 6 

s 
E 4 .- 
a 

2 

0 
000 1 00 2 00 JO 

Dimensionless Veloctty 

Fig. 16. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(O/90/90/0)] cylindrical shell 

with h/a = 0.02 and l/a = 25. 

and on the dimensionless critical velocity. In contrast 
to the monotone effects of h/a, it is shown that the 
effects of l/a are more complex and depend on each 
individual mode. 

3. Effect of stacking angle 

Figures 13 and 14 show the relationship of the 
dimensionless natural frequencies vs dimensionless 
velocity of [(90),] and [(45),] cylindrical shell with 
h/a = 0.02 and l/a = 25. Compared to Fig. 2, these 

h/a = 002 
I/a = 25 
layer --- 
1(40Y-4”,/ 14:’ 451: 

* n =2 
01 n q 3 
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h/a = 0 02 
I/a = 25 
layer --- 
C(45/-45/45/-45x 

o.so 1.60 l.SO 260 

Dlmenslonless Veioclty 

Fig. 18. Relationship of the dimensionless natural frequency 
vs dimensionless velocity of a [(45/ -45/-45/45)] cylindrical 

shell with h/a = 0.02 and I/a = 25. 

two figures show the effects of strengthening in the 
circumferential direction and weakening in the 
longitudinal direction due to the layup angle. This 
is particularly noticeable when n = 1 becomes the 
dominant mode of [(45),] layup and partially domi- 
nant mode of [(90),] layup. The results of the other 
more complex stackings are presented in Figs 15-18. 

CONCLUDING REMARKS 

The natural frequencies and critical velocities of 
laminated circular cylindrical shells with fixed-fixed 
ends conveying fluids are studied based on a trans- 
verse shear deformable theory for the moderately 
thick cylindrical shells. Numerical examples are pre- 
sented, in which the parameter studies include stack- 
ing angle, length-to-radius and thickness-to-radius 
ratios. It is found that the thickness-to-radius ratio 
has a monotone effect on the natural frequencies and 
critical velocities; in contrast, the length-to-radius 
ratio has more complex effects on the natural fre- 
quencies and critical velocities. Finally, as expected, 
the layup angle changes the stiffness of the shell and 
hence the natural frequencies as well as the critical 
velocities and further, the mode of the lowest funda- 
mental frequencies. 
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APPENDIX 
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