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NUMERICAL AND EXPERIMENTAL STUDIES ON ALUMINUM

SANDWICH PLATES OF VARIABLE THICKNESS

Jeng-Shian Chang*, Hong-Chung Chen, and Han-Ting Lin

ABSTRACT

The elastic flexural behavior of static deformation and free vibration of sandwich
plates of variable thickness is investigated numerically and experimentally.  In the analysis,
the face plates are treated as Marguerre shells, and the core is assumed to be an antiplane
core and to provide resistance to transverse shear and normal stresses only.  Displace-
ment continuity conditions are used at the interfaces between face plates and the core to
derive the displacement field.  Energy formulations are obtained and solved by the
isoparametric finite element method.  The numerical results are obtained to compare
with the results in the existing literature and to show the effects of taper constant and
face plate thickness on deflections and natural frequencies.  Finally, experimental works
based on the method of holographic interferometry are conducted to confirm the theo-
retical findings.  Experimental and numerical data agree quite well in this work.
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I. INTRODUCTION

Sandwich plates have been adopted in the struc-
tures of aircrafts, ships and architecture because of high
specific bending stiffness ratio, damping character, nice
fatigue property and variety of design.  It is necessary
to develop an analytic theory for sandwich plates of
variable thickness for the streamlined requirement of
airfoils, empennages, propellers, etc.  Most studies on
sandwich construction followed elastic plate and shell
theories.  In the analysis of uniform sandwich plate
with isotropic or orthotropic characters, Plantema (1969)
and Allen (1969) provided general discussion on bending
and stability of sandwich plate.  In addition, transverse
shear deformation should be considered.  Reissner (1947;
1948) showed that the formula for sandwich plate was
the same in form as the uniform plate formula, in which
shear strain was considered, assuming membrane-plate
bending stiffness was neglected and the antiplane core
with stress parallel to plate was neglected.  In vibra-
tion analysis, Yu (1960a; 1960b) found that transverse

shear deformation, moving inertia of face plate and
core-plate and rotation inertia of the middle face of
the sandwich plate all should be taken into consideration.

Furthermore, Huang and Alspaugh (1974) and
Lee and Yu (1985) adopted the theory of uniform
thickness plates and local stiffness varies with posi-
tion of plate to study sandwich plates of variable
thickness.  Paydar and Libove (1986; 1988) and
Paydar (1988) considered static behavior of variable-
thickness sandwich plates, assuming the faces to be-
have as membranes, and showed that significant
errors could arise when neglecting the contribution
of the face plate membrane forces to the transverse
shear in weak core cases.  In addition, in their ex-
perimental work, Libove and Lu (1989; 1991)  con-
firmed the slope effect of sandwich plates of variable
thickness.  However, their work could not be ex-
panded for general cases.

Following the above, Chang and Chen (1992)
considered the face plates of sandwich plates of vari-
able thickness as constant thicknesses and assumed
them to act as Marguerre shallow shells to take into
account both membrane forces and bending moments,
but with the non-linear terms neglected owing to the
small amplitude of vibration assumed.  In addition,
the core was assumed to be an antiplane core which
bears transverse normal and shear stresses only.
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In this paper, a similar model has been adopted.
Also, two relatively simplified models are proposed
for efficiency in computation.  The deflection and vi-
bration of aluminum sandwich plates of variable
thickness are studied numerically and experimentally
based on holographic interferometry.  The numerical
results have been compared with the analytic solu-
tions in the existing literature to show the correct-
ness and limitations of the three proposed models.
Finally, the holographic experimental data agree
rather well with the numerical predictions, which
confirm the proposed theoretical models in this work.

II. GENERAL FORMULATIONS

1. Displacement, Strain, Stress and Energy Equa-
tions

The core of a sandwich plate is allowed to be
variable in thickness in both in-plane directions and
is made of low density material, thicker than face plate.
Blankets of core are the upper and lower stiffer alu-
minum face plates.  The notations for the displace-
ments and the geometric relations of the sandwich
plates are shown in Fig. 1.  The subscripts f = 1, 2 are
used to denote quantities associated with the upper
and lower face plates, while the subscript c refers to
quantities associated with the core.  Let z = zf(x, y)
denote the thickness direction of global coordinates
of the undeformed middle surface of the plate.  The
local coordinates of the face plate, referred to its own
mid-plane, are represented by (x, y, zlf).  In Marguerre
shallow shell theory (Marguerre, 1938), with a Mindlin
formulation (Pica and Wood, 1980), the gross dis-
placements uf = [uf, vf, wf]

T at (x, y, zlf) are expressed
as functions of the mid-plane translations of the face
plates –uf, 

–vf and –wf and the rotations θfx and θfy as

u f =
u f
vf
wf

=
u f + zlfθ fx

v f + zlfθ fy

w f

. (1)

The position vectors of an arbitrary point of the face
plate, before and after deformation, are given by rf

(i)

and rf
(f), respectively:

r f
(i) =

x – zlf

∂z f

∂x

y – zlf

∂z f

∂y
z f + zlf

, r f
( f ) =

x + u f + zlf(θ fx –
∂z f

∂x
)

y + v f + zlf(θ fy –
∂z f

∂y
)

z f + w f + zlf

.

(2)

Neglecting thickness of adhesive film and as-
suming first order deformation, the displacement of
the core uc, can be written as

uc = 1
2(u1a + u2a) +

zc
tc

(u1a – u2a)

=
uc

vc

wc

=

1
2( u1 + u2 – d1θ1x + d2θ2x)

+
zc
tc

( u1 – u2 – d1θ1x – d2θ2x)

1
2( v1 + v2 – d1θ1y + d2θ2y)

+
zc
tc

( v1 – v2 – d1θ1y – d2θ2y)

1
2( w1 + w2) +

zc
tc

( w1 – w2)

,

(3)

where u1a and u2a are displacements at the interfaces
between the core and two face plates 1, 2 respectively,
tc is the thickness of the core and may be different
from point to point, and zc is the local co-ordinate in
the thickness direction of the core.

From Green’s strain tensor definition (Washizu,
1975), the strains of the face plate, before and after
deformation, are given by e(i)

fij and e(f)
fij respectively:

e fij
(i) = 1

2[
∂r f

(i)

∂xi
⋅
∂r f

(i)

∂xj
–

∂r f
(0)

∂xi
⋅
∂r f

(0)

∂xj
] (4)

e fij
( f ) = 1

2[
∂r f

( f )

∂xi
⋅
∂r f

( f )

∂xj
–

∂r f
(0)

∂xi
⋅
∂r f

(0)

∂xj
] . (5)

Substituting Eq. (2) into (4) and (5), and neglecting
the non-linear terms of small displacements –uf, 

–vf and
 –wf, gives the linearized Green’s strains of the plates,
namely, the in-plane strain {ef} and the out-of -plane
strain {γf}, as

Fig. 1 Displacements and geometry of a variable thickness sand-
wich plate
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{e f} =
e fx
e fy
γ fxy

=

∂ u f

∂x
∂ v f

∂y
∂ u f

∂y
+

∂ v f

∂x

+

∂z f

∂x
∂ wf

∂x
∂z f

∂y
∂ wf

∂y
∂z f

∂x
∂ wf

∂y
+

∂z f

∂y
∂ wf

∂x

+ zlf

∂θfx

∂x
∂θfy

∂y
∂θfx

∂y
+

∂θfy

∂x

= {ef01} + {ef02} + zlf{kf0} = {ef0} + zlf{kf0}

(6)

{γ f} =
γ fyz
γ fzx

+
θ fy +

∂ w f

∂y

θ fx +
∂ w f

∂z

, (7)

where {ef 0} are the total strains at the face plate of
mid-plan, which include {ef01}, the general membrane
strains, and {ef02}, the additional linear membrane strains
due to the undeformed shape of the face plate; {kf 0}
and {γf} are the bending strains and transverse shear
strains. Note that the term {ef 02} takes into account
the effect of variable thickness of core or non-flat-
ness of the face plates of shallow shell type sandwich
plates; in the case of uniform thickness sandwich plates,
zf is constant and {ef02} vanishes.  Due to the assumption
of antiplane core, only the normal strain ecz on the z
plane and transverse shear strain {γc} of the core should
be considered and may be written as

ecz =
∂wc

∂z
= 1

tc
( w1 – w2) (8)

{γc} =
γcyz
γczx

=

∂vc

∂z
+

∂wc

∂y
∂uc

∂z
+

∂wc

∂x

=

1
tc

( v1 – v2 – d1θ1y – d2θ2y)

+ 1
2(

∂ w1
∂y

+
∂ w2
∂y

)

1
tc

( u1 – u2 – d1θ1x – d2θ2x)

+ 1
2(

∂ w1
∂x

+
∂ w2
∂x

)

+ zc

1
tc

(
∂ w1
∂y

–
∂ w2
∂y

)

1
tc

(
∂ w1
∂x

–
∂ w2
∂x

)

= {γcc} + zc{γcl}, (9)

where {γcc} and {γcl} represent the constant and lin-
ear terms of transverse shear deformation of the core,
respectively, and are independent of zc.

For a linear elastic orthotropic material, the con-
stitutive law can be written as (Jones, 1975)

σ x
σ y
τ xy
τ yz
τ zx

=

Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0
0 0 0 Q44 Q45

0 0 0 Q45 Q55
f

e fx
e fy
γ fxy
γ fyz
γ fzx

,

(10)

where  
–
Qij is the transformed reduced stiffness.

On the face plates, the second kind of piola
kirchhoff stresses {σf} and {τ f} can be related to the
Green’s strains {ef} and {γf} as

σ f =
σ fx
σ fy
σ fxy

=
Q11 Q12 Q16

Q12 Q22 Q26

Q16 Q26 Q66 f

e fx
e fy
γ fxy

= [ Q ] f({e f 0} + zlf{k f 0}) (11)

τ f =
τ fyz
τ fzx

=
Q44 Q45

Q45 Q55 f

γ fyz
γ fzx

= [ G ] f{γ f} .

(12)

The stress-strain relationships of the core can be writ-
ten as

σcz = Ececz (13)

{τ c} =
τ cyz
τ czx

= [G]c

γcyz
γczx

=
Gc11 Gc12
Gc21 Gc22

γcyz
γczx

,

(14)

where

Gc11 = Gcy′zcos2θc + Gcx′zsin2θc

Gc22 = Gcy′zsin2θc + Gcx′zcos2θc (15)

Gc12 = Gc21 = (Gcy′z – Gcx′z)sinθccosθc

in which, Gcy ′ z and Gcx ′ z are the transverse shear
moduli of the core principal axes x′y′z, and θc is the
angle between the principal axes x′y′  of the core and
global axes xy.

The strain energy Uf and kinetic energy Tf of
the face plate can be expressed as
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U f = 1
2 {σ f}

t{e f}dV
V f

+ 1
2 {τ f}

t{γ f}dV
V f

   (16)

T f = 1
2 ρ f(u f

2+ vf
2 + wf

2)dV
V f

, (17)

where Vf and ρf are the volume and density of the
face plate.

Under the assumption of antiplane, the core is
unable to bear either the in-plane energy or the bend-
ing energy.  So the strain energy of the core is con-
sidered to consist only of the transverse shear strain
energy and normal strain energy in the thick direc-
tion only.  Thus, the strain energy Uc and kinetic en-
ergy Tc of the core can be expressed as

Uc = 1
2 {τ c}

t{γ f}dV
Vc

+ 1
2 σ czeczdV

Vc

(18)

Tc = 1
2 ρc(uc

2+ vc
2 + wc

2)dV
Vc

, (19)

where Vc and ρc are the volume and density of the
core.

2. Finite Element Discretization and the Three Nu-
merical Models

The displacement field {δ} within an element is
given as a function of nine discrete nodal displacements,
namely,

{δ} = Ni{δi}Σ
i = 1

9
(20)

in which Ni are shape functions and the nodal dis-
placements {δi} are

{δi} = [–u1i, 
–v1i, 

–w1i, θ1xi, θ1yi, 
–u2i, 

–v2i, 
–w2i, θ2xi, θ2yi]

t.

(21)

The standard isoparametric finite element discretization
process has been employed for the energy equations
(Zienkiewicz, 1971; Bathe, 1982).  Numerical load-
ing has been accomplished according to the obtained
FEM formulation.

To simplify and accelerate the calculation, the
above model can be further simplified according to
the material properties, geometric characteristics and
accuracy requirements.  There are, totally, three nu-
merical models proposed in this work, namely, MOD-
ELS I, II and III.  MODEL I is the most complete
model which is capable of describing the responses
of varying loadings on sandwich plates of variable
thickness.  In this model, there are 10 degrees of free-
dom in every node of elements, as described in Eq.
(21).  For MODEL II, the assumptions of MODEL I

are all kept except that an incompressible core in
thickness direction is considered.  Thus the deflec-
tions –w1 and –w2 of the upper and lower face plate, the
rotation angles θ1y, θ2y, θ1x and θ2x are all considered
the same.  Thus, there are only 7 degrees of freedom
left in every node of elements for this model, namely,
 –u1, –v1, –u2, –v2, w, θx and θy.  Finally, adding the as-
sumption of considering the face plates as membranes,
which can bear only in-plane stresses, one obtains
MODEL III from MODEL II.  The two degrees of
freedom θx and θy are deleted based on this membrane
assumption, which leaves only 5 degrees of freedom
in every node of elements of MODEL III, namely, –u1,
–v1, –u2, –v2, and w.

III. NUMERICAL EXAMPLES AND
DISCUSSION

Two numerical examples are presented here to
compare with existing analytic solutions and ensure
the suitability of the proposed models in this work.
The first example adopted is that given by Paydar
(1985).  Consider a sandwich square plate with length
a = 0.508 m (20 inch)  and with three edges simply
supported and one edge free.  The thickness tf and
material property of face plates are 2.54 × 10–3 m
(0.1 inch) and isotropic.  The thickness hc0 of the core
is 50.8 × 10–3 m (2 inch) at simple supported edges
and varies unidirectionally from the simply supported
edge to free edge in a linear fashsion as shown in Fig.
2.  A compressive loading of sine function is applied
on the upper surface of the plate.  The material
properties, thickness of core and loading function are
shown as follows,

1. face plates

Ef = 206.85 × 109 Pa (30 × 106 psi); vf = 0.3

2. core

Gcx′z = Gcy′z = 227.54 × 106 Pa (33000 psi)

hc = hco(1 – βξ); ξ = x/a (22)

   S. S.: Simple Support

Fig.2 The square plate with three edges simple supported and
one edge free
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q = q0sinπξsinπη; η  = y/a, (23)

where β is the taper constant of the sandwich plate.
Therefore β = 0 represents a plate of constant thickness;
and β → 1, a plate that tapers to a point at x = a.

The transverse compressive stiffness of the core
here is taken as infinity to compute the deflection,
which is compared with the series solution by Paydar
(1985).  Since the transverse compressive deforma-
tion and stiffness were not considered in Paydar’s
paper, only the comparable MODELS II and III are
adopted in our calculation.  To distinguish the slope
effect and the local bending effect of the face plates,
and the terms {ef 02} and {κ f 0} in Eq. (6), respectively,
four kinds of results, SB, SM, FB and FM, are given.
S, B, M and F are abbreviations for slope, bending,
membrane and flat faces.  So, for SB, both effects
are taken into account; SM takes into the slope effect
terms {ef 02} but without {κ f 0}, which is the same as
for membrane faces; FB keeps {κ f 0} but without
{ef02}; FM does not take these two terms into account.
The numerical results are shown in Fig. 3.  The SM
case in this figure agrees completely with the series
solutions of Paydar (1985), and presents a little de-
viation from the most accurate SB curve as β
increases.  The figure also indicates that neglecting
the slope effect (FB & FM curves) could produce large
errors.

The second example considered is that given by
Libove (1984), in which the beam-like vibration of
sandwich plate of variable thickness was investigated.
Consider a cantilever sandwich plate of variable thick-
ness with length a.  The thickness of core varies lin-
early from hc0 at the clamped edge to some finite
thickness at the free edge end.  The face plates are
isotropic materials.  Thickness tf and Young’s modu-
lus Ef of face plates and shear modulus Gc retain the
correlation,

R =
E ft fh 0

(2a2Gc)
= 0.5 . (24)

Neglecting the mass of the core, a dimensionless pa-
rameter λ  can be written as,

λ = ω
ωr

; ωr =
E ft fh 0

2

2µra
4 , (25)

where ω is natural frequency and µr is the density of
sandwich plate per unit area.  Pick a = 0.508 m
(20 inch) and hc0 = 50.8 × 10–3 m (2 inch).  Mesh
sandwich plate by 4 × 1 element, and constrain the
boundary conditions to only vertical deflection and
longitudinal deformation.  The Poisson’s ratio v was
set to zero to simulate a sandwich beam.  In addition
to the solution of membrane face plates of MODEL

III, solutions based on MODEL II with tf = 2.54 ×
10–3 m, 2.54 × 10–4 m, 2.54 × 10–5 m (0.1 inch, 0.01
inch,0.001 inch) respectively, are also given.  The nu-
merical solutions are compared with the series solu-
tions by Libove (1984) as shown in Table 1.  Three
conclusions can be obtained from Table 1.  First, the
correctness of our FEM codes are verified by the
agreement of MODEL III with Libove’s solution.
Second, the bending stiffness of the face plates can
be neglected when the thickness of face plate is thin.
Third, the dimensionless natural frequency λ  in-
creases as the taper constant β gets large and the or-
der of vibration mode increases when the thickness
of the face plate grows.

IV. EXPERIMENTS AND COMPARISONS
WITH NUMERICAL PREDICTIONS

A series of holographic interferometry experi-
ments on sandwich plates have been done to verify
the correctness of the proposed numerical models.  A
series of square sandwich cantilever plates of vari-
able thickness are used in the experiments as shown
in Fig. 4.  The core is made of hard PU foam with
thickness 15 mm at the clamped edge varying from it
to the free edge linearly, unidirectionally.  The change
rate of thickness can be divided into four cases, β =
0, 0.3, 0.5 and 0.9 in which β = 0 represents no taper.
The face plate is an aluminum square plate of 200
mm × 200 mm, 1.61 mm in thickness.  The clamped
part is an extended part of the sandwich plate with a
200 mm × 50 mm × 15 mm iron core included.  The
laser path is arranged as in Fig. 5 according to the
holographic interferometry of standard off-axis type.

0.40

0.30

0.20

0.10

0.00
0.00 0.20 0.40 0.60 0.80 1.00

SB (MODEL II)

SM (MODEL III)

FB

FM

*Paydar’s (1985) solution coincides
  with SM curve

w
/(

2a
4 /

E
ft

fh
0)2

Fig.3 The relationship between taper constant β and dimension-
less deflection at middle point of free edge of square sand-
wich plate of variable thickness
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The material constants of hard PU foam of core
can be obtained via Young’s modulus, density and
shear modulus test according to standards of ASTM
D1621-73, ASTM D1622-63 and ISO1922-1981.  The
material type of aluminum face plate is 6061-T6.
Material constants for the test specimen are listed as
follows,

Aluminum

Ef = 68.67 × 109 Pa, vf = 0.345, ρf = 2700 kg/m3,

tf = 1.61 × 10–3 m

PU foam

Ec = 34.9 × 106 Pa, Gc = 18.96 × 106 Pa,

ρc = 114.5 kg/m3

Adhesive film

ρc = 0.3 kg/m2

A 10 × 10 element is adopted to mesh the speci-
men uniformly, according to the requirements of con-
centrated load and convergence of high order mode
of vibration.

1. Static Experimental Results and Comparisons
under Concentrated Load

Static experiments were executed by double ex-
posure method to investigate the light interference of
specimen before and after the concentrated load being
applied.  The holographic interference fringes are digi-
tized and then compared with numerical predictions.
The positions of concentrated loads are shown in Fig.
6.  Two loading cases are considered: one is 200 g

Table 1 Comparisons of dimensionless natural frequency λλλλλ of cantilever sandwich plate of variable thick-
ness

β 0 0.5 0.9
Modal

Method λ λ λ

Libove (1984) 1.893 2.032 2.156

MODEL III 1.892 2.032 2.158

1 tf = 2.54 × 10–5 m 1.893 2.033 2.159
MODEL II tf = 2.54 × 10–4 m 1.903 2.042 2.169

tf = 2.54 × 10–3 m 2.015 2.150 2.282

Libove (1984) 5.908 5.195 4.512

MODEL III 5.903 5.183 4.528

2 tf = 2.54 × 10–5 m 5.906 5.201 4.533
MODEL II tf = 2.54 × 10–4 m 5.983 5.234 4.570

tf = 2.54 × 10–3 m 6.364 5.654 5.016

3

2

1

8
5

6

4

5

6

5 7

1. He-Ne laser
2. Shutter
3. Beam steerer
4. Adjustable beamsplitter

5. Plane mirror
6. Spatial filter
7. Sandwich plate
8. Hologram

Fig. 4  Specimen and its method of fixation

Fig. 5  Arrangement of laser path
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applied at middle point A, and the other is 100 g ap-
plied at corner point B.  The numerical results of MODEL
I are plotted as contours of transverse displacements
which correspond to the fringes of holographic
interference.  For an example, β = 0.5, the results of
experimental data and numerical predictions are shown
in Fig. 7, which indicates that the numerical predic-
tions are in good agreement with the experimental data
in trend and fringe numbers.  A detailed comparison
for the transverse displacement at the opposite side of
the forced point applied at the middle of the free edge
is selected, as shown in Fig. 8.  The displacements
predicted by the three models and from the experiments
are compared.  It is observed that MODEL I has the
best agreement with experimental measurement.
MODEL II yields an acceptable solution.  However,
MODEL III produces unacceptable predictions, due
to the neglect of the bending effect of the face plates.

2. Dynamic Experimental Results and Compari-
sons under Forced Vibration

The purposes of the dynamic experiment are mea-
suring natural frequency and recording modes of
resonance.  Wet processing of real time holographic
interferometry (Achia, 1972; Biedermann, 1970) is used
to identify the resonant response.  To obtain a clearer
hologram, vibration mode is recorded by time-aver-
age holographic interferometry.  The arrangement of
the excitement and the measuring of the vibration of
sandwich plate is shown in Fig. 9.  The vibration of
the specimen is induced by sound waves behind the
plate about 1 mm, which are produced by a speaker
after inputting the signals produced by a generator and
magnified by an amplifier.  The vibration of sandwich
plates can be observed immediately through a holo-
gram which contains the interference fringes result-
ing from the light of the vibrational object and the virtual
image of the static object, when the specimen is vibrating.
Tuning the frequency of the function generator slowly,
until a stable and clear fringe map occurs, the state is
one of the vibration modes and the frequency is the

A B

(a) Applied at middle point A (b) Applied at corner B

Fig. 6  Position of concentrated load

Fig. 7 Holograms (left) and contours (right) of displacement of
aluminum sandwich plate with β = 0.5 under concentrated
loading
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Fig. 8 Displacement of opposite side of forced point of alumi-
num sandwich plate with 200 g concentrated load applied
at middle point of free edge

Accelerometer

Accelerometer amplifier

Oscilloscope

Speaker

Power amplifier

Function generator

Fig. 9 The arrangement of exciting and measuring of vibration
of sandwich plate

(a) 200 g Concentrated load applied at middle point

(b) 100 g Concentrated load applied at left upper corner



858 Journal of the Chinese Institute of Engineers, Vol. 29, No. 5 (2006)

so-called resonant frequency at this vibration mode.
In order to ensure that the vibration is not the com-
bined response of multiple modes, a subminiature ac-
celerometer is attached at different locations on the
plate to measure the vibration frequency.

During the dynamic experiments, the natural fre-
quencies and vibration modes of the lowest 16 orders
were measured for every specimen of sandwich plate.
Because of the anti-symmetric nature of most of the
vibration modes and the importance of the bending
effect, the numerical simulations were performed based
on the analytic MODEL II for comparison.  Compari-
son results of the natural frequencies are shown in
Table 2 and the errors are under 7.1%.  For the pur-
pose of comparison and ensuring every frequency
measured in experiments is the true natural frequency,
every vibration mode of each specimen had a holo-
gram taken and it then was compared with the nu-
merical prediction of the vibration mode.  Taking β
= 0.5  as an example, the vibration modes recorded
from the experiments and predicted by numerical simu-
lation are shown in Fig. 10, respectively.  It is easily
observed that the consistency between the experiments
and the numerical predictions is extremely good.

It can be inferred from the above discussions,
that responses of vibration and the frequencies of vi-
bration modes can be predicted correctly by MODEL
II.  Especially, the mode transfer phenomenon, oc-
curring between mode 13 and 14, as shown in Table
2, induced by the change of taper. constant β, can be
grasped, too.

From the numerical and the experimental results,

we can see that the natural frequencies decrease as
the taper constant β increases except for modes 1 and
2.  The natural frequencies of the sandwich plate are
affected by the dual factors, namely, the local stiff-
ness of the sandwich plate and the effect of variable
thickness.  As β increases, the local stiffness of the
sandwich plate decreases due to the smaller local
thickness while the effect of variable thickness in-
creases (which is equivalent to raising the stiffness
of bending).  At lower modes, the effect of variable
thickness has a larger impact on the sandwich plate.
However, at higher modes with more nodal lines, the
effect of a decrease in the local stiffness of sandwich
plate overwhelms the effect of variable thickness and
therefore decreases the natural frequency.

V. CONCLUSIONS

In this paper, three numerical models are proposed.
Based on these models, finite element codes have been
developed to solve the deflection and vibration prob-
lems of aluminum sandwich plates with variable
thickness.  The deformation of face plates and core is
assumed to vary linearly along the thickness direction.
Membrane force, bending moment, shear force and
various coupled forces are all taken into account.
Marguerre shell theory is adopted to handle the ef-
fect of variable thickness of core or non-flatness of
the face plates of shallow shell type sandwich plates.

From the comparison of our numerical simula-
tion with the existing solutions in the literature, some
observations can be concluded.  The most important

Table 2 Natural frequencies of aluminum sandwich plate obtained by experiment and numerical
calculation.  Mode number shown is the mode frequency order for the flat plate, and (m, n) is
the number of nodal lines in the mode shape, parallel to y-axis and x-axis respectively

β = 0.0 β = 0.3 β = 0.5 β = 0.9

Mode EXP. NUM. ERR. EXP. NUM. ERR. EXP. NUM. ERR. EXP. NUM. ERR.
(Hz) (Hz) (%) (Hz) (Hz) (%) (Hz) (Hz) (%) (Hz) (Hz) (%)

  1(0,0) 229 219 -4.2 238 235 -1.5 251 248 -1.4 296 286 -3.4
  2(0,1) 413 397 -3.8 395 384 -2.7 389 379 -2.6 399 388 -2.9
  3(1,0) 730 693 -5.0 688 664 -3.5 663 644 -2.9 625 604 -3.4
  4(1,1) 905 858 -5.2 860 822 -4.4 826 797 -3.5 792 753 -4.9
  5(0,2) 997 948 -5.0 939 888 -5.4 887 844 -4.8 814 757 -7.1
  6(1,2) 1294 1231 -4.9 1243 1180 -5.1 1188 1144 -3.7 1141 1075 -5.8
  7(2,0) 1337 1281 -4.2 1285 1228 -4.5 1232 1188 -3.6 1180 1104 -6.4
  8(1,3) 1457 1389 -4.7 1390 1332 -4.2 1331 1289 -3.2 1252 1179 -5.8
  9(0,3) 1522 1461 -4.0 1459 1378 -5.6 1374 1317 -4.2 1269 1215 -4.2
10(2,2) 1760 1701 -3.4 1722 1639 -4.8 1636 1594 -2.6 1587 1507 -5.1
11(1,3) 1834 1737 -5.3 1772 1672 -5.7 1688 1625 -3.8 1630 1531 -6.1
12(3,0) 2027 1945 -4.1 1942 1874 -3.5 1858 1822 -2.0 1790 1708 -4.6
13(3,1) 2109 2039 -3.3 2023 1969 -2.7 1950 1917 -1.7 1880 1810 -3.8
14(0,4) 2260 2166 -4.2 2167 2058 -5.0 2055 1974 -3.9 1868 1799 -3.7
15(2,3) 2273 2169 -4.6 2208 2100 -4.9 2118 2050 -3.2 2056 1954 -5.0
16(3,2) 2408 2322 -3.6 2332 2251 -3.5 2245 2198 -2.1 2190 2093 -4.4
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parameters which affect the behaviors of sandwich
plate of variable thickness are the ratio of flexural
stiffness to transverse shear stiffness, slope of the
core, and thickness ratio of face plate to core.  Large
errors can be produced, if bending effect of the face
plates is neglected.  The effect of variable thickness
on frequency reaches its maximum at the lowest vi-
bration mode, and decreases when the vibration mode
gets higher; on the other hand, the effect of bending

stiffness of face plate increases when the vibration
mode goes down.

The holographic interferometry experiments
have verified the correctness of analytic modes pro-
posed in this paper.  It is shown that MODEL I can
simulate the deflection of a specimen in a static load-
ing experiment.  In addition, the simpler MODEL II
can predict the natural frequencies and vibration
modes sufficiently accurately, too.

Fig. 10  (a) Holograms (left) and contours (right) of vibration modes of aluminum sandwich plate with β = 0.5, mode 1~8

mode 1 mode 2

mode 3 mode 4

mode 5 mode 6

mode 7 mode 8
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NOMENCLATURE

d1, d2 a half of the thickness of upper and lower
face plates (m)

Ec, Ef Young’s modulus of the core and the face
plates (N/m2)

ecz normal strains on the z plane of the core
e(i)

fij, e
(f )
fij strains of the face plates before and after

deformation

ef in-plane strains of the face plates
ef 0 total membrane strains at the face plate

of mid-plan
ef 01 general membrane strains
ef 02 additional linear membrane strains due to

the undeformed shape of the face plate
f f = 1, 2 denotes upper and lower face

plates respectively
[G]c transverse shear modulus matrix of the

Fig. 10  (b) Holograms (left) and contours (right) of vibration modes of aluminum sandwich plate with β = 0.5, mode 9~16

mode 9 mode 10

mode 11 mode 12

mode 13 mode 14

mode 15 mode 16
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core (N/m2)
Gcy′z, Gcx′z transverse shear modulus of the core

principal axes x′y′z (N/m2)
hc thickness at an arbitrary point of the core

(m)
hc0 reference thickness of the core (m)

kf 0 bending strains
Ni shape functions
[
 –
Q]f matrices of the transformed reduced stiff-

ness of the face plates (N/m2)
 –
Qij transformed reduced stiffness (N/m2)
q, q0 loading and amplitude (N/m2)
R ratio of bending stiffness and transverse

shear stiffness
rf

(0) position vectors of an arbitrary point on
the mid-plane of face plates (m)

rf
(i), rf

(f) position vectors of an arbitrary point of
the face plate before and after deforma-
tion (m)

Tf , Tc kinetic energy of the face plate and the
core (N . m)

tc thickness of the core (m)
tf thickness of face plates (m)
Uf, Uc strain energy of the face plate and the core

(N . m)
Vf, Vc volume of the face plate and the core (m3)
u1a, u2a displacements at the interfaces between

the core and two face plates 1, 2 (m)
uc displacement of the core (m)
uc, vc, wc displacements of core in x, y, z directions

(m)
uf displacement vector of face plates (m)
uf, vf, wf displacements of face plates in x, y, z di-

rections (m)
 –uf, 

–vf, 
–wf displacements of mid-plane of face plates

in x, y, z directions (m)
x, y, z global coordinate system (m)
zc local coordinate in z direction of the core

(m)
zf local coordinate in z direction of mid-

plane of undeformed face plate f (m)
zlf local coordinate in z direction of arbitrary

point of upper or lower face plates (m)
β taper constant of sandwich plate with lin-

ear thickness variation
{δ} displacement field within an element (m)
{δi} nodal displacements (m)
γc shear strains on the z plane of the core
γcc, γcl constant and linear terms of transverse

shear deformation of the core
γf out-of-plane strain of the face plates
λ dimensionless parameter of circular natu-

ral frequency, λ  = ω/ωr

µr mass per unit of middle-surface area, due
to core and face sheets combined

vf Poisson’s ratio of the face plates
θc angle between the principal axes x′y′  of

the core and global axes xy (rad)
θfx, θfy deformed angles of mid-plane of face

plate f on xz and yz plane (rad)
ρa density of the adhesive film (kg/m2)
ρf, ρc density of the face plate and the core (kg/

m3)
σcz normal stresses on the z plane of the core

(N/m2)
{σf}, {τ f} second kind of piola kirchhoff stresses (N/

m2)
τc normal stresses of the core (N/m2)
ω circular natural frequency (rad/sec)
ωr reference circular natural frequency (rad/

sec)
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