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ABSTRACT

In this paper, a discrete system model and its equation of motion for beams with arbitrary supports at
two ends are established. These supports include elastic, rigid and free supports in translation and

rotation directions.

Based on theory of oscillatory matrices, a series of qualitative properties of

frequencies and modes of this system are derived. The basic properties include: non-zero frequencies
are distinct; the ith displacement mode has i — 1 nodes; nodes of ith mode and (i + 1)th mode interlace.
Some additional important qualitative properties owned by rotation modes and strain modes are

given as well.
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1. INTRODUCTION

The quantitative analysis of frequencies and modes
of engineering structures is usually needed and high
precision is required. In these cases, the experimental
or computational approaches are employed. While, in
some cases, only qualitative properties of frequencies
and modes interest us, in other words, the knowledge of
law, but not quantities is paid to attention. For exam-
ple: (1) What general properties does the frequency
spectrum of the structure have?  Are there any
repeated frequencies? What general properties does
their mode shape have? How many nodes does a
certain mode have? (2) For some special structures (e.g.,
mirror symmetric structures, axisymmetric structures
and cyclic periodic structures), what characteristics do
the modes and frequency spectrum have? (3) With
structure parameters (stiffness, masses, constrains and
shape) changing, how will frequencies and modes
change consequently? To investigate these qualitative
properties, mathematical analyzing approach is needed
to be employed but not experimental or numeral
approach. Therefore we call approach such as this,
investigation of qualitative properties of frequencies

* Professor

and modes by applying analytical approach, theoretical
mode analysis.

What do the qualitative properties of frequencies and
modes mean to theory of vibration and its application?
At least, they mean: (1) They are important criteria to

.check the results of experiments and calculations. For

example, consider a rocket regarded as a slender beam,
if two bending modes, one with two nodes, another one
with three nodes that do not strictly interlace with those
two nodes of the first mode, are calculated out,
according to the qualitative properties, the result must
be incorrect. For another example, only two longitude
modes of a certain pile, one has two nodes, another has
four nodes is measured out, it can be said that,
according to the qualitative properties, a mode with
three nodes must be lost whose frequency is located
between those of these two modes. (2) They are
helpful to simplify experimental and calculation schemes.
For example, consider a symmetrical structure with a
mirror symmetrical plane, all the frequencies and modes
can be obtained by testing or computing in the half
structure.  (3) It is mnecessary to guarantee the
reasonableness of the data given in dynamic design,
structure modification and the inverse problem in
vibration. The given data should meet the qualitative
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properties. For example, when we design a beam, it is
impossible that the node line of a certain mode lie along
the beam or repeated frequencies exist. (4) In some
problems, only the knowledge of the trend is desired
while the quantity is not necessary. For example, with
stiffness or constraints changing, the frequencies will
increase or decrease, that can be analyzed by using
qualitative properties and that complex experimental or
calculation approaches 'are unnecessary. ) A
continuous system is often modeled by a discrete
system, is the discrete system reasonable? One
important judgement is that the qualitative properties of
two systems are parallel and not contrary to each other.
It can be seen from the above that the knowledge of
qualitative properties of frequencies and modes of
vibrating system is very helpful to analysis, numerical
calculations, and experiments in theory of vibration and
its application including vibration control.

Because it is quite difficult to investigate the
qualitative properties of vibrating system, the
investigation develops slowly and few references can be
found. Basic analysis was done by Gantmakher, Krein
[1] and Gladwell [2,3]. In Ref. [1], the particular
theory of oscillatory matrix and oscillatory kernel is
established, that is the base of finding the qualitative
properties of frequencies and modes of discrete and
continuous vibrating system, and furthermore, some
basic results were obtained. The work of Ref. [1] was
developed in Ref. [2], especially some important results
concerning the properties of beam was obtained; e.g.,
the frequencies interlacing property of beam with
different supports, etc.  Gladwell, et al., [4] and Wang,
et al., [5] proved the necessary and sufficient conditions
which should be satisfied by a single mode of discrete
beam system was proved. Gladwell, et al, [4] and
Wang, et al., [6] discussed the necessary and sufficient
conditions which should be satisfied for two modes in
same system.

In this paper, the researches mentioned above are
developed systematically, some important results are
obtained: (1) The discrete model of beam with arbitrary
supports is established, and the qualitative properties of
frequencies and modes of beam with arbitrary supports
including free-free support are obtained through the
concept of conjugate beam. (2) By use of geometry
and physical relations, the qualitative properties of
rotation modes, strain modes, and shearing force modes
of beams are obtained.

2. THE MODEL AND EQUATIONS OF
DISCRETE SYSTEM OF A BEAM

An Euler-Bernoulli beam with arbitrary supports may
be modeled by a physical mode! (as shown in Fig. 1),
rigid and massless rods are hinged at the mass points, m;;
m,, ki ..., k' , k" are spring constants of rotational
spring, 4’ , h" are spring constants of translation spring,
I; is length of rigid rod, all of them are positive.

* “
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Fig. 1 Mass point-spring-rigid rod system

We label the lateral displacement of the ith point as u;,
rotational angle of the ith rod as 6;, rotational angle of
left and right rod as 6y, 0, respectively, relative
rotational angle of the ith and the (i + 1)th rods at the ith
hinged point as w; and spring moment in rotational
spring at this point as T;, shearing force at both ends of
the ith rod as (;, shearing force at the left and right end
as Qp, Qn+y, respectively.  We introduce the following
matrices and vectors,

K=dlag (kO’ k],"': kn)
M =diag (mO’ my,e-, mn)
L = diag (};, -+, 1,)

1 0]
1 -1 0
1 -1 0
E = . . > e] = > en+1 =
0
0 1 nx(n+1) 0 1
T | \"J o+l

The relations between displacement, rotation, relative
rotation (corresponding to strain of beam), rotational
spring moment (corresponding to stress of beam) and
shearing force are

0, =@ -u_ )", i=L-n
w, =0, -6, i=0,---,n
1:,=k‘iw, i=0,--,n
0,=(t,—-t)" i=L-,n
the vectors formed by them are
u=(u0,---,un)T
6=(0,-,06,) =-L"'Eu €))]

W= (W09 B wn)T = ETG _90 e1 +en+1 en+l
=-E'L"'Eu-6,¢ +0,,e,, (2)

T =(1,,,7,) =K w=-KEL'Eu
_eokOel +6n+1knen+l (3)

Q=(0,,0,) =L"Et =-L'EKE'L'Eu
-0, ke, +0,, ke, ., )

From dynamic equations of every mass point and

170 The Chinese Journal of Mechanics-Series A, Vol. 19, No. 1, March 2003



system

mi; =0, -0,
Mii=E'Q- e +0,. €., &)

i=0,1--,n

and from force and moment balance equations of rods at
left and right ends

QO = _h,uO Qn+1 = h”un (6)
k.0 k0

6. = 01 0 = n’n 7

° (k’+k0) ™ (k”+kn) ( )

We can derive the equation of motion of the system

Mii + Au + koeoll_l (e, ~€y)+ knen+ll;l (e,~e,,)
+huse, +h'ue,, =0 )

or
Mii#—Au+k§lx_2(k’+ko)—l(”1 ~uo)(e, —¢,)

+ k:l;z(k” + kn)—l(un - un—l)(en - en+l)
+h'use, +h"ue,, =0 ©)]

n>n+l
where matrix
A=E'L"'EKE'LE = (a,)/" (10)

is a symmetrical penta-diagonal matrix.

For beams with different supports, Eq. (8) or Eq. (9)
should be handled properly. For example, for supports
at left end, if displacement is fixed, let uy = 0, if without
translation supports, let 4’ = 0; if rotation is fixed, let 6,
= (; if without rotational support, let £'= 0. Note that
the third term in equation (9) is k2L (u; — uo) (1 —€2)
which counteract k2I* (uo — uy) (e; —e,), the term with
ko in the second term of Au in Eq. (9), so that the third
term in Eq. (9) is deleted and let k=0 in A. Thus for
left end supports, if the end is fixed, let uy = 6y = 0 in
Eq. (8), delete the first equation, matrix A changes into
A, =(a,);", which is minor of A with the first column
and row deleted, matrix M changes into M; =
diag(m,, ..., m,); if the end is free, let #'= k'= 0, let
ko =0 in A and denote it as Ay -; if sliding, let A'= 6,
= 0; if pinned, let o = k' = 0, A changes into A; ¢ =0, M
changes into M.

For different common non-elastic supports,

huy=0, h'u,=0, kB,=0, k', =0 (11)

by virtue of the handling for case of £’ = 0, the general
form of equations of motion of beams with different
non-elastic supports are obtained as follows

Mii+Au=0 (12)
and modes equations are

©°Mu = Au=E"L"'EKE"L'Eu (13)

For different supports, mass matrix M and stiffness
matrix A has different forms,

clamped-clamped: M_ =M, =diag(m,,---,m, )
Ae = Ay, =(ay);
clamped-pinned: M, =M,,, A, =4, ,
clamped-sliding: M_ =M,, A_ =4,
clamped-free: M, =M,, A,=A,, ,
pinned-pinned: M,=M,, A,=A,,.
pinned-sliding: M, =M, A,=A,
pinned-free: M, =M,, A=A,
sliding-sliding: M, =M, A, =A
sliding-free: M, =M, A,=A,

free-free: M =M, A, = Akl,:k,, =0

where 4, =(a;), is minor of 4 with the first and the

(n + 1)th columns and rows deleted.

3. QUALITATIVE PROPERTIES OF
FREQUENCIES AND MODES OF
STATICALLY DETERMINATE AND
STATICALLY INDETERMINATE BEAMS

In this section, six kinds of beams, i.e., clamped-
clamped, clamped-pinned, clamped-sliding, clamped-
free, pinned-pinned and pinned-sliding beams are
considered. At first, the singularities of the stiffness
matrices of these systems are investigated.

Let E be n x n matrix formed by deleting the 1st
row of matrix E. It can be verified easily that

det(E'L'E)=0, detE®L)L'E)=]]4?
i=1

det(EKE") = k- k, ik, -k

pn i+l n
hence
detA =detE'L"'EKE'L'E =0
detA, =detE'L"'EKE'L'E
n n >0, k,+k,>0
= Hli'ZZko "'ki—lki+1kn .
= =0 =0, k,=k,=0
Because sign reverse matrix has the same determi-

nant with that of original matrix, then A", A, the
sign inverse matrix of A, A respectively, satisfy:

>0, ky+k,>0
detA" =0, detA]
=0, k,=k, =0

Since A] is non-singular when %, + k, > 0, its main

The Chinese Journal of Mechanics-Series A, Vol. 19, No. 1, March 2003 171



>0 when k + k, > 0. Although

detA: =0 when ky=%,=0, 4, can be expressed as

minor detA]

In

A, =EL'E'KEL'E/

where
-1
| "
1 -1
El = L] Kl =
kn—l
L 1 - 1_ n-ln
n-1
Meanwhile detE,L'Ef = > I I315 1) > 0, detK

i=1
n-1

= [J&: >0, thus detA

RE)!

. . * .
>0, ie., matrix A, is

n

non-singular when & =k, =0.
Secondly, it will be verified that A", A, and A;,

when ko + k, > 0, are completely non-negative matrices.
We introduce matrices

*

in

i_l — diag(ll‘l,...,ln_l,()), ET = (ET,e,,+1), E = (ET)T

it can be identified that E'L'E =E’L'E. Consider

A’ = (E'’L"EKE'L'E)" = (E'L'EKE'L'E)’
=&)L (B) KE")'L (E)

Matrices (E)* and (]737)* are completely non- negative
because all of their
Therefore A" is
truncation matrices A;, A

in

minors are non-negative.

completely non-negative. Its
are completely non-

negative also.

In addition, it can be verified that the quasi-
diagonal elements of matrix A satisfy @; ;-1 = @;+1;<0,
i=1,..,n

According to the definition of sign-oscillatory matrix,
Aun, Ar, A g -0, Ay, -0 are sign-oscillatory matrices, it
means, the stiffness matrices of six kinds of statically
determinate and statically indeterminate beams are sign
oscillatory matrices.

According to the theory of oscillatory matrix, the
frequencies and modes of these beams have the
following most important qualitative properties:

(1) Frequencies are distinct, that is
O<o, <o, <<0,,(<0,)

there are n frequencies for beams with sliding or free
ends, n — 1 frequencies for other three kinds of beams.
(2) The i th displacement mode corresponding to ;
has i — 1 interchanges of sign.
(3) The figure obtained by joining the points with

coordinates (j, #") is called ¥”-line. Them the
nodes of u-line of two successive displacement
modes, i.e., nodes of u-line and 4 -line, inter lace.

4. QUALITATIVE PROPERTIES OF
ROTATION MODES, STRAIN MODES,
AND SHEARING FORCE MODES OF
STATICALLY DETERMINATE AND
STATICALLY INDETERMINATE BEAMS

From the viewpoint of theory and application, we are
also concerned about the qualitative properties of
rotation modes, strain modes and shearing force modes
of beam.

In order to deduce the number of sign interchange,
we give a property of vector first.

Set a vector

Y= ,) =-Ex=-E (x,%,,%,)
=(x1-—xo,xz—xl,---,xn—xn_l)T (14)

If vector x has a definite number, S, of sign‘
interchanges, then the least value, S, of the number of
sign interchanges in vector y satisfy following

inequality
S, 1+ H(x)+H(x,)<S, (15)
1, x=0
where H(x)=
0, x#0

If vector y has a definite number of sign interchanges
Sy, then the greatest value, Sy, of the number of sign
interchanges in vector x satisfy following inequality

Sy <8, +1~H(x,)~H(x,) (16)

Firstly, according to the properties mentioned above,
we investigate the least value of the number of sign
interchanges of rotation modes, strain modes, and
sheering force modes. Comparing Eq. (1) with (14),
owing to inequality (15), we can obtain the relation of
sign interchanges between rotation and displacement of
beam

Sy =8, -1+ H(uy)+H(u,) a7
By virtue of Eq. (2)
w=(0,-0,,--,0,,-6,)"

= ~(E) iy 8,07,6,.)" =-EO7  (18)

and inequality Eqgs. (15) and (17), then
S, 28 -1+ H(O)+H(®,.,

>8, —1+H®,)+H(@®,,,)

28, =2+ H(u,)+H(u,)+ H®,)+H(®,,,) (19)

)ZSB_’ —1+H(90)+H(en+l)

note that
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r=Kw=(w, -, k,w)" (20)

n2> "n

Q=(0,L,0,) =L"E=

and by virtue of inequality (14), (15) and (19), we
obtain

Sq 28, 1+ H(t))+ H(t,) > S; ~1+ H(t,) + H(x,)
Sg 28, —3+H(uy)+Hu,)+H(®,)+H(®,,)
+H(t,)+H(t,) 1)

Secondly, the greatest value of the number of sign
interchanges will be concerned in following. We
introduce

Q*=(0,0".0,.)"
From Eq. (5), it is known that
0*Mu=(Q -0, Q0 =2 = B @
By virtue of inequality (14) and (16), then
Sq sSé. <S8, +1-H(Q)-H(Q,,)) (22)

From exp. (4) and inequality (14), (16) and (22), yield

S <Sq+1-H(ty)— H(t,) <S4 +1- H(t,)— H(t,)
<S8, +2-H(Q)-H(Q,.))-H(z)-H(z,) (23)

Sy <8, +2-H(Qy) - H(Q,..)— H(%,)-H(t,)

Owing to exp. (18) and inequality (14), (16) and (23),
obtain
SJ‘ < Sw +1—H(90)—H(9n+1)
< S’t+ +1-—H(60) _H(en+1)
S8, +3-H(Qy) —H(Q,1)) —H(8) - H(B,,,)
_H(TO)_H(Tn)
Furthermore
So <8, +3=H(Q)-H(Q,..)~H(8,)
- H(en+]) - H(TO) - H(Tn) (24)
Lastly, it can be obtained from inequalities (17) and
(24), (19) and (23), (21) and (22) respectively that
S, ~1+Huy)+H(u,)< Sy <S8y <8, +3-H(Q,)
_H(Qn«t-l)_H(TO)_H(Tn)—H(eo)_H(enﬂ) (25)
Sy =2+H(uy)+H(u,)+H®,)+H(®,,)<S, <5,
<8, +2-H(Q,)~H(Q,.) - H(to)-H(z,)  (26)

n+l

S, —3+ Hug)+ H(u,)+ H©®,)+ H(®,.,)+ H(t,)
+H(Tn)SS(;SSSSSU-'—I—H(QO)_H(QnH) (27)

From above three equations, the number of sign
interchanges of rotation 0 modes, strain w modes, and
shearing force Q modes of beams can be obtained.

For example, for a clamped-clamped beam, the
number of sign interchanges of the ith displacement
mode 4¥ is S,» = i — 1, and meanwhile u, = 6, = U, =
6,+1 =0, 10, Oo, T, and Q. are non-zero, from equation
(25) ~ (27) we can deduce that

. - 4 .
iS85 <S5, <i

i+1<87, <S8, <i+1
w w
. am + .
zSSQm SSQ(,-) <i
Therefore

S =i,

o S oo =i+l,

Sqn =

it is written in the third row in Table 1.

Table 1 Sign interchanges of u, 8, w and Q modes of
beams
supports form end conditions sign interchanges
%0{00|To] Qg | Un |One1] Tu | One1] Suw | Sew | Swor | Sgw
clamped-clamped | 0 [0 010 i-1] @ |i+1] i
clamped-pinned |0 |0 0 0 i—-1f i i i
clamped-sliding |0 |0 0 0 [i~1[i-1] i [i—1
clamped-free |0 |0 i—1)i=-1}i-1li-1
pinned-pinned {0 0 0 0 i—10 @ =10 g
pinned-sliding |0 0 0 0 [i-1|i=1}i-1[i-1
pinned-free 0 0 0| 0 ji-1|i-1|i-2)i—1
sliding-sliding 0 0 0 0 i-1(i-2|i-1]i-2
sliding-free 0 0 0} 0 [i-1]i-2fi-2]i-2
free-free 010 0 [i-1ji-2i-31i-2

Similarly, the sign interchanges of modes of the other
five kinds of beams can be obtained, they are written in
the 4th row to the 8th row in Table 1.

5. QUALITATIVE PROPERTIES OF
FREQUENCIES AND MODES OF BEAMS
WITH RIGID MOTIONS

The stiffness matrices of beams with rigid motions,
i.e., beams with pinned-free, sliding-sliding, sliding-free,
and free-free supports, are singular, we can not discuss
their qualitative properties of frequencies and modes by
employing oscillatory matrices directly. Therefore we
introduce the conjugated system to change beams with
rigid motions into beams without rigid motions, and
then to deduce their qualitative properties.

For those four kinds of beams mentioned above,
Ookp = 6,41k, = 0. From Eq. (13) and exp. (3), we get

o’K't=E"L'EM'E'L'E~ (28)
it can be expressed as
o’Mu=E'L"'EKE'L'Eu (29)
where M=K, K=M", u=1.
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Table 2 The corresponding relations between original beam and its conjugated beam

modes supports form
original beam | Moment T (Shearing force Q| Displacement u Rotation 0 clamped | pinned | sliding free
corg:frited Displace 0 Rotation 0 Moment T | Shearing force 6 free pinned | sliding | clamped

Comparing Eq. (28) with (29), we can find that the
spring moment 1 of original beam corresponds to the

displacement of another beam, whose point mass is
reciprocal of spring constant of original one, and
whose spring constant is reciprocal of point mass of
original one. We call that beam the conjugated beam
of original one. The Eq. (28) together with (29)
imply that the original beam and its conjugated one
have the same frequencies, and the moment modes of

original beam are the displacement modes of
conjugated one. The relations of other variables and
support types between original beam and its

conjugated one are shown in Table 2.

For pinned-free beam, its conjugated beam is pinned-
clamped beam. It is shown in section 3 that its
frequencies are distinct, the ith displacement mode has
i — 1 sign interchange, that is Szo =7 — 1. It should be
noted that the trivial solutions, ® = 0, @l = 0, to mode
equations of the conjugated beam correspond to @ = 0,
T =0, of original beam, since the support is pinned-free,
so original beam has a rigid rotation displacement mode
u’, whose frequencies ® = 0, moment mode M =,
Therefore the ith displacement mode of conjugated
beam correspond to the (i + 1)th moment mode of
original beam, so S+v=i—1. Itis shown in the 4th
row in Table 1 that §_, =1, it corresponds S,+n =1, i.e.,

So=i-1,

For a sliding-free beam, whose conjugated beam is
sliding-clamped beam; one rigid translation and one
rigid rotation mode with zero-frequency exist. It
can be seen in the 5th row in Table 1 that S, =i,

soS,m=1-1,

For a free-free beam, whose conjugated beam is
clamped-clamped beam; one rigid translation mode
and one rigid rotation mode with zero-frequencies
exist. It can be seen in the 3rd line in Table 1 that
So=i+1,s0850=i-1

By virtue of inequalities (25) to (27), we can deduce
the number of sign interchanges of 6 mode, T mode,
and Q mode of above three kinds beams, the results
are provided in the 8th, 9th and 12th rows in Table 1.

The above approach cannot be applied for a sliding-
sliding beam, since its conjugated beam is also a
sliding-sliding beam. A new approach is needed, so
Eq. (13) is rewritten as follows

0’0 =L"'EM'E'L'EKE’0 (30)

o’ Q=L"EM'E'L'EKE’Q 31

It is simple to identify that (EKE")" and (EM™'E’)’
are non-singular and completely non-negative matrices,
whose quasi-diagonal elements are positive, then Egs.
(30) and (31) are eigenvalue problems of sign-
oscillatory matrix. The theory of oscillatory matrix
implies that non-zero frequencies are distinct. For a
sliding-sliding beam, there exist a rigid translation, the
corresponding 6 mode in Eq. (30) and Q mode in Eq.
(31) are zero. Thus

Seu) = SQ(i)
The relation between u, 0, T and Q together with the

=i-2

-property of vector mentioned in Section 3, lead to the

properties of displacement modes and moment modes,
which is shown in the 10th row in Table 1.

So far, we can obtain that for all beams with
non-elastic supports, non-zero frequencies are distinct;
and the regulation of the number of sign interchanges of
u, 6, w, Q modes, i.e., the number of nodes, is as shown
in Table 1.

Since displacement mode Eq. (13) can be rewritten
as rotation mode Eq. (30), moment mode Eq. (28), and
shearing force mode Eq. (31), when the matrices of
these equations is sign-oscillatory matrices, the
corresponding modes have the property that the nodes
of two neighboring modes interlace.

6. THE INTERLACING PROPERTY BETWEEN
NODES OF THE iTH MODE %9, 69, w9 AND Q®

By virtue of the regulation of the number of nodes of
u®, 89 w® and QY in Table 1, and the property that
there is at least one node of y-line of vector y = —Ex =
(X1 =Xy <oy Xy — x,,_l)T existing between two neighboring
nodes of x-line of vector x = (xo, X, ..., x,,)T, we can
prove the following significant and interesting
properties.

For the ith displacement modes u® and the ith
rotation modes 6% of the ten kinds of beams listed in
Table 1, their nodes interlace. Similarly, for the ith
rotation modes 8 and the ith strain modes w®, the ith
strain modes w® and the ith shearing modes Q?, the ith
shearing force modes Q®, and the ith displacement
modes u®, their nodes interlace.

Here we give a proof to a clamped-clamped beam for
example. The u®-line of the ith displacement mode u®
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has i — 1 nodes, plus two ends where displacements are
zero, then i + 1 zero-points divide the coordinates of
u®line into i domain. From expression (1), 6¥
=-L'Eu®, hence 6“-line has at least one node in every
domain. As shown in Table 1, the number of nodes of
0¥ is i exactly. Thus there is one and only one node in
every domain, so that the nodes of u®” and that of 6%
interlace.

The i nodes of 8 plus two ends where rotations are

zero, 8y = 0,01 = 0, vector 0 = (8, (69)7, 0,.1) has
i + 2 zero points, that divide the coordinates of 8¢ -
line into i + 1 domain.  From expression (2), w® =
0% -9, +,0,,, —09), hence w-line has at least one
node in every domain. As shown in Table 1, the

number of nodes of w is i + 2 exactly, thus there is
one and only one node in every domain, therefore the

nodes of w® and 8% interlace. Apparently, the 1st
[or (i + 1)th] node of w® do not locate between 0, and
0,(or 8, and 06,.,), therefore the nodes of w® and 69
interlace.

w-line has i + 1 nodes, and w is non-zero at two ends,
those i + 1 nodes divide the coordinates of w®-line into i
domain. From expression (4), Q¥ =LT"EKw®, hence
0¥-line has at least one node in every domain. As
shown in Table 1, the number of nodes is i exactly.
Therefore the nodes of w” and 6% interlace.

The i nodes of O®-line divide the coordinates of

0%¥-line into i — 1 domain, by expression (5), u® =

(uy, ..oy un+l)T = —(o'zdiag (ml—ls"'am;L) (@2- 015 -

O, — 0n1)", hence %" -line has at least one node in
every domain, apparently, it is impossible that there are
@ U]

any nodes between uy = 0 and u;"”, u, = 0 and u,”,.

Therefore the nodes of QO and _Lg(i) interlace.

For the cases of other 9 kinds of beams, it can be
proved similarly.

7. CONCLUSION

The discrete models of beams and corresponding
equation of motion of Euler beam with general end
supports are established in this paper. For the ten
kinds of beams listed in Table 1, the following
qualitative properties are proved:

(1) Non-zero frequencies are distinct.

(2) The ith displacement mode has i — 1 nodes, and the
number of nodes of corresponding rotation modes,
strain modes, and shearing force modes are
dependent on conditions of supports, that is shown

in Table 1.
(3) The nodes of two successive modes interlace.

(4) The nodes of displacement modes and rotation
modes of same order interlace each other. Same
case occurs for nodes of rotation modes and strain
modes, strain and shearing force, shearing force and
displacement of same order.

For the beams with elastic supports, some basic
qualitative properties of frequencies and modes are the
same as those for the beams with non-elastic supports.
The qualitative properties of beams modeled by
continuous systems can be obtained by the use of
limit-transition approach. These two issues will be
demonstrated in detail in the follow-up paper.
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