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ABSTRACT

This paper addresses the vibratory mechanics associated with frequency discrimination of basilar
membrane within the cochlear of the inner ear. Periodic excitation is provided to the oval window,
which results in generation of waves within the fluid-filled cochlear traveling towards the apex. These
waves interact with the compliant basilar membrane structure causing its vibratory motion. Solution
procedure of the fluid/structure model consists of a two-step process. First, a finite element
calculation (ANSYS) solves for the membrane vibration with an initial harmonic pressure distribution.
Second, a control volume analysis links the resultant vibratory motion with the fluid pressure acting on
the basilar membrane, thus a pressure feedback loop is accomplished. Results show that dominant
factors affecting vibratory characteristics of the basilar membrane are its structural geometry and
attenuation of pressure wave as it travels away from the oval window. Calculations clearly capture the
designed function of the basilar membrane, principally its frequency discrimination behavior.

Keywords : Basilar membrane, Cochlear, Fluid/structure interaction, Vibration mechanics.

1. INTRODUCTION

The cochlear is truly a masterpiece of the Creator; it
serves as the vital link between sound and silence.
Located in the inner ear about the size of a green pea,
the cochlear is the element responsible for converting
acoustic wave to neural signal. After being amplified
at the outer ear channel (see Fig. 1 from [1]) the
incoming acoustic waves excite the tympanic membrane
(eardrum). In the middle ear, the three-bone
impedance matching ossicular chain structure —
malleus, incus and stapes — then transmits the eardrum
vibration to the oval window of the curled-up, shell-like
cochlear in the inner ear. Once the oval window,
located in the cochlear basal turn, is set into motion
acoustic wave travels through the fluid-filled canal
towards the apex. In the process, the temporally and
spatially varying acoustic wave acts as a source of
excitation over the compliant basilar membrane
structure, which is the dominant structure supporting
cells and tissues within the cochlear. In response, the
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basilar membrane is set into vibratory motion acting as
a spatial filter in frequency discrimination.
Consequently, local hair cells are excited and cause a
chain reaction to send neutral signal to the brain.

Cochlear mechanics began with the ground-breaking
work of von Bekesy [2], which earned him a Nobel
prize in Medicine. His work can be summarized as
follows: stapes periodic motion gives rise to a traveling
wave of displacement on the basilar membrane. The
characteristic of this wave is very much frequency
dependent, i.e., the basilar membrane attains maximum
amplitude at a specific frequency dependent location
and dies off rapidly thereafter. The low frequency
acoustic signal tends to peak near the apex where the
high frequency peaks close to the base.  This
frequency selectivity feature of the basilar membrane is
essentially a spatial spectrum analyzer, which converts
the amplitude and frequency contents in the acoustic
signal to appropriate neural fibers along the length of
the basilar membrane. Pickles [3] and Yost [4] both
provide an excellent overview of the cochlear.
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Fig. 1 Sketch of the outer, middle and inner ear [1].
The cochlea, the primary interest in the work, is
the coiled structure in the inner ear above the

Eustachian tube

The present state-of-the art of the cochlear suggests
that it behave in a highly non-linear fashion. This can
be readily seen from the human audio range of 20Hz to
20,000Hz in frequency and the approximately 20dB to
100dB in amplitude. The one thousand fold frequency
increase and ten thousand fold root-mean-square
pressure fluctuation are all, surprisingly, within the
manageable range of our ear. The main reason for this
lies in the non-linear response of the cochlear to
incoming sound. Simply put, the cochlear amplifies
low amplitude signal and attenuates . high amplitude
sound, and, by the way, it is precisely this extremely
non-linear feature of the cochlear that modern hearing
aid have problem duplicating. The cochlear has been a
continual research topic and has been reviewed recently
by Dallos [5].

This work aims to study the mechanics of the basilar
membrane, particularly its frequency discrimination
characteristic, via a fluid/structure coupled model.
The fluid model is derived based on first principles
within the framework of a control volume analysis.
The membrane structural dynamics is studied via the
finite element code ANSYS. This two-step procedure
is adapted instead of the using ANSYS alone for
complete solution stems from the conviction that a
problem should be posed as self-evident as possible
without comprising on the physics rendered. Details
on the coupled model follow.

2. THE FLUID/STRUCTURE MODEL ‘

A fluid/structure feedback model is adapted in this
work.  The fluid portion uses a control volume
analysis to account for both basilar membrane vibration

and compressibility effects, therefore, links the acou stic
pressure to the vibratory motion of the basilar
membrane. The ANSYS code provides the structural
dynamics solution for an imposed acoustic traveling
wave acting on the membrane.  This two-step
fluid/structure direct coupled approach proves to be
extremely helpful in illuminating the fundamental
mechanics of the cochlear basilar membrane.

The cochlear model accounts of anomie fluid filling
the scala vestibuli (SV) and the scala media (SM), with
the partition — the Reissner’s membrane (RM) —
assumed not to affect in any the propagation of acoustic
wave, see Fig. 2 [6]. This is well justified since the
Reissner’s membrane is much thinner than the basilar
membrane with its associated hair cell structure and
confirmed by previous studies [5,7]. Thus traveling
acoustic excitation acts directly on the SV side of the
basilar membrane and progresses towards the apical end.
As is well known, there is no reflection towards the oval
window since the round window acts as pressure release
for the entire system.

The fluid behavior is modeled by a linearized wave
equation in a variable area duct representing the
cochlear geometry. Sound propagates into the inner
ear serves as the input boundary condition for the
cochlear. Two effects contribute to the local pressure
variation along the membrane: slightly damped
longitudinal traveling waves and local acceleration of
the membrane in the transverse direction. The
membrane mechanics is modeled by a finite element
calculation with the local pressure as input and outputs
the membrane vibration. Thus the fluid-membrane
coupling provides closure to the problem at hand. The
model will be discussed in the following two sections,
covering the fluids and the structure features involved.

Scala vestibuli

Scala media
(basilar membrane)

Round = ™
window Heticotrema
Scala - Tympani
Fig.2 The cochlea in the uncoiled configuration for

modeling purpose [3). The basilar membrane
is located within the scala media structure.
The dash lines show displacement initiated by
stapes vibration causing motion in the basilar
membrane and the round window.

2.1 Fluids Modeling

Fluids filled the cochlear and serves as the primary
media of acoustic propagation. In this model, the
familiar elongation basilar membrane geometry is used,
as shown in Fig. 3. The heart of the model is a control
volume analysis of an elementary fluid volume, see Fig.
4, of compressible fluid above the basilar membrane,
which allows for the membrane to vibrate. The
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Fig. 3 Model of the cochlea adopted for analysis and
computation [6]
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Fig. 4 Sketch of the control volume of fluid (dotted
line), located above the basilar membrane, for
the fluid analysis. The model accounts for
basilar membrane vibration as well as
compressibility of the fluid medium

leftward and rightward faces of the control volume
represents a differential length along the membrane and
of different cross-sectional area due to the nature of the
cochlear. The upward face is on the cochlear wall,
thus is solid and rigid.

The continuity equation for the control volume is
written as

) .
o=§jpdv+§ (v -71) dA (1)

where p denotes the fluid density and is considered
compressible, dV the elementary control volume of fluid,
v the velocity at the control surface with outward
pointing normal vector 7 and area dA. Applying Eq.
(1) for the control volume of Fig. 4 obtains

0= % Adx+pvbdx+ [7:; (puA)} Ox )]

where A(x) is the cross-sectional area of the fluid-filled
medium, 8x the length of the elementary control volume,
v(x) the velocity of the elemental basilar membrane
(since the control surface is placed on the membrane),
b(x) the width of the membrane (in the y-direction), and
u(x) the fluid velocity fluctuation. Note that the

membrane velocity enters the equation since the control
volume is compliant with the lower boundary vibrates
with the membrane.

The equation is linearized since physically small,
perturbed variables exists along with a large, time-mean

value. In other words,
p=py+p’
p=po+p ?3)
u=0+u’

After linearizing, Eq. (2) can be written as

ap’ d
A =—p,—(uAl) - 4
o poax( )—pobv C))

To write Eq. (4) in another form, one can equate density
perturbation with pressure perturbation via the speed of
sound ¢, namely, p’ = ¢* p’, and obtaining,
AR A
c? ot o
The conservation of momentum in the direction of

the acoustic wave (x) for our control volume takes the
form

— Py bv 5)

Y F, =%J' pu dV + § pu(v - ) dA 6)

The sum of forces in the x-direction (left-hand-side of
Eq. (6)), is simply differential pressure forces, i.e.,

’ ’ ap' dA
F.=p’A—| p'+—8x || A+—&
Brer oo (e
1 op’ dA ‘
+=|p'+| p'+==0 ||| — &« 7

s geEe o
with the last term due to the fact that pressure force also
acts on the slanting portion (top surface) of the control
surface where an average amount is taken. However,
simplifying Eq. (7) along with the linearization

approximation, i.e. ignoring quadratic terms, results in
only one term,

Y F, —-a% 5 ®)
ox

The time varying and the flux of momentum term
(right-hand-side of Eq. (6)) in full non-linear fashion is

%J-pu av +§DM(\7 ‘) dA = p%L;-A dx + puvb bx
2
+p(u+g—28x) (A+%8x)—pu2A 9)

It is worth noting that the membrane vibration velocity
v and the fluid velocity u appear together in the second
term. Performing the linearization procedure to Eg.
(9), however, results in the only the first term. Finally,
the momentum equation, Eq. (6), in linearized form can
be written as
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Combining Eq. (5) with Eq. (10) via the operation
0[Eq.(5)1/0t +0[Eq.(10)]/0x  thus eliminating the

unwanted perturbed flow velocity u results the desired
equation governing the perturbed acoustic pressure and
membrane vibration velocity v,

Ay a(Aap'] v

(10)

¢t ot ox| ox Pob ot (b
Physically, this equation states that as the acoustic
pressure p’ propagates it changes with time and varies
along the duct due to its non-uniform cross-sectional
area thus the basilar membrane has to respond
accordingly.

Noting the physics of Eq. (11) greatly helps to
provide insight for its solution [8]. Assume the
cross-sectional area takes the form A(x) = Age™, where
Ay is the cross-sectional area of the cochlear channel at
the oval window. Substituting into Eq. (11) obtains

Aye™ 32 p ’p’ . o Iy
— Ay e™ =, b (12
¢ 9%t de 82x+aax Po ot (12)

To solve for the acoustic pressure in harmonic mode
with radian frequency , one observes that it takes the
physical form

ox
P'(x,)=K(x,f)+e 2 [Re" ™4 gl ) (13)

The first term K(x,#) being the particular solution and
the rest as the homogeneous solution. Note that the
wave is allowed to decay spatially and propagate in
both directions with different amplitude R (right
traveling) and S (left traveling). The wave number k
takes the particular form

k =,/(m/c)2 ~ (o 4)? (14)

Substituting Eqgs. (13) and (14) into (12) results

1K K oK _ Pob odv

ok 15
2o o o A’ a ¥

Back substitution confirms that the particular solution
takes the form

ct \pob ov . .
K , [ = ox ot 16
(x,8) (mz )——Ao 5 ee (16)

It is desired for structural modeling that membrane

displacement appears direction in the equation. Let

the local membrane displacement be

N, 1) =n"(x) e (17)
therefore
av(x’ 1) 9° n 2.7 it
ot or? wme (18)

The particular solution, Eq. (16), then takes the form

2Pob

K(x,1)=~c n'e™ ™ (19)

The perturbed pressure is

P , . . = .
p'(x, t)=—02 0 Tl'e w oty 72 [Re:(m: kx)+Sez(u)r+kx)]

(20)

The boundary condition arises physically from vibration
of the ossicular bone chain exciting the oval window
thus creating a traveling acoustic wave in the anomie
fluid. Mathematically, it implies at x= 0, ' = 0
(basilar membrane is held fixed) with pressure
perturbation p’(0, ¢) given. Also, as justified earlier on
the basis of no reflected wave, it is reasonable to
assume that, for the boundary condition stated, only
right-ward traveling wave exists. With this in mind
one arrives at the final equation for the fluid model,

Pob

. _ax .
pl(x, t) =Re {__ CZ ,n' e-w: eimt +e 2 [P,(O) ex(mt—kx)]}

2D

where p’(0) is the pressure perturbation amplitude at the
oval window and Re denotes the real part.

2.2 Structure Modeling

The desired result of the fluid model, Eq. (21), is a
compact means of equating acoustic pressure with
basilar membrane displacement, however, with two
variables in one equation additional closure is needed.
In essence, the finite element (ANSYS) based structure
model calculates the membrane displacement with
known forcing function, and thus provides the complete
solution procedure.  The fact that a two-model
approach is taken rather than a fluid-structure
calculation all within the framework of finite element
analysis is stemmed from the conviction that physical
phenomena at play would be best illuminated via the
two-step process over than of hard-core FEM
calculation. And the beauty of the fluid model result,
Eq. (21), more than amply justified the approach taken.

The model geometry is shown in Fig. 5, which
accounts for the three-dimensional structure of the
basilar membrane in its elongated configuration. The
structure is of varying cross-sectional area with the
thickness decreases and the width increases towards the
apex. The dimensions are representative of that of the
cochlear of a guinea pig. The system of equation is

[MIN+[CIN+[KIn=F (22)

where [M] is the mass matrix, [C] the damping matrix
and [K] the restoring spring force matrix. In actual
computation, the damping term is found to be negligible
and thus is ignored. As justified post-priori, the
physical reasoning seems to suggest that with the
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Fig.5 Detailed geometry of the basilar membrane
used in the ANSYS computation

extremely small membrane displacement amplitude, on
the order of nano-meter, the damping force due to the
embedded fluid and the structure itself is small
compared to the other two forces. The Young’s
modulus of the membrane is taken as 10° Pascal, the
density 2080kg/m3, the thickness takes the form of a
exponential variation of H exp(ax), where H = 0.04mm
and a= — 0.122/mm.

The boundary conditions are based on the anatomy of
the basilar membrane. At the basal portion of the
membrane (x = 0), it is a fixed end with the fluid-filled
portion above being just interior of the oval window,
where the excitation is initiated. Between the base and
the apex, the two edges of the membrane is fixed to the
bony structure of the cochlear. At the apex, it is a
free-end, since this is where acoustic pressure enters the
scalar tympani.

The forcing acting on the basilar membrane is
constant across its width, or the spatial dependence of
the acoustic forcing is on x only. This essentially
assumes the acoustic propagation travels as plane wave
towards the apex, which is amply justified since the
cochlear channel dimension is several orders of
magnitude smaller than the acoustic wavelength. This
excitation propagates from the oval window towards the
apex and assumes no reflection, which is justified since
the round window essential acts as a pressure release
device.

The solution procedure is as follows. A single
frequency harmonic excitation enters the cochlear
through the oval window with the initial guess being

p’(x,t)=Re {e—T[ p'(0) e"“’"’“’]} (23)

which excludes contribution from the membrane
vibration as is evident from Eq. (21). The pressure
excitation from Eq. (23) is used as input to the structure
model using the ANSYS code for computation. The
resultant membrane kinematics along its entire length is
then substituted into Eq. (21) to update the acoustic
pressure excitation and iterated accordingly.

3. RESULTS AND DISCUSSIONS

Principally, the foremost importance in modeling the

cochlear is to verify the frequency discrimination "
characteristics of the basilar membrane. Figure &

presents the comparison between calculation and data [9]
for locations of maximum amplitude along the basilar

membrane. The abscissa represents the distance from

the stapes foot-plate, or equivalently the oval window,

towards the apical direction along the basilar membrane.
The ordinate is the excitation frequency driving the

stapes. Both data and calculation clearly suggest that

the basilar membrane is tuned to high frequency near

the base and low frequency towards the apex. A

careful observation of this result shows the turning is

indeed very sharp — approximately 4kHz decay over

5Smm distance — or that the basilar membrane has high

spatial resolution. The calculation appears to agree

better at high frequencies than at low range.

Another view of frequency discrimination can be
depicted from Fig. 7, which shows the response of the
10kHz tuned position to a range of input frequencies.
In other words, sound is excited from the stapes
foot-plate into the cochlear over the range of
frequencies as shown in the abscissa while measuring
instrumentation is located at one location, namely the
10kHz tuned position. The ordinate represents the
basilar membrane vibration amplitude, Yz, normalized
by the stapes foot-plate amplitude, Y5, and plotted in
logarithmic form. The spread of data, from [10],
suggest that this is a very difficult experiment since the
nominal basilar membrane vibration amplitude is in the
order of nanometer. Computation result from the
fluid/structure model is also plotted. The most
important aim of this computation is to verify that the
calculated basilar membrane amplitude indeed peaks at
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Fig. 6 Comparison of calculated (line) maximum
amplitude location along the basilar membrane
with data (symbol) [9] at various excitation
frequency :
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Fig. 7 Comparison of calculated basilar membrane

amplitude (normalized by the stapes amplitude)
at cochlea first turn location with data [10] for
sound input from the outer ear. The transfer
function of Fig. 6 is used for this purpose

the 10kHz tuned position, which is overwhelmingly
The calculated result reports
slightly lowered overall amplitude than the published
data, however, this is considered acceptable considering
the spread of the data. Another somewhat salient
feature but also important characterization of frequency
discrimination is the sharp drop-off the membrane
vibration beyond the best-tuned location. This feature
is generally supported by data (set 74-300 and set 75-93)
as well as by overall consensus of the cochlear
mechanics community [5], although data set 74-14 and
set 74-376 do not wholehearted concur.

A physical feel for the actual basilar membrane
amplitude for a range of frequency is always insightful.
The ANSYS result shows at the 10kHz best tuned
location the response is 12dB, or 4.0 times the stapes
amplitude. This is a quadruple amount, 4.0nm, if the
stapes amplitude is assumed to be Inm. However, at
1kHz. the same basilar membrane location reduces
to —7dB in normalized amplitude, or 0.45nm, which is
about a tenth of the 10kHz value. Incidentally, at the
higher frequency of 15kHz the amplitude response is
also the same. At much higher audio frequency of
20kHz, the —20dB response is 0.1nm, or about 2.5% of
the 10kHz amplitude. All the facts point to one major
physic of the basilar membrane — a particular location
along its length is designed to vibrate at a specific audio
- frequency and this location very sharply tuned.

The computed mode shapes for three particular
frequencies are presented in Fig. 8. At a very low
frequency of 213Hz, Fig. 8a, the basilar membrane is
clearly shown to peak close to the apex, in qualitative
agreement with the result of Fig. 6. At a higher
frequency of 2.5kHz, the response peaks near the
middle of the membrane and rapidly dies down in either
direction. At 12kHz, the basilar membrane tuning is
already very close to the base. These results suggest
that the cochlear responds more sharply at the basal end,
at higher frequencies, than at the apical end, at lower
frequencies.

W‘\
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Fig. 8 Basilar membrane mode shape computed at
frequency of (a) 213Hz (mode 4), (b) 2,545Hz
(mode 18) and (¢) 12,039Hz (mode 47).
(The basal end is on the left and the apical end
is on the right.)

4. CONCLUDING REMARKS

This work presents results from a fluid/structure
coupled model for cochlear basilar membrane vibratory
response to sound frequency. A control volume
analysis for the fluids contribution is derived linking
membrane amplitude with incoming sound pressure.
ANSYS solves for the membrane modal vibration for a
particular input frequency with a given acoustic
pressure imposed on the membrane structure. Results
obtained include the following:

(1) The fluid/structure model adequately represents the
dominant physics of the basilar membrane,
principally its frequency discrimination behavior.

(2) The model shows that dominant factors affecting
vibratory characteristics of the basilar membrane
are its structural geometry and attenuation of
pressure wave as it travels away from the oval
window. .

Calculated results prove that the basilar membrane
behaves like a spatial spectrum analyzer; the basal
end responds to high frequency sound while the
apical end to low frequency signal.

(4) The basilar membrane poses a non-linear amplifier
that amplifies low amplitude sound and attenuates
loud ones.

(5) The frequency response is much more sharply tuned
at high frequencies than at low as shown by results
in Fig. 7.
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