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‘We consider the two-dimensional thermoelastic
problzm involving three anisotropic materials bonded
together (trimaterials) as shown in Fig.1. The stress
singularity will be investigated. In here, we employ
the extended version of the Stroh formalism which
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includes the thermal effect.

‘The stress singularity of elastic bimaterials
has bzen extensively studied in the literature.
However, only a few consider the thermal effect
because of its complexity. The simplicity of the
Stroh formalism is shown again by studying the
therm oelastic problem of trimaterials.

Jue to the simple configuration of the
trima erials, experiments will be conducted by
means of ESPI analysis and numerical modeling,
solutions obtained can be employed to make
comparison with the analytical one. Hence, the
correctness of the asymptotic theory will be
discussed.

'The work deals chiefly with:
the application of the extended version of the
Stroh formalism in thermo-anisotropic elasticity.

1 .5et up and conduct of the ESPI experiment.

@). Measurement of material constants.

b). the comparsion of the asymptotic

solution with experimental and numerical

ones.
2. Numerical modeling using commercial

software.
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The stress singularity around singular point

contributes important information about the

provides a possible answer. For example, Yan
(199Z) had considered a bimaterials problem
involving thermoelastic materials.

In here, the stress singularity of an
anisotropic thermoelastic trimaterials is studied
(Fig..). Its configuration represents a general real
life p-actice. The solution obtained provides
insights for the thermal stress failure mechanism.
Expe-iments will be conducted by using ESPI or
Moire analysis. Numerical modeling will also be
consi Jered by using commercial software. '

The extended version of the Stroh
formalism is employed (Clements, 1973; WL.I,
1984; Hwu, 1990). In general, the asymptotic
solutions can be expressed as follows.
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(Williams, 1959; Erdgan, 1963; Rice and Sih,
1965; England, 1965; Shih and Asaro, 1988;
Hutchinson, 1992; Gotoh, 1967; Clements, 1971;
Willis, 1971; Ting, 1986, Suo, 1990, etc). The
simplicity of the Stroh formalism furnishes
significant progress (Ting, 1986; Qu and Bassani,
1989; Ting, 1990). There are fewer studies
concerning the stress singularity involving more
than two elastic materials (Zwiers and Ting,
1983). The reason may lie on the complexity of
the problem and the solution obtained does not
directly apply on crack failure problems.
Nevertheless, such solution contains information
about the onset criteria of interfacial crack
problem in real life situation. Furthermore,
thermal failure is a big concern of composites
application today. This worsens the situation
because of the intricacy of anisotropic
thermoelasticity (Yuuki, Xu and Kayama, 1993).
Again the elegant of the Stroh formalism

The siress singularity is expressed in & with real
part in between -1 and 0.
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By means of the extended version of the Stroh
formalism on thermoelasticity , the asymptotic
temperature and displacements solution around

the singularity point is expected to be
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