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The Investigation on the Equivalence between the Rigid-Body Rotational
Dynamics and Particle Dynamics and Its Applications
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1.ABSTRACT

We present, in this project, a novel method by which the
pfoblem of rigid-body rotational dynamics is converted to
the one of particle dynamics.. Then, the problem of
maneuvering the rotation of a rigid body can be handled
more easily by the theory of equivalent particle dynamics
than by the theory of rigid-body rotational dynamics. An
example of a rigid body tracking the desired time-varying
orientation by supplying it with an appropriate control
torque is given.
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2. INTRODUCTION

Both Euler's angles [1-3] and Euler’s parameters (or
quaternion)[4-6] are often used to describe the orientation
of the rigid body in most physical or engineering
problems. While Euler’s parameters have been
extensively used because they require less computational
efforts and have no geometrical singularities as do Euler's

angles(3]. The motivation of converting three-dimen-

sional rigid-body rotational dynamics into four-dimen-
sional particle dynamics comes from the following
factors: (1) The inertial terms in the equations of motion
are nonlinear for large-angle rigid-body rotation but are
linear for particle translation. Intuition tells us that the
position control of a particle may be simpler than the
attitude control of a rigid body. (2) The four parameters
of quaternion with unit length constraint, besides presents
the attitude of a rigid body, can be viewed as the
components of position vector of a particle moving on a
three-dimensional unit hyper-sphere embedded in a
four-dimensional Euclidean space(R*). This new idea
facilitates the conversion of rigid-body rotational
dynamics to particle's dynamics. (3) Some things that
cannot be done in lower dimensional space, may be done
higher
two-dimensional insect is assumed to move only on a

two-dimensional surface. If this surface is cut into two

in a dimensional one. For example,

subsurfaces, the insert cannot cross from one subsurface
to the other. However, if this insect is equipped with
wings so that it can move in the third dimension, it can
fly over.

The proposed theory can be used as a general tool for
designing the control torque needed to drive a rigid body
to rotaic following the desired stationary (or moving)
orientation. Practical applications may include the case

where a levitated rigid body is rotated by a magnetic



torque to an expected orientation or the case where a
satellite is maneuvered by a gas jet to reach the command

attitude.

3. ROTATIONAL EQUATIONS OF MOTION
The rotational motion of a rigid body about its center of
mass which is fixed in space is considered. The Euler’s
parameters that describe the orientation of the rigid body
are denoted by p=(e,,e,e,,¢) . Let S denote the
position vector of an arbitrary point P of the rigid body in
a fixed inertial reference frame with origin coinciding
with the center of mass of the rigid body, and s’ the
position vector of the same point P in the body-fixed
reference frame that has the same origin as the inertial
frame. The rotational transformation matrix A that
relates S to §' by s=As'can be decomposed into the
product of two 3 x4 matrices as [4,5]
A =GL" 4))

Euler’s parameters are not independent of each other, and
they are subject to the constraint

p'p=1 @
Let @ denote the angular velocity of the rigid body
relative to the inertial frame with components resolved
along the axes of the body-fixed frame. Then it satisfies

. 1
o=Ap  or p=-L'o 3)

For generality, it is assumed that the rigid body is
maneuvered to track thedesired moving orientation
denoted by P,; if the desired orientation is stationary,
P, is a constant vector . Let p,(f) denote the error (or
relative) quaternion that describes the orientation of the
rigid body relative to that of the desired one. Then the
relation among p,, p,and p, isgiven by4

T

p.=[p.GC'®], p. =[p. L@ p=M(p,)p @

dx4

It is easy to prove that M™' =M" .
Let J denote the inertial matrix of the rigid body with
respect to the body-fixed frame, h the absolute angular

momentum of the rigid body, then h=Jo . The
governing equations are
b =51 ()0,
@, =3 (r-o, xh-o, xh)- @, C2b
It is obvious that both equations (5a,b) are nonlinear in
the state variables P,and @, Furthermore, equation

(7b) is nonautonomous if @, is time-varying.

4. EQUIVALENT PARTICLE DYNAMICS
The f relative Euler’s parameters p, =(e,,.¢,.¢;,.e,,)"
are first proposed to be viewed as the components of the
position vector of a particle of mass m in a -
four-dimensional Euclidean space, R*'. Due to the
constraint @(p,)=p’p, -1=0, the particle is confined
to move on the surface of a three-dimensional unit
hyper-sphere The kinetic energy of the particle is
T=mp’p,/2.Let v denote the external forces exerted
on the particle. Then, from the Lagrange-multiplier
equations of motion (4,7]

T
d( or or
el Iiadal BN =-v CDTZ.'
[dt(al'),] 5P,J M ©

where A'(f)is the Lagrange multiplier associated with

the quaternion constraint, we can derive the equations
of motion of a particle as

mp, =v'+A'p, ¢
Dividing both sides of Eq. (7) by m and denoting
v=v/m and A=2A/m , the governing equations
become

(8a,b)

p.=v+ap,
P,p, ~1=0.

System (8) is said to be equivalent to the system (5), if
the solution for the position vector p, (f) of system (8)
for the attitude p,(¢) of
system (5). This means that the applied force v and the

is equal to the solution

constraint force Ap, must be furnished appropriately such



that the resulting position vector p,(f) of the

corresponding particle happens to be the exact relative
attitude of the rigid body. It should be noted that the
constraint force Ap,cannot affect particle motion along
the spherical surface, since it is in the direction normal to
the hyper-sphere. It is clear from this geometrical point of
view that only the tangential component of the applied
force v affects the mou'bn of the particle. Before we
derive the equation that relates the torque t applied to
the rigid body to the tangential component of v exerted
on the particle, the following preliminary background
must be given a priori.

Proposition 1 .The three column vectors 1, I,, I, of
the 3x4 matrix L' constitute the basis of the tangent
plane of the unit hyper-sphere, and they are orthogonal
mutually.

The following theorem provides the necessary and
sufficient condition for system (8) to be equivalent to
system (5).

Proposition 2. Particle dynamics (8) is equivalent to the
rigid-body rotational dynamics (5) if and only if the
condition

J'(t-oxh-wo,xh)-@,=2L({p,)v (9

is satisfied.
The mapping L : ve R* - r & R’is not homeomorphic.
When v is given, Eq. (9) determines the unique T,

although the inverse is not true.

Proposition 3 Given the control torquet for system

(5), the control force v for system (8) is
v=—l-LT[:J"(t—a),xh—(o,xh)—(i),]+p P'E (10)
2 r

where g is an arbitrary 4 by 1 vector and is function of
time.
The results of Eqs. (9) and (10) reveal that there are many
choices in the design of v, all of which correspond to

the samet. Once Vv is chosen, the control torque T

is uniquely determined.

S. APPLICATION OF EQUIVALENT PARTICLE

DYNAMICS
If the rigid-body attitude p(¢) is made to approach the

desired onep,(), that is, p, approaches (il,O,O,O)T,

the applied (or control) torque T in Eq. (5b) must be
designed properly. The control force v is designed in

the form

v=—cp, —k(p, -p.), (1)

where p, =(1,0,0,0)" . The substitution of (11) into (8) -
yields

b, =—~cp, —k(p, -p,)+1p,
The physical model of system (12) is that. the particle and
hyper-sphere are immersed together in a viscous fluid.
The term —¢P, is the viscous damping force acting on
the particle by the fluid in the direction opposite to the
particle velocity. The constant ¢ denotes the damping
coefficient. The term —k(p, -p,) is the restoring force
acting on the particle by the spring with one end attached
to the north pole of the sphere. This spring is of zero free
length and of spring coefficient ¥ . From the above
interpretation, we know that the control force is so
designed that Eqs. (12) mimic a spring-mass-dashpot
system with a massive point moving on the spherical
surface. It can be shown that system (12) with constants
cand k being any positive real number has a solution
approaching the state p, =(1,0,0,0)"and p, =0, which is
a stable equilibrium state.
Using the control force v in Eq. (10), the control torque

input to the rigid body is obtained from Eq. (3)
t=wxh+J(-co, +2kL(p,)p, +®,). (13)

The substitution of (13) into Eq. (5b) gives the

closed-loop system



@, =—co, +2kL(p,)p,
b, =31 (.)o, a9

By Proposition 2, system (12) is equivalent to system
(14). System (12) is asymptotically stable about the
equilibrium point (p,.p,) =(p..0) . Therefore, system
(14) should be asymptotically stable about the point
P,,»,.)=(p,.2L(p,)p,)=(p..0) . A rest-to-spin case where
a rigid body is initially at rest and is driven by an applied
torque to reach the purely spinning state about an axis
which could be any fixed direction in space, is given
below as an example.

Rest-to spin case The inertial matrix of the rigid body is
assumed to be J = diag[20,20,50]kg -m* Let OXYZ
frame be a fixed inertial one and OXYZ frame be the
body-fixed one with the origin O at the center of mass
of the rigid body. The rigid body is initially at rest in
space with the inertially symmetric x -axis coinciding
with the Z -axis. The desired state is that the rigid body
spins at a constant angular speed 2rad/s about the
body-fixed Zz — axis that coincides with the inertial
X — axis.. The numerical integration of Eq. (14) gives
the relative quaternion and angular velocity of the rigid
body with respect to the desired target. The use of Eq. (4)
yields the current absolute quaternion of the rigid body as
shown in Fig. 1. Figure 2 reveals that when the rigid
body reaches the purely rotational state at constant

angular rate, the control torque is zero as expected.

6. CONCLUSIONS

A novel method that converts rigid-body rotational
motion to particle motion in a high-dimensional space is
presented. The problem of designing the control torque
applied to the rigid body for rotational maneuvers can be
handled more easily by changing it to the problem of
designing the force applied to the particle for orbital

control.
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Fig.1 Rtime history of quaternion, c=16, k=12
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Fig.2 Torque applied to the rigid body, c=1.6, k=1.2.



