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一、中文摘要

    本研究旨在推展先前由作者開發的二
維離散渦法，拓展至三維不可壓縮分離流
場(separated flow)的計算。此方法係結合網
格計算與隨機渦漩法之方法，一般又稱為
混成渦漩法(hybrid vortex method)。在此研
究階段，我們提出了新的定義，在此新定
義下，我們僅須將前期所提的數值算則作
些微的修改，即可直接引用，保留此一數
值算則於中高雷諾數流場計算原有高穩定
性的優點。同時為從所解渦度場求得其速
度場，我們定義了新的向量流線函數，此
向量流線函數在固體邊界滿足 Dirichlet 條
件，遠域則滿足 Neumann 條件，在此定義
和邊界條件下，我們可證明其所得速度場
在固體邊界直接滿足不可穿透條件(non-
penetrating condition)。為驗證此方法，我
們以環繞瞬間啟動之一球體流場為例，所
得結果和文獻上實驗比較獲致相當一致的
結果。
關鍵詞：離散渦漩法、雷諾數、向量流線
函數、不可穿透條件。

Abstract
Some time ago, the present authors proposed a

hybrid vortex method for study of two-dimensional
separated flows. It is hybrid in that a grid is required,
and therefore is not fully Lagrangian. It is also
deterministic that no random walk for diffusion is
employed. The method is here extended to three-
dimensional separated flows. Such an extension is not
at all obvious but requires new definition and
formulation of the previous method.  The method
may be briefly described as follows. At any instant, a
collection of vortices forms a patch of the flow field.
The methods consists of solving the viscous vorticity
equation by evolving a total vorticity associated with
each vortex, and then redistributing the evolved total
vorticity back to the grid at the end of each time step.
The total vorticity, when divided by the volume that it
occupied, yields the mean vorticity associated with the
vortex. The velocity field is recovered from the
vorticity field by solving a Poisson equation for a
vector stream fucntion. It is shown consistent to

specify the gauge that a component of the vector
stream function be identically zero; this facilitates
imposing Dirichlet conditions for the other two
components on the body surface to satisfy the non-
penetrating condition. Vorticity is then updated on the
body surface to fulfill the no-slip condition. The
overall method here presented is a quite general setting
for a finite body but with a particular application to
flow about an impulsively started sphere. Preliminary
results shows excellent comparisons with measured
data in several detailed flow chatracteristics.
Keywords: separated flow, Lagrangian, viscous

vorticity equation, Poisson equation, Dirichlet
condition.

1. Introduction
Being a special technique as they might seem, the

methods which use numerical vortices are highly
attractive for computing vorticity-dominated
incompressible flows. Earlier review articles on this
subject include Leonard (1980, 1985). Recently,
Chorin (1993) has an excellent survey of the methods
that are fully Lagrangian, while Sarpkaya (1995)
contains a remarkable account of almost all the
existing methods that employ the usage of vortex
elments. Though a large body of literature is devoted
to the methods for two-dimensional flows, we have
seen an increased interest toward the applicaitons of
the methods to flows in three space dimensions.
Referring to the review articles cited above, the present
status toward this effort may be classified according to
the individual interest on the subject. (1) One interest
is in inviscid flow for fine structures of perturbed
vortices. The flows considered are typically in free
space and no existence of solid bodies is assumed. (2)
Another interest is to simulate viscous flow by a fully
Lagrangian vortex method. One is apt to employ
Gaussian random walks for simulating viscous
diffusion, and this approach is quite appealing for
high-Reynolds number flows.

To complement the exisitng interest, the present
work is to develop a hybrid vortex method for flow
about a finite body in three space dimensions. The
flow is assumed to be governed by the incompressible
Navier-Stokes equations. The study is based on our
earlier work on a deterministic vortex method for two-
dimensional flows (Cf. Chang \& Chern 1991a,b).
The methods is here modified and extended to be
suitable for three-dimensional flows. In order to make
an extension, three obvious obstacles are standing in
front and the way to obviate these are briefly described
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as follows. (1) The diffusion-in-cell algorithm involves
evolution of a circulation associated with each vortex
(blob). Being not possibly to evolve three independent
circulations, we introduce a total vorticity associated
with each vortex (now in three dimensions). The time
variation of a total vorticity can be related to the time
variation of the circulations, defined for the six
surfaces (in a Cartesian grid), enclosing the vortex. In
this connection, the three-dimensional vortex method
can actually exploit the usage of its two-dimensional
counterpart. (2) As in the diffusion-in-cell algorithm,
the evolved total vorticities are redistributed back to
the grid, now by a volume-weighting scheme. (3) The
velocity is recovered from the vorticity by solving a
Poisson equation for a vector stream function. The
three components of the equation are not independent,
and moreover, the choice of the stream function is not
unique, and usually requires specification of a gauge
for it. In our formulation, the body surface is a
coordinate surface; it is shown consistently to specify
the third component of the vector function to be zero.
Doing so enables the other two components to satisfy
Dirichlet conditions on the body surface. Moreover,
the multigrid technique can be incorporated to
accelerate the convergence of numerical solution of the
Poisson equation for the stream function. The vector
stream function thus introduced enforces non-
penetrating condition on the body surface; vorticity is
then updated on the surface to fulfill the no-slip
condition. In summary, the present vortex method has
several advantages. (i) With the use of vortices, the
viscous vortex-in-cell algorithm is highly stable. (ii)
Since a grid is used, the mean values of vorticity lend
themselves to high-order accurate reconstruction of the
local vorticity field. (iii) The choice of the gauge
facilitates solution of the Poisson equation for the
stream function subject to Dirichlet conditions. The
present hybrid vortex method is formulated for flow
about a finite body in general coordinates, and is
suitable for a body of rather general shape. In this
preliminary study, it is applied to study laminar flow
about an impulsively started sphere.

2. Three-Dimensional hybr id vor tex
method

In this section, we shall continue to develop the
hybrid vortex method for three-dimensional flow. Two
major issues have to be addressed toward the success
of the method: (i) how can the velocity field be
recovered from the vorticity field and (ii) how is the
vorticity field (of the grid vortices) updated for each
time step. The two points are examined respectively in
the following two sub-sections with the full algorithm
summarized at the end of the section.

2.1 Time evolution of vor ticity

The idea of transporting vorticity via circulation

plays a central role in the two-dimensional method.
But this technique is hardly useful for the three-
dimensional case; because here it is not possible to
always define three independent circulations. Instead,
we define, for a lump of fluid with volume V, a total
vorticity to be

∫≡Ω
V

dτω
ρ

(1)

which when divided by the occupied volume yields a
mean vorticity for the lump of fluid:

VΩ=ω
ρ

(2)

Since the velocity u is divergence-free, we have
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while in the second integral II, Cδ  is simply the
differential version of the two-dimensional counterpart.
In these connection, we can actually exploit the usage
of two-dimensional algorithm for evolving the total
vorticity.

2.2 Recover  the velocity field

There are two strategies used to construct the
velocity field from the vorticity field; one uses the
vector stream function, and the other uses Helmholtz
decomposition. Both approaches need one further
constraint. In this study, we use the former strategy by
introducing a vector stream function Ψ satisfying

.Ψ×∇=u (7)

This is possible because 0=⋅∇ u . The velocity thus
obtained satisfies the incompressibility condition
automatically. Because u×∇=ω

ρ
, we must have

( ) ( ) Ψ∇−Ψ⋅∇∇=Ψ×∇×∇= 2ω
ρ

. (8)

In (8), the three components are not independent
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because we must have 0=⋅∇ ω
ρ

. One further
constraint is needed here. It is found, instead of
requiring Ψ to be divergence free, more convenient
to specify that the component of Ψ  normal to the
surface be zero. Two in equations (8) are solved to
obtain Ψ , and then the velocity field is obtained
simply by using (7).

A gauge chosen for Ψ . Consider a uniform flow
about a finite body with velocity ∞U . A general

coordinate system ( )321 ,, ξξξ  can be constructed

with 01 =ξ  to be the surface of the body and

∞=1ξ at infinity. The corresponding covariant basis

vectors { }ke are then defined by i
i ξ∂∂= xe .

For the vector stream function, the approach
adopted here is to solve (8) in 2e  and 3e -directions

and specify the 1e -component of Ψ  to be
identically zero. In other words, what to be solved are

01
1 =Ψ⋅=Ψ e (9)
( ) 3,2for =⋅=Ψ×∇×∇⋅ kkk ω

ρ
ee (10)

The boundary conditions on the surface of the body are
constructed to satisfy the non-penetrating condition.
The finite body considered may exhibit a motion that
is a combination of translation and rotation. The
velocity )(bu  at any point of the body can be written

as ,)( rUu ×Ω+= t
b where tU  and Ù  denote

respectively the translation velocity and the angular
speed of rotation. Notice the identity

( ) rUrrrU ×Ω+=
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Define ( ) rrrU ××Ω+×=Ψ
3
1
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t
b . To

specify Ψ  uniquely, we require
3,2for 0at 1)( ==Ψ⋅=Ψ⋅ kb

kk ξee (12)

while the far field condition is given by
( ) 3,2for at 1 =∞=⋅=Ψ×∇⋅ ∞ kkk ξUee

(13)
It can be shown that the stream function thus chosen
have the following properties.
(i) Ψ×∇ satisfies the non-penetrating boundary
Condition.
(ii) The 1e -component of the Poisson equation (8) for
Ψ must also be satisfied.

No-slip condition. Once the velocity field that
satisfies the non-penetrating condition is determined, a
vorticity sheet has to be introduced on the body surface

to fulfill the no-slip condition. But this is typically
practiced numerically as follows. After Ø  (thus u) has
been obtained for its values on the grid, the velocity on
the body surface is set to be )(bu . The vorticity of the
body surface is then updated by applying a one-sided
difference scheme to the equation of definition
forω

ρ
: u×∇=ω

ρ
. Another way is to extend Ø to the

inside (`ghost points') of the solid body so that on the
body surface the extended eΨ satisfies

)(b
e u=Ψ×∇ , and then central differencing

equation (8) to update vorticity on the body surface.

3. Numerical results and discussion
Consider a fluid of constant density ñ and kinematic

viscosity í. Figure 1 is schematic of flow about a
sphere considered in the present study. Notice that the
reference length, velocity and time are taken
respectively to be the radius of the sphere a, the
velocity U of the incoming stream, and a/U. The
pressure is non-dimensionalized by 2Uρ , while the

Reynolds number is taken to be ν/Re Ua= .

Numerical calculations are all carried out up to
50=t  for 200,150,100Re = and 300. The

number of grid points used here is ( )129257 ×  in
terms of r- and è-directions. Figure 2(a) shows very
close agreement between the computed drag
coefficients at 50=t  and the drag curve taken from
Schlichting (1979), while 2(b) shows also very close
agreement of the computed separation angles with the
measured data taken from Taneda (1956). Figure 3
shows the early-time development of the drag
coefficients. For each case considered, the drag
coefficient DC exhibits a monotone behavior in time
history, decreasing rapidly from the infinity to a steady
value.  Figure 4 (a-d) shows the streamline patterns at

50=t  for various Reynolds number; it is seen that
the wake size increases gradually with increasing the
Reynolds number. Figure 5 shows the streamline
pattern at 50=t  for 118Re = , which compares
very well with the visualized result of Taneda (1956).

4. Concluding remarks
In this study, we presented a hybrid vortex method for
flow about a finite body with particular application to
flow about a sphere. The general agreement with data
from experiment is quite good in the comparisons of
drag coefficients and streamline pattern.

 The method has been formulated in general
coordinates and can be used for body of rather general
shape. The most striking features of the present hybrid
vortex method consist of (i)introducing a total vorticity
for each numerical vortex in lieu of circulation in two
space dimensions, (ii)designing a viscous vortex-in-
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cell algorithm, which relates evolution of the total
vorticity of a vortex to two surface integrals, (iii) the
choice of a gauge, which facilitates greatly solution for
a Poisson equation for the vector stream function, and
(iv) accurate reconstruction of the local vorticity field
from the total vorticities by interpolating high-order
polynomials.
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