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Introduction

To perform the navigation of an unmanned vehicle,
various sensors, such as GPS, INS, compass, encoder,
etc, can be used. Depending on their characteristics,
different sensors may have different advantages. For
example, GPS may be more sensitive to low-freqency
noise, while INS is more susceptible to high-frequency
noises. In order to integrate these sensors, the algo-
rithm of data fusion along with the Kalman filter may
be adopted. However, there are some issues having
to be tackled. First, the initial setting of the algo-
rithm must be given. Secondly, if the assumption
of independence in the Kalman filtering is not valid,
it is necessary to deal with dependent processes. In
this report, an algorithm of determining the initial
settings, including the error covariance, the process
noise covariance and the measurement noise covari-
ance, is proposed. On the other hand, the covariance
intersection algorithm is used to solve the problem
regarding the dependence of the information. The
combination of these strategies is then used to de-
sign the fusion INS-GPS system for the navigation
of a vehicle. The experimental results showed that
the algorithm is more robust comparing with classi-
cal Kalman filtering algorithm.

1 Background Material

First, some basic formula in estimation theory are
reviewed. Let x, z be random vectors. From the
observation Z on z, it is desired to estimate x. The
MMSE(Minimum mean-square error) estimator is de-

fined to be

x̂MMSE = arg min
x̂

E
[
(x̂− x)2 |Z

]
.

It can be shown that the solution of the previous
minimization problem is

x̂MMSE = E [x|Z] . (1)

Furthermore, if x, z are jointly Gaussian with covari-
ance matrices denoted by

Pxx = E
[
(x− x̄) (x− x̄)T

]
,

Pxz = E
[
(x− x̄) (z − z̄)T

]

= PT
zx,

Pzz = E
[
(z − z̄) (z − z̄)T

]
, (2)

where x̄, z̄ are the mean vectors of x, z respectively,
the conditional mean can be further expressed as

E [x|Z] = x̄ + PxzP
−1
zz (z − z̄) . (3)

The associated conditional variance is

Pxx|z = Pxx − PxzP
−1
zz Pzx. (4)

Accordingly, the MMSE estimate (1) can be found as

x̂ = x̄ + PxzP
−1
zz (Z − z̄) , (5)

and the corresponding covariance matrix is computed
through (4). On the other hand, by the least-square
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type argument, the estimator in (5) can be also ob-
tained for the estimation of Non-Gaussian random
vectors.

Secondly, we review the Chi-square distribution. A
random variable q has a Chi-Square distribution with
degree of freedom n, denoted by q v χ2

n , if its pdf is
of the form

p (q) =
1

2
n
2 Γ

(
n
2

)q(
n−2

2 )e−
q
2 ,

where Γ denotes the Gamma function defined
through

Γ (m + 1) = mΓ (m) ,

Γ (1/2) =
√

π,

Γ (1) = 1.

The random variable q defined by

q = (x− x̄)T
P−1 (x− x̄)

is chi-square distributed with degree of freedom n.
Furthermore, the mean value and the variance of q
are n and 2n respectively. For given two independent
chi-Square random variables q1 v χ2

m and q2 v χ2
n, a

new random variable q3 defined by

q3 = q1 + q2,

is also Chi-Square distributed with (m + n) degrees
of freedom.

2 Basic Kalman Filtering Algo-
rithm

Consider a linear system

x (k) = Φ (k − 1)x (k − 1) + u (k − 1) , (6)

with measurement

z (k) = H (k) x (k) + w (k) (7)

where the process noise u (k − 1) and the mea-
surement noise w (k) are assumed to be indepen-
dent with Gaussian distributions N (0, Q (k − 1)) and

N (0, R (k)) respectively. The problem is to estimate
x̂ (k) ,given measurement

Zk = {z (1) , z (2) , ..., z (k)}.
A recursive process, termed the Kalman filter, was
developed to perform the estimation, and the pro-
cess can be divided into two parts. One is to predict
the state at k from the observations through (k − 1) .
Next is to correct the prediction by current measure-
ment at k. The predictions of both the states and
measurement based on Zk−1 can be obtained from
the MMSE estimator as

x̂ (k|k − 1) = E
[
x (k) |Zk−1

]
,

ẑ (k|k − 1) = E
[
z (k) |Zk−1

]
.

Regarding the above equations as the means of x, z
respectively. The correction step based on the obser-
vation z (k) is then performed through (5),

x̂ (k|k) = x̂ (k|k − 1) + Pxz (k|k − 1)P−1
zz (k|k − 1)

(z (k)− ẑ (k|k − 1)) (8)

and

Pxx (k|k) = Pxx (k|k − 1)− Pxz (k|k − 1)P−1
zz (k|k − 1)

Pzx (k|k − 1) (9)

where the conditional covariance matrices, Pxz and
Pzz are defined similar to (2). In fact, denoting

x̃ (k|k − 1) = x (k)− x̂ (k|k − 1) ,

ν = z (k)− ẑ (k|k − 1) ,

we have

Pxx (k|k − 1) = E
[
x̃ (k|k − 1) x̃ (k|k − 1)T |Zk−1

]
,

Pxz (k|k − 1) = E
[
x̃ (k|k − 1) z̃ (k|k − 1)T |Zk−1

]
,

Pzz (k|k − 1) = E
[
z̃ (k|k − 1) z̃ (k|k − 1)T |Zk−1

]
.

From the dynamic equations(6,7), the prediction
x̂ (k|k − 1) can be further expressed in terms of
x̂ (k − 1|k − 1) as

x̂ (k|k − 1) = Φ (k − 1) x̂ (k − 1|k − 1) .
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The corresponding update rule for the covariance ma-
trix is

Pxx (k|k − 1) = Φ (k − 1)Pxx (k − 1|k − 1)ΦT (k − 1)
+ Q (k − 1) .

The gain in eqs. (8) is called the Kalman gain

K (k) = Pxz (k|k − 1)P−1
zz (k|k − 1) .

The covariance of the innovation ν can be computed
as

S (k) = Pzz (k|k − 1)

= H (k)Pxx (k|k − 1) HT (k) + R (k) .

Based on these notations, the Kalman filtering algo-
rithm can be summarized as, from x̂ (k − 1|k − 1) ,
Pxx (k − 1|k − 1) ,

x̂ (k|k − 1) = Φ (k − 1) x̂ (k − 1|k − 1) ,

ẑ (k|k − 1) = H (k) x̂ (k|k − 1) ,

Pxx (k|k − 1) = Φ (k − 1)Pxx (k − 1|k − 1)ΦT (k − 1)
+ Q (k − 1) ,

S (k) = H (k)Pxx (k|k − 1) HT (k) + R (k) ,

K (k) = Pxx (k|k − 1) HT (k)S−1 (k) ,

ν (k) = z (k)− ẑ (k|k − 1) ,

x̂ (k|k) = x̂ (k|k − 1) + K (k) ν (k) ,

Pxx (k|k) = Pxx (k|k − 1)−K (k)S (k)KT (k) .

However, there are some problems associated with
the applications of this method. First, it is not
straightforward to determine the initial condition of
this problem. Secondly, for multiple sensors in differ-
ent sampling rates, it is desired to develop a synthe-
sis method to integrate those information. These two
topics are the main issues discussed in this report.

3 Determination of the Initial
Setting

Assume that all initial covariance matrices are diag-
onal. The normalized states error q (0) is

q (0) = x̃T (0) P−1 (0|0) x̃ (0) .

then q (0) should be smaller than the upper bound cn

which is dependent on the states degree of freedom
n and determined by chi-Squared confidence gate as(
two-side)

c′n ≤ q (0) ≤ cn.

Also, the initial states error is smaller than the max-
imized value of an acceptable state error bound li as

|x̃i (0)| ≤ li.

Further, we need to know how to obtain the P (0|0)
components in terms of the confidence cn and the ith

state error bound li. A straightforward way is, as-
suming that all states are uncorrelated, given a def-
inite positive diagonal matrix P (0|0) is a scaler σ2

1 ,
then applying the confidence gate and desired upper
bound to as

l2i
σ2

i

= cn.

Thus, the maximized and minimized values of stan-
dard deviation σi of x̃i are

0 < σi ≤ nli√
c′n

As a result, we obtain an initial covariance matrix
P (0|0) as

P (0|0) =




n2l21
c′n

0 ... 0

0 n2l22
c′n

... ...

... ... ... 0
0 ... ...

n2l2n
c′n




n×n

,

where li is the ith acceptable state error upper bound,
for i = 1, ..., n.

For the process noise, we have

uT (0)Q−1 (0) u (0) = qn,
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which is also a chi-square distributed with n degrees
of freedom. Similarly, by the confidence area,

0 ≤ uT (0) Q−1 (0) u (0) = qn ≤ cn,

which implies, under the assumption that Q (0) is a
diagonal with the elements Q2

i (0) , i = 1, ..., n.

Σn
i

u2
i

cnQ2
i (0)

≤ 1.

It is desired to find Q1, ..., Qn such that the distur-
bance ui, i = 1, .., n leis within the region bounded
by a ellipsoid Σn

i
u2

i

cnQ2
i

= 1. This ellipsoid may be ap-

proximated by a sphere with radius
√

cn

n Σn
i Qi (0). If

the averaged error on the disturbance along each axis
is denoted by ρα, with probability 1−α, then we have

√
cn

n
Σn

i Qi (0) = ρα.

Moreover, define the nominal value

Q̄ (0) =
ρα√
cn

.

The other components may be written as

Qi (0) = βiQ̄ (0) , (10)

in which βi varies about 1 and Σn
i βi = n. The ratios

are determined through the knowledge on the distur-
bance about each variable.

Similar process may be used to determine the ini-
tial value of R, for the measurement noise.

Let the average error for the measurement along
each axis is denoted by rα. We have

R̄ (0) =
rα√
cm

and
Ri (0) = ξiR̄ (0) , (11)

where cm is determined by the chi-distribution with
m degrees of freedom and ξi corresponds to the
knowledge on the sensor specifications on each axis.

After the initial condition on Q and R are deter-
mined, it is desired to adjust them during the filtering

process so that the change of actual environment can
be accommodated. Defines the state error

εx = x̃T P−1x̃,

which is a random variable with εx v χ2
n. To certain

confidence, it is anticipated that εx must be in the
range [c′n, cn] such that

Pr (c′n ≤ εx ≤ cn) = 1− α.

If εx lies above cn or below c′n, the process may be
good enough to model the disturbances. In order to
have εx lies in the region, we may adjust γ (k) in

Pxx (k|k − 1) = Φ (k − 1)P (k − 1|k − 1)ΦT (k − 1)
+ γ (k) Q (k − 1) .

For either εx > cn or εx < c′n, we may choose the
parameter γ (k) be equal to ratio between εx and its
mean value n, i.e.

γ (k) =
εx

n
.

If εx > cn, γ (k) > 1, the process noise is scaled
up, and the state error may be reduced in the re-
gion. On the other hand, if εx < c′n, γ (k) < 1, which
means that the process noise is reduced. Moreover,
for εx ∈ (c′n, cn) ,we also perform the fine tuning on
the process covariance matrix through the formula

γ (k) = 0.5
(

εx

n
+

n

εx

)
.

We denote Q∗ (k − 1) = γ (k)Q (k − 1) . If εx is out
of range, we should initialize the Kalman filter.

Recall that the innovation process may be used to
the performance of the sensors. The covariance ma-
trix for the innovation process may be written as

S (k) = H (k) {Φ(k − 1)Pxx (k − 1|k − 1)ΦT (k − 1)

+ Q∗ (k − 1)}HT (k) + R (k) .

Define the sensor error

εν (k) = νT S−1 (k) ν
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with εν v χ2
m. Specifying some confidence region

given by

Pr (c′m ≤ εν (k) ≤ cm) = 1− α,

if εν does not lie in (c′m, cm) , either the algorithm
fails or possibly the measurement covariance matrix
R is not properly given. For the later reason, we try
to adjust R according to following rule.

R∗ (k) = η (k)R (k) ,

where the factor η (k) is determined as

{
η (k) = εν

m , εν /∈ (c′m, cm)

η (k) = 0.5
(

m
εν(k) + εν(k)

m

)
, otherwise.

The innovation covariance matrix is then updated

S∗ (k) = H (k) {Φ(k − 1)Pxx (k − 1|k − 1)ΦT (k − 1)

+ Q∗ (k − 1)}HT (k) + R∗ (k) .

If the algorithm still does not work after the adjust-
ment, the message of sensor fault should be reported.

By appropriately adjusting Q and R, the filter
can be made robust in the presence of environmen-
tal changes. Such notion of adaptive Kalman filter
(AKF) is necessary for long term navigation.

4 Data Fusion

To perform estimation of the states in a physical sys-
tem, it is sometimes necessary to use multi-sensors.
The problem of how to combine the output data from
each mode of a data-log network is the main concern
in the section. The notion of covariance intersection
is introduced to solve the problem of dependency be-
tween these filters. The local observation information
can be obtained from each sensor. If the measure-
ments are independent, i.e. the cross covariance ma-
trices can are zero, then it is easy to achieve a com-
bination of information. On the other hand, if the
information are correlated, which the cross covari-
ance matrices are unknown, the information fusion
becomes a much more complicated process.

Consider the case that local information measure-
ments are independent. Let x̂1 and x̂2 be two esti-
mates of x with covariance P1 and P2, respectively.
The combined information by applying MMSE esti-
mator can be expressed as

x̂c =
[
P−1

1 + P−1
2

]−1 [
P−1

1 x̂1 + P−1
2 x̂2

]

with the resulting covariance[4, Bayerian Inference][2,
Chap10]

PC =
[
P−1

1 + P−1
2

]−1
.

In general, if the estimates are dependent and the
fused system covariance matrices are[2, Chap10.3][3,
Chap8] [

P1 P12

P21 P2

]
,

where the cross-covariance matrix is

P12 = E
[
(x̃1) (x̃2)

T
]
.

By using again the MMSE estimates, we obtain the
fused state estimate

x̂C = x̂1 + [P1 − P12]
[
P1 + P2 − P12 − (P12)

T
]−1

[x̂2 − x̂1]

and the corresponding covariance is

PC = P1 − [P1 − P12]
[
P1 + P2 − P12 − (P12)

T
]−1

[P1 − P12]
T

. (12)

Because the cross covariance matrices are too compli-
cate and frequently unknown, to deal with this prob-
lem, one can modify the information fusion algorithm
via convex combination idea of two system error co-
variance matrices[7, CI]. Instead of (12), we choose a
parameter α, where 0 ≤ α ≤ 1, such that

PC =
[
αP−1

1 + (1− α)P−1
2

]−1
,

and the corresponding updated estimate is

x̂C = PC

[
αP−1

1 x̂1 + (1− α)P−1
2 x̂2

]
.
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This method is called Covariance Intersection(CI) fil-
tering algorithm[7]. Extending the Covariance In-
tersection to an n−subsystem sensory system[7], the
fused covariance PC and state x̂C are

PC =
[
ΣαjP

−1
j

]−1
, (13)

and
x̂C = PC

[
ΣαjP

−1
j x̂i

]
(14)

where
0 ≤ αj ≤ 1,

Σjαj = 1.

Without loss of generality, for the jth subsystem at
the kth time step, by selecting the factor cj for each
node, we define

α′
j

= P j
D

(
P j

G

)−1

cje
−( 1

2 ε2
νj(k))

where P j
D is a probability of detection [2, detection]

which determined by the jth signal-noise ratio above
some threshold, and the gate probability P j

G is a
gated threshold[2, gate] as the chi-square probabil-
ity for the jth node. The parameters in CI algorithm
may be then chosen as

αj =
α′j

Σn
i α′i

.

5 Fused INS-GPS system

The ideas presented above are now applied to the
fused-INS-GPS system. Let Pins, Pgps be the states
error covariance matrices of INS(Inertial Naviga-
tion System) and GPS(Global Positioning System)
respectively. The covariance matrices from INS
and GPS via Kalman filter algorithm individually,
which may be termed decentralized or distributed
approach[3, Chap8], can be expressed as

Pins (k|k) = Pins (k|k − 1)−WS(ins)W
T

and

Pgps (k|k) = Pgps (k|k − 1)−WST
(gps)W

T .

The fused, updated covariance matrix is then

PC (k|k) =
[
αP−1

ins (k|k) + (1− α) P−1
gps (k|k)

]−1

(15)
and the fused estimate vector is

x̂C = PC (k|k)
[
αP−1

ins (k|k) x̂ins + (1− α) P−1
gps (k|k) x̂gps

]
.

The problem is then to choose the coefficient α.
Obviously, the role of α should provide good infor-
mation with the better fusion performance and some
criterion of faults rejection. In the data logging net-
work of a multisensor system, the signals are sampled
in different sampling rates. If εins, εgps are all located
within the 95% confidence area, their corresponding
measurements are acceptable. Either the value of εins

or εgps is out of bound, it means this system has ab-
normal or the faults occurred.[5, faults detection][1,
FDI] [6, FD] From the previous section, we compute

α′ins = cinsP
ins
D

(
P ins

G

)−1
e
−1
2 εins ,

α′gps = cgpsP
gps
D (P gps

G )−1
e−

1
2 εgps .

The values of cins, cgps are given by 0.5, since there
are no bias on each node. The probability of detection
P gps

D , P ins
D are assumed to be 1. The estimated α is

then chosen as

α =
α′ins

α′ins + α′gps

.

Incorperating the algorithm of initialization and the
covariance intersection algorithms, the fused-INS-
GPS system can be then used to estimate the speed
of an unmanned vehicle. Two experimental results
are shown in the following figures.
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Push and drive some small torque.

At 5th step, push the car then free driving to zero
speed.

6 Conclusion

The design of a fused-INS-GPS navigation system is
presented in this report. Comparing with classical
notion of Kalman filter, the ideas of the adaptive
change of the noise covariances and the covariance in-
tersection are adopted. Experimental results showed
that the algorithm is applicable and more robust.
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