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Abstract
In this paper we consider a
directionally solidifying alloy under the
inclined rotation. There occurs a basic
flow induced by the inclination and
modified by the rotation. The induced
basic flow is of an Ekman spiral form
near the melt/solid interface.  The
direction of the induced flow 1s steady
under the situation of precession-only
while periodically changes with time
under the spm with/without precession.
The effects of the inclined rotation on
the stability of the

investigated by linear analysis.

system  are
Results
show that the onset of the morphological
mode is virtually unaffected, while the
convective and the mixed modes can be
considerably stabilized. The principal
stabilizing mechanisms are the rotation
vector along the height of the tank and

the buoyancy-reduction along the height
of the tank. The induced flow may be
stabilizing or destabilizing depending on
the relative and the
amplitude-ratic between the induced

orientation

flow and the rotation component of the
precession along the interface.
Key words: solidification, rotation.

1. Introduction
The directional solidification of a
binary
research efforts for decades, is the main

alloy, having drawn great
industrial technique by which many
electrical materials of semiconductors
such as silicon and gallium-arsenic are
produced. During the solidifying process,
a melt/solid interface is formed. It is
generally need to keep the interface
plapar in order that the produced
materials have the least density of
mechanical defects and uniform physical
properties.

As the thermal and composition
boundary layers form near the interface,
a morphological instability (Rutter &
Chalmers 1953) may happen and disturb
the interface into non-planar shape. The
theoretical instability analysis of this
problem was first investigated by Mullin



& Sekerka (1964) by using the linear
analysis. Another kind of nstability can
also occur if the rejected solute is lighter
or the incorporated solute is heavier than
the solvent. Consequently, the density
distribution in the
boundary

compositional
hydro-statically
unstable. The theoretical analysis of this
buoyancy-driven convective instability
with  the
nstability was first conducted by Coriell

et al. (1980).
In this paper we study a potentially

layer is

coupled morphological

stabilizing method, the inclined rotation,
in which the cooling tank is rotated with
respect to an axis of inclined angle.
Sample and Hellawell (1984)
implemented an experiment by this
method, in which ammonium chloride
solutions were used. They found that
the  plumes caused by  the
buoyancy-driven instability in the mush
were totally prohibited if the inclined
angle reached from 20° to 30° .
Chung & Chen (1999) by linear analysis
of the mushy layer concluded that the
prohibition of the plume is basically due
to the buoyancy-reduction along the
density gradient when the system is
tilted. Because of the large resistance
to the flow in the mush, the Coriolis
force and the basic flow induced by the
inclination are very weak and therefore
only have very little to do on stabilizing
the mush. In the present situation, the
should

considerably large induced flow and

melt, however, allow a

Coniolis effect and consequently a more

complicated  stability

Besides the induced flow, the present

phenomenon.

system can also contain a rotation vector
along the interface due to the precession.
Researchers such as Matthew & Cox
(1997), Busse & Kropp (1992) and
Kropp & Busse {1991) considered the
interaction of a shear flow and a
horizontal rotating vector in the buoyant
convection systems and found that the
can be

interaction stabilizing or

destabilizing in different conditions.

2. Mathematical formulation

Consider a dilute binary alloy of
T, and
€, solidifying upwards, in which a solid

temperature concentration
layer is formed below the semi-infinite
bulk melt. The melt/solid interface,
which is described by z=#i(x,y.1), is
assumed to be initially planar and
advance into the fluid with an average
speed V.
such a general way (precession and spin)

The cooling tank rotates in
that the angular velocity can be
described by

® =}, sing, sing,}, _

-I»{i),sin#,cos#,kr+(¢,cos¢_+$,k‘ ’
where ¢,, §, and¢, are the angles of
precession,
respectively.

nutation and spin

¢, and ¢, are the
angular velocities of precession and spin
respectively. Besides, e,, e, and e
are the unit wvectors of Cartesian
which, after taking the
Galilean transformation with respect to

coordinate,

the interface moving-velocity ¥ , is
fixed on the melt/solid interface.



With respect to such a coordinate
system, the governing equations in the
fluid region h<z<w are

ot
2 a
(§-V52—+:_:-?]T=KIV’T.
In above equations, « is measured with

respect to the cooling tank,

P=p-p,g-r, p is the static pressure

and p, is the reference density.
Because the rotation speed considered
here is less than 5 rpm, and the
dimension is about 25 ¢m (the horizontal
dimension of the cooling tank) we
neglect both of the centrifugal force and
tangential force in this paper.

In addition, C is the concentration,
T the temperature, D, the solute
diffusivity, x, the thermal diffusivity

of the fluid, v the kinematic viscosity,
and g= —g(sin $, sind,,sind cond, ,cosé, )

the vector of gravitational acceleration
depending on both the nutation and spin
angles. Since Boussinesq approximation
is applied, the density of the fluid is a
constant except in the gravity term
where the following relation holds
p=p,(1-or-7.)-8C),

in which « and B are respectively
sotute

thermal and expansion

coefficients, and 7, .is the freezing
temperature of the pure solvent.

In the solid layer z<h, we neglect
the diffusion of the solute concentration
but consider just the diffusion of the heat,
so the heat equation is

g a :

[-5!-— VE)T =k, VT,
in which «, is the thermal diffusivity
of the solid phase.

Regarding the boundary condition
at infinite far field, we assume that the
fluid experiences a rigid-body rotation,
and both the
temperature remain the same as the

concentration and

original solution. Accordingly, at - ®
we have

u—=>0, C-»C,, T>T,.
At the melt/solid interface z = A{x, y,1)
the boundary conditions are

axp=0,
r-n=9,

Bk aC.
c,(l-k{vﬁ»—a; e #=-D,—=,
T,=mC, +T (1-Tz),

T, =T,

Bk ar BT,
LV+—le n=k ———k —,
[ a fe BTN on 7 on

where &k=C_/C. is known as the
segregation or partition coefficient, m
15 the liquidus slope {assumed to be a
constant), ' is the capillary length, =
is the curvature of the interface and ¢
is the latern heat per unit volume of the
These

respectively

solid. conditions

boundary
express the no-slip
condition, the conservation of mass at

the interface, the conservation of the



solute across the interface, the

thermal-dynamical equilibrium
condition, the continuity of the
temperature across the interface and
finally the energy balance at the

interface

3. Conclusion

We have considered a binary alloy
directionally solidified from below, to
which a rotation including spin and/or
precession with respect to an inclined
axis is imposed. The system admits an
analytical basic state including a strong
parallel shear flow induced by the
inclination and modified by the rotation.

The linear stability analysis shows
that the morphological instability is
virtually unaffected by the inclined
rotation due to the very short
wave-length of the
morphological modes. The mix modes
and the convective modes, on the other
hand, are considerably stabilized. The
result for the case of spin and precession

characteristic

indicates that the convective nstability
can be enhanced if the rotation
component along the height of the tank
of the precession 1s opposite in direction
to that of the spin. One reason for this
is the amplitude-drop of the stabilizing
mechanism - the rotation vector along
the height of the tank. The other
reason is that the interaction between the
induced basic flow and the precession
component along the interface becomes
destabilizing in this situation.

Reference

. Busse, F. H. & Kropp, M. 1992

Buoyancy driven instabilities in
rotating layers with parallel axis of
rotation. ZAMP 43, 28-35.

. Chung, C. A. & Chen, F. 1999

Convection in Directionally
Sclidifying Alloys Under Inclined
Rotation. Submitted to J. Fluid Mech.

. Coriell, S. R., Cordes, M. R.,

Boettinger, W. J. & Sekerka, R. F.
1980 Convective and interfacial
instabilities during unidirectional
solidification of a binary alloy. /.
Cryst. Growth 49, 13-28.

. Kropp. M. & Busse, F. H. 1991

Thermal convection in differentially
rotating system. Geophys. Astrophys.
Fluid Dynamics. 61, 127-148,

. Matthews, P. & Cox, S. 1997 Linear

stability of rotating convection in an
imposed shear flow. /. Fluids Mech.
350, 271-293.

. Mullins, W. W. & Sekerka, R. F. 1964

Stability of a planar interface during
solidification of a binary alloy. J. Appl.
Phys. 35, 444-451.

. Rutter, J. W. & Chalmers, B. A. 1953

A prismatic substructure formed
during solidification of metals. Can J.
Phys. 31, 15-39.

. Sample, A. K. & Hellawell, A. 1984

The mechanism of formation and
prevention of channel segregation
during alloy solidification. Mezall,
Trans. Al5, 2163-2173.



|1l

g -

HEN  BREM HfT
GEARER NIRRT
NSC 89-2212-E-002-124

- BIIERALE

ke85 [ International Conference on Mathematical Model in
Continuum Mechanics | + &—F Workshop MHENEE - KETRRIIHSL
MEAGIE  SERELEEEGAREANEE - X E NS ZER
Darmstadt A2 Hutter ZISATRGHESINER @ FrERAGRICARA - HhK
s TR BE T EAERR  SRtSETER e
KEZEXXBHMES - 8300 30 pERNEN - ERERAREHR
FrEfaRam  ZPHVEE TS » FILIRURNE I ERT A amaL -

- BEARRBRWL

FrlaRE A Ok B T 5 e B - 205 F RS A3 - Akt
KB REUR I - REWS . — R KA TEEE AR - FAFRRIMX
BERGAEGRETRERL R ER R AT TEER - A/
R E Za30EA % - EEE RSP ARG R - KRMEREAEHRT
[ - {EERENEERCE - RSN - Bl rRemt s 28
BRI IS - AYIRE - N2 RE > £V EAED
RN - Ak -

- RE L SHEER

BRREBGHRAREENE=A -
(1) BSHURBIFeRARATHES: | DI T2 S - ey A - S - B -
IESECAS HATRRR RIS Fr SR E TR EN
MR 2N - FEEWE  RRES  MERETENE
RIS DRI R R o E i E RIS BN E AR
ESRRiE - FRERS (BRESH -

(2) ARETHEERCILE—TEHS  BREHIREA  SHHEEREA
TR - 2R E Ry R A AREREE iR — AR AR R
@5 A EEHEGRAOSURERE/) - MALZE R R
iR R A S2HEEIHEY - BRI  msymBERE—20
FUIRBRERE - BRBG AN - FRGATERS -

(3) REHAENEENGER  DEe S s e s - IR
S TEEGCHG » USRS RHERRLER - hERR2
EHE AT SRR E TR —E W HAHERE - FRES -

HEER
BRI AT S R RE R T -



International Conference on Mathematical Mode! in Continuum Mechanics, Munich, Germany, 200!

Convection in directionally solidifying alloys under inclined rotation

C.A. Chung
Department of Mechanical Engineering, National Central University, Chung-Ii, Taiwean 320, ROC
Falin Chen

Institute of Applied Mechanics, Nationa! Taiwan University, Taipei, Taiwan 10764, ROC

Abstract

We investigate the stability of a dilute binary alloy directionally solidifying upward at a constant rate and
spinning around an inclined axis. It is found that prior to the onset of instability, a shear flow is induced by the
inclination and modified by the rotation, having the velocity profile like a spiral Ekman-layer flow. Relative to
the cooling tank, the induced flow moves periodically at a frequency equal to that of the spin. Based on this
basic-state flow, the effects of the inclined spin on both the morphological and convective instabilities of the
system are examined by linear analysis. Results show that the morphological modes caused by the constitutional
supercooling acting on the melt-solid interface are somewhat stabilized; the convective modes arising from the
compositional buoyancy developing above the interface can be considerably suppressed. The effective
stabilizing factors include the basic-state flow, the Coriolis force due to spin and the reduction of buoyancy along
the height of the tank due to inclination.

1. Introduction

During the directional solidification of a binary alloy, the interface may become unstable to a cellular structure,
ultimately leading to unwanted compositional inhomogeneity in the final casting. This is referred to as
morphological instability (Rutter & Chalmers 1953), a long trouble issue in the microchip manufacturing
technology. The perturbed interface encounters the supercooled melt and starts to grow, rendering the interface
unstable {(Mullin & Sekerka 1964). The interface can also lose its planar shape due to convective instability. This
convective motion of fluid may occur once there forms an unstable density distribution in the residual liquid
above the interface. Coriell et al. (1980) investigated this buoyancy-driven ihstability coupled with the
morphological instability. They showed that the convective instability is characterized by a wavelength
comparable to the thickness of the compositional boundary layer while the wavelength of the morphological
mode is much shorter.

To refrain the castings from the compositional inhomogeneity, investigating the effects of a shear flow on the
solidification of alloys has been discussed widely (Glickman et al. 1986, Brattkus and Davis 1988, Forth and
Wheeler 1992, Davis and Schulze 1996). Mostly, these investigations drew two general conclusions. First,
because the morphological instability is characterized by its quite small wavelength, it can hardly feel the shear
flows. Therefore, the morphological mode is only slightly stabilized. Second, the imposed shear flows influence
both the morphological and convective instabilities by selecting favored oriented rolls. Another potential means
to prevent castings from becoming inhomogeneous in composition is to apply rotation. Oztekin & Pearlstein
(1992) showed that a vertical rotation in general stabilizes the convective mode. However as the direction of the
flow induced by the morphological instability is virtally normal to the melt-solid interface due to the small
wavelength, no Coriolis force by the induced flow can be generated to inhibit the instability. The vertical rotation
has only weak effects on the morphological mode.

In this paper, we propose an alternative scheme — inclined spin, which is supposed to contain both the

stabilization effects of shear flow and rotation. This scheme is motivated by the experiment of Sample and
Hellawell (1984) and the analytical analysis of Chung and Chen (2000). They showed that by this means the
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formation of chimneys in the mushy zone of a solidifying alloy can be largely suppressed. Besides, with the
inclination there is a shear flow induced neutrally by the gravity and modified by the rotation. Unlike previous
studies in which most of the shear flows were artificially imposed, this scheme therefore is more feasible for
industrial purpose.

2. Problem description and formulation

We consider a dilute binary alloy of initial temperature T, and concentration C_, which is solidified from
below so that a solid region forms below the semi-infinite bulk melt. The melt-gsolid interface described by
z=h(x,y,t) is assumed initially planar and advancing into the bulk melt at a constant speed ¥ . The cooling
tank spins around an inclined axis that the angular velocity can be described as &= é%‘ . Here ;§;‘ is the angular
velocity of spin and e, is the unit vector in the z-direction of the reference coordinate fixed on the melt-solid
interface, rotating with the cooling tank and translating upward at the velocity ¥ . The goveming equations in
the fluid region k<z <o include the conservation of mass, momentum, solute and heat. Since the Boussinesg
approximation is applied, the density of the fluid is assumed constant except in the gravity term where the
relation holds p=p,(l-a(T-T,)- BC). Here @ and g are respectively the thermal and solute expansion
coefficients and T, is the freezing temperature of the corresponding pure solvent. In the solid region z <k, we
neglect the diffusion of solute while consider the heat balance only. The governing equations are made
dimensioniess with the solute-field scale. Namely, ¥ is for velocity, H =D/¥V for length (D the solute
diffusivity), £/¥* for time, C, for concentration, T, for temperature, and vp*/D for pressure (v the
kinematic viscosity). To nondimensionalize the temperature, we subtract 7, from the dimensional temperature
before dividing it with the scale. The dimensionless governing equations in the fluid region are

V-u=0, (1a)
1(é & ) v
g je=v u-Vp+(R.C+RTYS,S, (e, +5,C. (e, +C.e. |+ T uxe,, (1b)
[i-im-v)t::v’c, (ic)
a &
L(i-fwu.‘:f]rwm S ad
L\a &

The dimensionless heat equation in the solid region is
—L(i—f—]TzVZT. 2
IL\a &

In these equations, S.=v/Dis the Schmidt number, L.=x /D the Lewis number of the fluid («x, the thermal
diffusivity of the fluid), L.=x /D the Lewis number of the solid («,the thermal diffusivity of the solid). R.
and R are respectively the solutal and thermal Rayleigh numbers defined as R =ggC H’/vD ,
R, =gal H®/vD, where g is the gravitational constant. Furthermore, in equation (1b) 7. is the Taylor number
of spin accounting for the intensity of spin, defined as T, = (ZH ’Jf/w)J . For simplification, we have adopted the
abbreviations §, =sing,, C, =cos¢,, S,()=sin{¥) and C ({t)=cos{q), where g, is the tilt angle and Q is
the dimensionless angular velocity of spin, which is related with 7, by the relation Q=57 /2. Note that in
the momentum equation, we have neglected the centrifugal force and considered the Coriolis effect of spin only.

Regarding the boundary conditions, we assume that the fluid in the far field experiences a rigid-body rotation
and both the concentration and temperature remain their original values. Namely, the height of the tank is
assumed large enough so that the influence of the possible deformation of the free surface on the fluid motion
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near the melt-solid interface is ignored. Accordingly, at z > the dimensionless boundary conditions are
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Figure 1. The distribution of the basic-state velocity along the height of the cooling tank for T =10: the

solute-layer flow, thermal-layer flow and Ekman-layer flow. (a) The amplitude. (b) The phase angle
measured from the gravity component in the (x, y)-plane. {¢) The overall velocity vector of the basic-state

velocity.
#u—-0, Co1, T>T.. {3a-c)
At the melt-solid interface z = A(x, y,¢), the dimensionless boundary conditions are
uxn=0, uw-n=0, (k—l)C+[l+%]es-n=VC+-n, T =MC, -UK, _ ‘ ~ {(4ad)
ch
T =T, L[1+é—t—)¢z-n=(L,VT_—L,?I;)-n. (de, )

In these equations » is the normal vector to the interface directing toward the melt. Subscripts + and - denote
respectively the quantities right above and below the interface, ¥=C_/C_ is the segregation or partition
coefficient, M =mC_/T, is the dimensionless liquidus slope (m is the dimensional liquidus slope assumed to
be a constant). Meanwhile, we have included the capillary effect {the Gibbs-Thompson effect} in equation (4d),
where U=TV/D means the dimensionless capillary length, I" the dimensional capillary length and K the
curvature of the interface (assumed negative for a concave projection into the fluid). Finally, L = /7, (;x, }_ is

the Stefan number and L is the latern heat per unit volume of the solid. It is noted that in equation (4f), we have . .

neglected the difference of the specific heat between the solid and liquid phases. For detailed physical meanings
of these interface conditions, readers can reference Forth and Wheeler (1992).

3. Basic-state solution

We assume a much larger horizontal dimension of the cooling tank than the characteristic length scale. By means
of scaling analysis, the continuity equation yields that the velocity component in the z-direction is much weaker
than that in the (x, y)-plane. The velocity in the z-direction is thus negligible for the basic state. We also assume
the space-differentiation to both the x- and y-coordinate are negligible compared with that to the z-coordinate.
Consequently, the basic state is independent of x and y. The basic flow is induced by the gravity component in
the (x, y)-plane owing to the inclination. As the induced flow is parallel with the (x, y)}-plane, the basic-state
temperature and concentration are not affected by it. Therefore, they are similar to those shown in previous
studies such as Forth & Wheeler (1992). Because the fluid in the far field is assumed to rotate with the cooling
tank like a rigid body, the consideration of equations (1b) gives the following form of the basic-state pressure

P, =P, (z. 0+ (R + RTJx8.8,{)+ 5,C,(1)+ 2C, ], (5)
where the reduced pressure p, can be solved by substituting equation (5) into equation (1b). The basic-state
pressure cati no longer balance the fluid weight in the (x, y)-plane since the fluid density is not constant along the
height of the tank. This unbalance between the pressure and the fluid weight consequently induces the basic flow,
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which is then modified by the Coriolis force of spin. The velocity components in the x-and y-direction are
(<)
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Figure 2. The neutral curves in terms of the Sekerka number §,, the wave speed ¢, and the wave number
a for the case of vertical rotation where the tilt angle §, =0. The gray areas indicate unstable regions, The
labels UM, M1, M2, C1, C2, X1 and X2 denote the different instability modes. (a)b) 7, =0, (c}d) T, =1,
(eXf) T,=4.

obtained by substituting equation (5) into equations (1b), giving
Ubsub+fvb=(}b(z)e”‘ ’ . . ) . (©)

In this complex expression, U,, a function of z only, is the velocity amplitude having the following form

S”i‘G‘ o+ S_R‘;L,G; o™ :lexp(_sz_ zj’dE] . (7

[ ]

0.0 =2 ecoly, —2)- Lol o) of

(- I

Here ¢, = ~(Q¢+x/2) is defined as the phase angle of the gravity vector with respect to the cooling tank. The
remaining parameters in equation (7) are defined as follows.

¥2 vz
1 1 1 T, 1 1 2
d£=/[zsc+aj, a=[{?:+ S—:+16T,’}/8J > b=?¢H—§+ —S-;;+16T, ]/SJ ; (Ba-c)

a =(-ys.y+zf, cos¢,=%€‘-, sin¢,=§—', S T @D
b, (@, s LY Y cosg SWETVNE gy T (3¢-)

r r

Further, in equation (7) the local gradients of the concentration and temperature are defined respectively as
G, =(k-1)k, G, ={T,-M/K)/L, ,and in equation (8) T, =T**/2 is an effective Taylor number used to simplify
the writing. Equation (7) indicates that the induced velocity increases in amplitude with inclined angle and
changes its direction periodically with time at a frequency equal to the spin angular velocity Q. Furthermore,
the induced velocity changes with height, consisting of three different parts according to the length scale: the
solute-layer flow, the thermal-layer flow and the Ekman-layer flow. To illustrate these three parts, we display in
figure 1 their distributions with height for 7, =10. For all the computations in this paper, we have used the
parameter values S =81, L. =3600, L. =6700, R. =10, R, =250, k =03, G: =10, L =0.29. These values are
corresponding to the model lead-tin alloy considered by Coriell et al. (1980). In figure la, one can see the
velocities of both the solute-layer flow and the Ekman-layer flow decrease exponentially with height. The
velocity of the thermal-layer flow seems to remain virtually constant in magnitude near the solid-melt interface
because the Lewis number has been considered large, leading to a deep thermal boundary layer for this case. It is
evident from figure 1b that both the solute-layer flow and thermal-layer flow do not change their directions,
whereas the Ekman-layer flow varies in direction periodically with height by a period 2x/b. Please note that in
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figure 1b we have adopted ¢, , the orientation of the gravity component in the (x, y)-plane, as the reference
angle to measure the flow direction. In figure 1c, we show the velocity vector of the induced flow. The overall

induced

()

(b « e

- oL 10 130 1000 ] Lo 100 LoD 0.1 Lo oo LO0.0
a4 [+ o
Figure 3. The peutral curves in terms of the Sekerka number 5, , the wave speed ¢, and the wave number
o for the case of inclined spin. The velocity of spin is set to (=80, The tilt angle ¢, has different values:

@)b) ¢, =10°, (cXd) ¢, =20°,(e)D) 9, =25°.

flow in the far field stays in the (x, z)-plane, while near the interface it has a component in the y-direction.

4. Linear stability analysis

We investigate the stability feature of the basic state, focusing on the effects of the inclined spin. To simplify the
analysis, the frozen temperature assumption (Forth & Wheeler 1989, 1992) has been employed, i. e., the
temperature is fixed at its basic-state value. Except temperature, we introduce small perturbations together with
the basic state into the governing equations (1) and then neglect the products of the small quantities to obtain the
linear perturbation equations. These perturbation equations and boundary conditions are nonetheless too tedious
to be presented in the text. However, two new dimensionless parameters need to be addressed: the modified
capillary parameter U"=U/MG. and the Sekerka number S, =MG_ /G, that measures the intensity of the
super-cooling effect at the interface. For the following computations, we choose U’=6.131x10™. The basic
flow is a periodical function of time varying with a frequency equal to the spin angular velocity Q. Therefore,
the perturbation equations contain time-dependent coefficients and need to be salved by-employing the Floquet.- -~
theory (Chung and Chen 2000), expanding the time-dependent variable by a complex Fourier series of time.

To reveal the effects of the inclined spin, we first demonstrate for comparison the result of a
stationary-cooling tank. Figure 2a shows the neutral curves of the morphological modes M1, M2 and UM (thin
curves), the convective modes C1 and C2 (thick curves) and the mixed modes X1 and X2 (dotted curves). Figure
2b displays their wave speeds ¢, =~o,/a of the instability modes. In these figures, we have adopted the same
labels used by Forth and Wheeler (1992) to name the instability modes. The shadow areas denote the unstable
regions of the instabilities. As shown, the solution exhibits a so-called folding structure for the mixed modes X1
and X2, which have the same onset condition while travel in the opposite directions. The X1 moves with forward
wave speed +c, and the X2 backward wave speed —e, . The stationary C1 and M1 modes are connected by the
X1, X2 modes, generating two other stationary modes C2 and M2. Note that the UM mode is also stationary but
physically unrealistic because it occurs with non-positive Sekerka number.

, =1 (figure 2c, d, equivalent to 0.5 rpm corresponding to the lead-tin
alloy comsidered) and 7, =4 (figure 2e, f, equivalent to 1 rpm) to demonstrate the influences of vertical
rotation. It is discovered that, once the vertical rotation is applied, the coalescence between the C1, X1 and X2
modes becomes disconnected and the mode M2 disappears. The convective mode C1 and mixed modes X1, X2
are suppressed by the vertical rotation through the action of the Coriolis force, as commonly found in previous
studies (Oztekin and Pearlstein 1991). The morphological mode M1, however, is virtually unaffected primarily

Two sets of figure are displayed for T
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due to the short wavelength (Forth and Wheeler 1992).

To show the influence of inclined spin, we show in figure 3 the neutral curves for the case of 2=80
(equivalent to 7. =4 and 1 rpm for present system) with the tilt angle ¢, varying from 10° to 25°. We see
in figure 3a the mixed modes X1, X2 and the convective modes C1, C2 are largely stabilized due to the actions
of the induced flow and the gravity shifted by the inclination. As the tilt angle increases (Figures 3c and 3e), the
stabilization is more enhanced. The morphological mode M1, on the other hand, is only slightly stabilized owing
to it short characteristic wavelength. Note that the instability modes C1, C2, M1 and UM having ¢, =0 are
moving synchronously with the spin. Whereas the instability modes X1 and X2 have ¢, #0, indicating that the
mixed modes are non-synchronous. Their frequencies are modulated by @, = -ec, .

5. Conclusions

We have analyzed the stability characteristics of a binary alloy that is directionally solidified upward and
spinning around an inclined axis. The system has a basic state, in which a strong helical shear flow is induced
naturally by the inclination and modified by the rotation, not like previous studies where the shear flow is often
artificially imposed. Changing in direction periodically by a frequency equal to spin, increasing in amplitude
with the inclined angle and decreasing with increasing spin speed, the induced flow comprises three parts. They
are the solute-layer flow, the thermal-layer flow and the spiral Ekman-layer flow. Stability analysis shows that
once the inclined spin is imposed, the convective modes and morphological modes, which are of stationary onset
with a vertical cooling tank, occur synchronously with the spin motion. The mixed modes, in contrast, which are
originally of oscillatory onset, occur non-synchronously with the spin. In the context of the stability condition,
the mixed mode and convective mode are largely stabilized by the inclined spin. The morphological instability,
on the other hand, is somewhat stabilized.
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